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To understand the interplay between the electricity
market (price) and electricity generation, and what role
storage might have in management of the power
system.

To understand the dynamics of smart grids consisting of
a network of prosumers interacting in the physical, cyber
and social layers

Prosumer = Producer/Consumer



How can a market be effectively regulated,
controlled/stabilised and incentivised?

What is the effect of price on a power system?

—Can price be used to regulate a complicated network
containing a mix of generators, storers, prosumers?

—Is price something we can impose on the system as
an exogenous control variable or is it necessarily
endogenous, a product of system dynamics?



Given a prosumer with a storage battery (perhaps in an
electric/hybrid vehicle) and an exogenous price p(t)
what is the optimal charging/discharging to minimise
cost? How should the price be chosen to induce a given
behaviour in the prosumer?

In this talk we consider the charging problem and
discuss the classical calculus of variations approach
and its limitations



Battery types -

 |ead-acid
* Lilone.g.
_IC00,

« NaS
 NICd

e /NBr

¢ Li02 Schematic of lithium-air battery charge
e LIS and discharge cycles




Batteries are complicated beasts !
Modelling approaches include

— Electrochemical and thermal modelling of the
electrolyte, electrodes and their interaction

— Dynamical modelling — macro modelling of battery
behaviour, often involving equivalent circuit diagrams

Modelling of batteries is a well established and growing
field.

Little analytical work possible, simulation (often through
Matlab and Maple) is main approach



Constant current

Constant voltage

High current decreased exponentially

Constant current/constant voltage

Constant current/constant voltage/constant current
Pulsed charging

Quick charging

Each regime has characteristic charging time and effect
on battery temperature and lifetime

Each battery has its own attributes and manufacturer-
recommended charging regimes



State variable: S = state of
charge

S = 0 battery fully discharged
S = 1 battery fully charged
(Ignore battery temperature 6)
Applied current and voltage

1(t),V(t)

-I(t) > 0 - charging

-1(t) < 0 - discharging

- 1(t), V(t) are not independent
Time interval [t,, t,]



Supplier price taker

Prices: exogenous variables, set by power system
operator

Two prices in, say, £ per KWh (i.e. money/energy):

— P, (t) offer price i.e. price the storage supplier sells
electricity

- pp (t) bid price I.e. price the storage supplier buys
electricity

—In general p, (t) = p, (t)

Forward pricingon T = |[t,t,]

Here we consider p,(t) = p, (t), which we write p(t)



S(t) state of charge, 0 < S(t) <1, Q(t) = Qpax S(t)

C=[FpOw®dt, W) =G(SE),50)

For a simple-battery
-W(t) = 1)V (L)

— V(t) =Voc + Ry I()
— 1(t) = Quax S(t)

— G =G(S@) = (Voc + RyQuax S())Quax S(t)
— G convex for Ry, > 0



Theorem. Let L(t,S,V) be a twice continuously
differentiable function with respect to (¢, S, V) which is
convex with respect to (S, V). Then the functional

ff:L (t,S(t),S'(t)) dt, S(t;) =S, S(t,) =S, has a
minimum path S(t) that satisfies the Euler-Lagrange
equation < Ly (&,5(t),$(t)) = Lg(t, 5(£), S(£)) with
boundary conditions S(t;) = S, S(t,) = S,

Note: The Euler-Lagrange equation may be written as

V(£) = Ls(t, S, 5®) , Y(8) = Ly (£,5(0), S(®))
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For a given price p(t), what is the optimal S(t) (within a
given class of approved charging regimes)? Is the
charging regime unique, and, If not, can we characterize

the degree of degeneracy?

Euler-Lagrange eqguation

d
dt [p(t)GS] p(t)GS = O,S(ts) =S,S(t,)=S

Note: G¢ = 0G/0S etc

For simple battery

t ds
St)=S,+K ft 5 —ZQMAXR (t —tg), S(t) =S,
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For a given S(t) what is the price p(t) for which S(t) is
optimal? And is p(t) unigue and, If not, can we
characterize the degree of degeneracy?

. Gs(ts) t Gs(s)
p(t) _ p(tS) Gs(t) eXp [ftS GS(S) dS]

For simple battery

Voc+2 Qmax Rp S(ts)
P(¢) p(ts) Voct+2 Qmax Rp S(t)
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For a given power W(t), what is S(t) (and iIs it unigue and
In a given class of approved charging functions)?

G(S,S) = W(t) is an implicit differential equation for S(t),
which can be solved with one boundary condition

S(ty) = S;. It's then possible in principle to determine the
price function inducing this charging function providing

W (t) is compatible with S(t,) = S,

Simple battery:

ft (Voc© + 4 RbW(s)) — Vo ds

S(t) =S, +

2 QMAXRb



For a given power W (t), what Is the price p(t) that
induces W(t)?

Apply the previous theory.

For a simple battery:
1

— V(%C+4 Rp W(ts) 2
p(e) = p(es) ()
1

_ Le V(§C+4Rb w(ts))2
C=p(ts) fts (V§C+4Rb W(S)) W(s)ds
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Relaxation in the smoothness requirements for L(t,S,V)
and S(t) to account for non-smoothness in price, battery
models

Natural incorporation of constraints and penalties

But possibly including unphysical solutions,
mathematically oversophisticated, and computations
may require classical methods

_’
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Functional J = f°L (£:5(6),5(8)) dt + £(S(t,), S(t.)) where
L and ¢ may take value oo to incorporate constraints
Technical assumptions:
£ 1s lower semi continuous (Isc), proper
* L Is Isc, proper, a normal integrand and
L(t,S, V) = a(t,S,V) amild growth condition
* L(t,S,V)IsconvexinS,V

» The path S(t) is absolutely continuous, S(t) exists a.e.
and S € L1



Theorem. Suppose S(t) is a path with J[S} < oo and
suppose Y (t) is a path satisfying the generalised Euler-

Lagrange condition (Y(t),Y(t)) € GS,VL(t,S(t),S(t)) for

a.a. t and also the generalised transversality condition
(Y(ts), —yY (t.)) € 0€(S(ts),S(t.)) then x(¢) is optimal.

Note dy , L(t,S(t),S(t)) and a£(S(ts),S(t,)) are
subgradients



Develop theory for charging/discharging

2
nclude e.g. ramp-up penalty say -f;lz (dZR) dt

nclude more complicated pricing structures e.g. price for
oroviding power Py,

Consider ensembles of prosumers/battery models

Design of pricing policy to control system and to
Incentivize development of storage

Incomplete information, stochastic pricing




Thank you for your attention



