Tools for Model-based Security Engineering:
Models vs. Code’

Jan Jurjens and Yijun Yu
Computing Department, The Open University, GB

http://www.computing.open.ac.uk/people/{j.jurjens,y.yu}

ABSTRACT

We present tools to support model-based security engineer-
ing on both the model and the code level. In the approach
supported by these tools, one firstly specifies the security-
critical part of the system (e.g. a crypto protocol) using the
UML security extension UMLsec. The models are automat-
ically verified for security properties using automated the-
orem provers. These are implemented within a framework
that supports implementing verification routines, based on
XMI output of the diagrams from UML CASE tools. Ad-
vanced users can use this open-source framework to imple-
ment verification routines for the constraints of self-defined
security requirements.

In a second step, one verifies that security-critical parts
of the model are correctly implemented in the code (which
might be a legacy implementation), and applies security
hardening transformations where is that not the case. This
is supported by tools that (1) establish traceability through
refactoring scripts and (2) modularize security hardening ad-
vices through aspect-oriented programming. The proposed
method has been applied to an open-source implementa-
tion of a cryptographic protocol implementation (JESSIE)
in Java to build up traceability mappings and security as-
pects. In that application, we found a security weakness
which could be fixed using our approach. The resulting
refactoring scripts and security aspects have found reusabil-
ity in the Java Secure Socket Extension (JSSE) library.

Categories and Subject Descriptors: D.2.2 Software
Engineering: Design Tools and Techniques -Computer Aided
Software Engineering (CASE), D.2.4 Software Engineering:
Software/Program Verification

General Terms: Security.

Keywords: Security, Model-based Software Engineering,
UML, Verification Framework, Code Analysis, Refactoring,
Security Hardening.

Model-based Security Engineering

Understanding the security goals provided by software mak-
ing use of cryptography is one of the major challenges with

*This work was partially supported by the Royal Society
within the project Modelbased Formal Security Analysis of
Crypto Protocol Implementations.

Copyright is held by the author/owner(s).
ASE’07, November 4-9, 2007, Atlanta, Georgia, USA.
ACM 978-1-59593-882-4/07/0011.

security-critical systems. Any support to aid secure systems
development is thus dearly needed. Towards this goal, the
security extension UMLsec for the Unified Modeling Lan-
guage (UML) [3] allows us to include security requirements
as stereotypes with logical constraints. In this paper we
present automated tool-support for the analysis of UMLsec
models against security requirements by checking the con-
straints associated with the UMLsec stereotypes. Besides
presenting a general, extensible framework for implement-
ing verification routines for the constraints associated with
security-critical UML stereotypes, we focus on a plug-in that
utilizes an automated theorem-prover (ATP) for first-order
logic (FOL) to verify security properties of UMLsec models
which make use of cryptography (such as cryptographic pro-
tocols), which was explained in [5]. To do so, the analysis
routine extracts information from behavioral UML diagrams
that may contain additional specific cryptography-related
information. If the analysis reveals that there is an attack,
an attack generation script written in Prolog generates the
attack trace.

To link the model-based security analysis to the code level,
we have shown how to insert cryptographic assertions into
implementations of cryptographic protocols to ensure that
the analyzed cryptographical protocol design is implemented
securely [6]. To our experience, it is however non-trivial to
insert the right assertions at the right place in the program.
As the implementation or the used libraries evolve, the in-
strumentation may not anymore guarantee the correct link
to the protocol design. Moreover, it is not clear whether
and how such assertions can be reliably transferred to a dif-
ferent implementation of the protocol. As such assertions
tend to crosscut in the code, a good candidate to instru-
ment the program is aspect-oriented programming (AOP).
However, aspectJ cannot intercept arbitrary control flow at
the statement level (and does not intend to do so either, for
good reasons). Our tools therefore maintain traceability be-
tween the design and the implementation of a cryptographic
protocol through techniques and tools for refactoring script-
ing and aspect-oriented programming that are supported
respectively by the JDT! and AJDT? in the Eclipse Inte-
grated Development Environment (IDE). Other Java IDE’s
(e.g. Netbeans) are applicable as long as both refactoring
scripting and aspectJ are supported.

Note that our goal is not to provide an automated full for-
mal verification of Java code but to increase understanding
of the security properties enforced by cryptoprotocol imple-

Iwww.eclipse.org/jdt
Zwww.eclipse.org/ajdt

_Java editor|~——— data flow
1 UML editor “::> 1 : "uses”

AN Code AN
UMLsec| with Text

model | | Asserrs| |Report

L
Refactoring

Engine
Assertion
Generator

Security
Analyzer

Automated
Theorem Attack
Prover ||generator

Figure 1: Tool-flow of the MBSE suite

mentations (which may be legacy implementations) in a way
as automated as possible. Because of the abstractions, the
approach may produce false alarms (which however have not
surfaced yet in practical examples). Note that our focus here
is on high-level security properties such as secrecy and au-
thenticity, and not on detecting low-level security flaws such
as buffer-overflow attacks.

