2018 LTCC Course on Aperiodic Order Solutions to Worksheet 2

Exercise 1: We have $\rho^2(b) = \rho(a) = abb$, so ρ is irreducible. Furthermore, $\rho^2(a) = \rho(abb) = abbaa$, so both letters occur in the $\rho^2(a)$ and $\rho^2(b)$, and hence ρ is primitive.

Exercise 2: We have $\rho^2(a) = abbaa$, which contains all combinations of two letters as subwords, so all four seeds a|a, a|b, b|a and b|b are legal. Applying ρ to the four seeds gives

 $\begin{array}{l} a|a \mapsto abb|abb \mapsto abbaa|abbaa \mapsto abbaaabbabb|abbaaabbabb \mapsto \dots \\ a|b \mapsto abb|a \mapsto abbaa|abb \mapsto abbaaabbabb|abbaa \mapsto \dots \\ b|a \mapsto a|abb \mapsto abb|abbaa \mapsto abbaa|abbaaabbabb \mapsto \dots \\ b|b \mapsto a|a \mapsto abb|abb \mapsto abbaa|abbaa \mapsto \dots \end{array}$

Clearly, there is no fixed point under ρ , as the central two-letter words in all cases alternates between a|a and b|a. There are thus two fixed points under ρ^2 , with cores $\dots abbaa|abbaa \dots$ and $\dots bbabb|abbaaa \dots$

Exercise 3: The substitution matrix for ρ is

$$M = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$$

which is not symmetric. The characteristic polynomial is $(1-x)(-x) - 2 = x^2 - x - 2 = (x-2)(x+1)$, so the eigenvalues as $\lambda = 2$ and -1.

The relation $w^{(n+1)} = w^{(n)}w^{(n-1)}w^{(n-1)}$ is proved by induction. Setting $w^{(0)} = a$, we have $w^{(1)} = \varrho(a) = abb$ and $w^{(2)} = \varrho(abb) = abbaa$. Clearly, these satisfy $w^{(2)} = w^{(1)}w^{(0)}w^{(0)}$. Assuming that $w^{(n+1)} = w^{(n)}w^{(n-1)}w^{(n-1)}$ holds, we find

$$w^{(n+2)} = \varrho(w^{(n+1)}) = \varrho(w^{(n)}w^{(n-1)}w^{(n-1)}) = w^{(n+1)}w^{(n)}w^{(n)},$$

which completes the proof.

To compute the number of letters a and b in $w^{(8)}$ can be computed using the eighth power of the substitution matrix M. This can be calculated via

$$M^{2} = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}, \qquad M^{4} = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 11 & 5 \\ 10 & 6 \end{pmatrix},$$

and hence

$$M^8 = \begin{pmatrix} 11 & 5\\ 10 & 6 \end{pmatrix} \begin{pmatrix} 11 & 5\\ 10 & 6 \end{pmatrix} = \begin{pmatrix} 171 & 85\\ 170 & 86 \end{pmatrix}$$

Hence

$$\begin{pmatrix} \operatorname{card}_a(w^{(8)}) \\ \operatorname{card}_a(w^{(8)}) \end{pmatrix} = M^8 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 171 & 85 \\ 170 & 86 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 171 \\ 170 \end{pmatrix},$$

so there are 171 letters a and 170 letters b in $w^{(8)}$.

Exercise 4: The right eigenvector of M with eigenvalues $\lambda = 2$ is $(1, 1)^t$, as

$$M\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1 & 1\\2 & 0\end{pmatrix}\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}2\\2\end{pmatrix} = \lambda\begin{pmatrix}1\\1\end{pmatrix}.$$

The corresponding left eigenvector is (2, 1), because

$$(2,1) M = (2,1) \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} = (4,2) = \lambda (2,1).$$

The letter frequencies in a fixed point word are encoded by the right eigenvector, so both letters are equally frequent. The corresponding ratio for $w^{(8)}$ was $\operatorname{card}_a(w^{(8)})/\operatorname{card}_b(w^{(8)}) = 171/170$.

Exercise 5: As the left eigenvector shows, the appropriate interval length have length ratio 2:1, so in this case the longer interval has length 2. Indeed $2 \times 2 = 4 = 2 + 1 + 1$ and $2 \times 1 = 2$, so this is consistent. The inflation rule is shown below.

As both letters a and b are equally frequent, the distance between points in the set of left endpoints is equally frequent either 1 and 2, and so the mean distance is 3/2. The density of the point set is the inverse (number of points per unit length), hence 2/3.