2018 LTCC Course on Aperiodic Order Solutions to Worksheet 2

Exercise 1: We have $\varrho^{2}(b)=\varrho(a)=a b b$, so ϱ is irreducible. Furthermore, $\varrho^{2}(a)=$ $\varrho(a b b)=a b b a a$, so both letters occur in the $\varrho^{2}(a)$ and $\varrho^{2}(b)$, and hence ϱ is primitive.

Exercise 2: We have $\varrho^{2}(a)=a b b a a$, which contains all combinations of two letters as subwords, so all four seeds $a|a, a| b, b \mid a$ and $b \mid b$ are legal.
Applying ϱ to the four seeds gives

$$
\begin{aligned}
& a|a \mapsto a b b| a b b \mapsto a b b a a \mid a b b a a \mapsto a b b a a a b b a b b \mid a b b a a a b b a b b \mapsto \ldots \\
& a \mid b \mapsto a b b|a \mapsto a b b a a| a b b \mapsto a b b a a a b b a b b \mid a b b a a \mapsto \ldots \\
& b|a \mapsto a| a b b \mapsto a b b|a b b a a \mapsto a b b a a| a b b a a a b b a b b \mapsto \ldots \\
& b|b \mapsto a| a \mapsto a b b|a b b \mapsto a b b a a| a b b a a \mapsto \ldots
\end{aligned}
$$

Clearly, there is no fixed point under ϱ, as the central two-letter words in all cases alternates between $a \mid a$ and $b \mid a$. There are thus two fixed points under ϱ^{2}, with cores ...abbaa|abbaa ... and ...bbabb|abbaaa

Exercise 3: The substitution matrix for ϱ is

$$
M=\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)
$$

which is not symmetric. The characteristic polynomial is $(1-x)(-x)-2=x^{2}-x-2=$ $(x-2)(x+1)$, so the eigenvalues as $\lambda=2$ and -1 .
The relation $w^{(n+1)}=w^{(n)} w^{(n-1)} w^{(n-1)}$ is proved by induction. Setting $w^{(0)}=a$, we have $w^{(1)}=\varrho(a)=a b b$ and $w^{(2)}=\varrho(a b b)=a b b a a$. Clearly, these satisfy $w^{(2)}=w^{(1)} w^{(0)} w^{(0)}$. Assuming that $w^{(n+1)}=w^{(n)} w^{(n-1)} w^{(n-1)}$ holds, we find

$$
w^{(n+2)}=\varrho\left(w^{(n+1)}\right)=\varrho\left(w^{(n)} w^{(n-1)} w^{(n-1)}\right)=w^{(n+1)} w^{(n)} w^{(n)},
$$

which completes the proof.
To compute the number of letters a and b in $w^{(8)}$ can be computed using the eighth power of the substitution matrix M. This can be calculated via

$$
M^{2}=\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)=\left(\begin{array}{ll}
3 & 1 \\
2 & 2
\end{array}\right), \quad M^{4}=\left(\begin{array}{ll}
3 & 1 \\
2 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
2 & 2
\end{array}\right)=\left(\begin{array}{ll}
11 & 5 \\
10 & 6
\end{array}\right),
$$

and hence

$$
M^{8}=\left(\begin{array}{ll}
11 & 5 \\
10 & 6
\end{array}\right)\left(\begin{array}{ll}
11 & 5 \\
10 & 6
\end{array}\right)=\left(\begin{array}{ll}
171 & 85 \\
170 & 86
\end{array}\right) .
$$

Hence

$$
\binom{\operatorname{card}_{a}\left(w^{(8)}\right)}{\operatorname{card}_{a}\left(w^{(8)}\right)}=M^{8}\binom{1}{0}=\left(\begin{array}{ll}
171 & 85 \\
170 & 86
\end{array}\right)\binom{1}{0}=\binom{171}{170}
$$

so there are 171 letters a and 170 letters b in $w^{(8)}$.

Exercise 4: The right eigenvector of M with eigenvaues $\lambda=2$ is $(1,1)^{t}$, as

$$
M\binom{1}{1}=\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)\binom{1}{1}=\binom{2}{2}=\lambda\binom{1}{1} .
$$

The corresponding left eigenvector is $(2,1)$, because

$$
(2,1) M=(2,1)\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)=(4,2)=\lambda(2,1)
$$

The letter frequencies in a fixed point word are encoded by the right eigenvector, so both letters are equally frequent. The corresponding ratio for $w^{(8)}$ was $\operatorname{card}_{a}\left(w^{(8)}\right) / \operatorname{card}_{b}\left(w^{(8)}\right)=$ 171/170.

Exercise 5: As the left eigenvector shows, the appropriate interval length have lengh ratio $2: 1$, so in this case the longer interval has length 2 . Indeed $2 \times 2=4=2+1+1$ and $2 \times 1=2$, so this is consistent. The inflation rule is shown below.

As both letters a and b are equally frequent, the distance between points in the set of left endpoints is equally frequent either 1 and 2 , and so the mean distance is $3 / 2$. The density of the point set is the inverse (number of points per unit length), hence $2 / 3$.