The tools are accessible through a web-interface and avail-
able as open-source. They have been validated in several
industrial projects (see for example [4, 1]), identifying sev-
eral major security flaws in software during its industrial
development.

Model-based Security Verification

The usage of the framework as illustrated in Fig. 1 proceeds
as follows. The developer creates a model and stores it in
the UML 1.5/XMI 1.2 file format. The file is imported by
the verification framework into the internal MDR repository.
MDR is an XMI-specific data-binding library which directly
provides a representation of an XMI file on the abstraction
level of a UML model through Java interfaces (JMI). This
allows the developer to operate directly with UML concepts,
such as classes, statecharts, and stereotypes. It is part of the
Netbeans project. Each plug-in accesses the model through
the JMI interfaces generated by the MDR library, they may
receive additional textual input, and they may return both
a UML model and textual output. There are two kinds
of model analysis plug-ins: The static checkers parse the
model, verify its static features, and deliver the results to
the error analyzer. The dynamic checkers translate the rel-
evant fragments of the UML model into the input language
for example of an ATP. The ATP is spawned by the frame-
work as an external process; its results are delivered back to
the error analyzer. The error analyzer uses the information
received from the static and dynamic checkers to produce a
text report for the developer describing the problems found,
and a modified UML model, where the errors found are vi-
sualized. Besides the automated theorem prover binding
presented in this paper there are other analysis plugins in-
cluding a model-checker binding and plugins for simulation
and test-sequence generation. The developer can then use
the aspect weaver to weave in security aspects on the model
or into the code that can be generated. The resulting code
can then again be analzed for security requirements.

The framework is designed to be extensible: advanced
users can define stereotypes, tags, and first-order logic con-
straints which are then automatically translated to the au-
tomated theorem prover for verification on a given UML
model. Similarly, new adversary models can be defined.

In particular, the automated translation of UMLsec dia-
grams to first-order logic (FOL) formulas which allows au-
tomated analysis of the diagrams using ATPs for FOL is
explained in [5]. In case the result is that there may be an
attack, in order to fix the flaw in the code, it would be help-
ful to retrieve the attack trace. Since theorem provers such
as e-SETHEO are highly optimized for performance by using
abstract derivations, it is not trivial to extract this informa-
tion. Therefore, we also implemented a tool which trans-
forms the logical formulas explained above to Prolog. While
the analysis in Prolog is not useful to establish whether there
is an attack in the first place (because it is in order of magni-
tudes slower that using e-SETHEO and in general there are
termination problems with its depth-first search algorithm),
Prolog works fine in the case where one already knows that
there is an attack, and it only needs to be shown explicitly
(because it explicitly assigned values to variables durch its
search, which can then be queried).

The user webinterface and the source code of the verifica-
tion framework is accessible at [2].

Traceable Security Hardening

Software refactoring actions are changes to the internal struc-
ture of the software without changing external behavior.
For our tools to (1) establish traceability through refactor-
ing scripts and (2) modularize security hardening advices
through aspect-oriented programming, we use scripts to au-
tomatically repeat refactoring actions found during program
analysis such that these actions become semantics-preserving
program transformations aiming at improving the program
understanding. Specifically, two virtualization mappings are
maintainable by our refactoring scripts. The first mapping is
from symbols in the designed message sequence chart to pro-
gram entities. The second mapping is from program entities
to the join point entities that are crosscut by aspect advices.
Both mappings, when applied reversely, can trace program
entities accurately back to the message sequence charts such
that one can reflect implementation changes back to the de-
sign. The aim is thus to automate the maintenance of trace-
ability mappings created between the cryptographic proto-
col in design and their open-source implementations.

1. REFERENCES

[1] B. Best, J. Jiirjens, and B. Nuseibeh. Model-based security
engineering of distributed information systems using UMLsec. In
ICSE 2007, pages 581-590. ACM, 2007.

[2] J. Jiirjens. UMLsec webpage, 2002-07. Accessible at
http://www.umlsec.org.

[3] J. Jiirjens. Secure Systems Development with UML. Springer,
2004.

[4] J. Jiirjens. Code security analysis of a biometric authentication
system using automated theorem provers. In 21st Annual
Computer Security Applications Conference (ACSAC 2005).
IEEE, 2005.

[5] J. Jiirjens. Sound methods and effective tools for model-based
security engineering with UML. In 27th International
Conference on Software Engineering (ICSE 2005). IEEE, 2005.

[6] J. Jiirjens. Security analysis of crypto-based Java programs
using automated theorem provers. In S. Easterbrook and
S. Uchitel, editors, 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE 2006). ACM, 2006.

