2018 LTCC Course on Aperiodic Order Solutions to Worksheet 4

Exercise 1: For $s=0$, the relation $n=f_{0}(m)=\frac{m}{\tau}=m \tau-m$ shows that the only integer value for n is obtained for $m=0$, so the only lattice point on the line $y=f_{0}(x)$ is $(x, y)=(0,0)$.
For $s=1$, the equation becomes $n=f_{1}(m)=\frac{m}{\tau}+1=m \tau-m+1$, so again $m=0$ is the only possiblity, thus $(x, y)=(1,0)$.
Finally, for $s=-\frac{1}{t}$, we get $n=f_{-\frac{1}{\tau}}(m)=\frac{m-1}{\tau}$, so in this case $m=1$ is the only integer that makes n integer as well, and hence $(x, y)=(0,1)$.

Exercise 2: As $f_{0}(x)$ has slope $\frac{1}{\tau}$, an orthogonal line must have slope $-\tau$. Hence the line $y=g(x)$ through a lattice point $(m, n) \in \mathbb{Z}^{2}$ has the form $y=-\tau x+b$ with $n=-\tau m+b$, which implies that $b=n+m \tau$, so $g(x)=-\tau x+n+m \tau=\tau(m-x)+n$.
The intersection point (x, y) of the two lines is given by

$$
y=f_{0}(x)=\frac{x}{\tau}=x(\tau-1)=g(x)=\tau(m-x)+n
$$

which gives $x=(n+m \tau) /(2 \tau-1)$ and $y=(n+m \tau) /(\tau+2)$.
The distance d of (x, y) from the origin is thus given by

$$
\begin{aligned}
d^{2} & =\left(\frac{n+m \tau}{2 \tau-1}\right)^{2}+\left(\frac{n+m \tau}{\tau+2}\right)^{2}=(n+m \tau)^{2}\left(\frac{1}{4 \tau+4-4 \tau+1}+\frac{1}{\tau+1+4 \tau+4}\right) \\
& =(n+m \tau)^{2}\left(\frac{1}{5}+\frac{1}{5 \tau+5}\right)=(n+m \tau)^{2} \frac{\tau+2}{5 \tau+5}
\end{aligned}
$$

Now, using $\tau \tau^{\prime}=-1$ and $\tau+\tau^{\prime}=1$, we find

$$
\frac{\tau+2}{5 \tau+5}=\frac{(\tau+2)\left(\tau^{\prime}+2\right)}{(5 \tau+5)\left(\tau^{\prime}+2\right)}=\frac{\tau \tau^{\prime}+2\left(\tau+\tau^{\prime}\right)+4}{5 \tau \tau^{\prime}+10 \tau+5 \tau^{\prime}+10}=\frac{5}{5 \tau+10}=\frac{1}{\tau+2},
$$

so

$$
d^{2}=\frac{1}{\tau+2}(n+m \tau)^{2}
$$

and hence

$$
d=\sqrt{\frac{1}{\tau+2}}|n+m \tau|,
$$

which shows that d is in $\mathbb{Z}[\tau] / \sqrt{\tau+2}$.

Exercise 3: In y direction, the strip has width $1+\frac{1}{\tau}=1+\tau-1=\tau$. As $1<\tau<2$, there can be at most two lattice points (x, y) within the strip for any given values of x, and there must be at least one. Clearly $(0,0)$ is in the strip, while $(0,1)$ is just outside.

The condition $(x, y) \in S$ can be expressed as $x-1 \leq \tau y<x+\tau$. Explicit checking then gives the list of points as

$$
\{(0,0),(1,0),(1,1),(2,1),(2,2),(3,2),(4,2),(4,3),(5,3),(5,4),(6,4)\} .
$$

Exercise 4: Denoting the horizontal and vertical steps by a and b, one obtains the sequence ababaababa, which is a legal Fibonacci word because it occurs at the end of $\varrho^{6}(a)=$ abaababaabaababaababa.

Exercise 5: We have a lattice $\mathcal{L}=\mathbb{Z}^{2} \subseteq \mathbb{R}^{2}$, together with projections onto the line $y=f_{0}(x)$ (which plays the role of physical space) and its orthogonal complement $y=-\tau x$ (the internal space). The window W corresponds to the cross-section of the strip S along the internal space, which is a half-open interval whose endpoints are the projections of the of the lattice points $(1,0)$ (included) and $(0,1)$ (excluded). The set of projected points on the line $y=f_{0}(x)$ is thus a regular model set.

