
2018 LTCC Course on Aperiodic Order

Solutions to Worksheet 1

Exercise 1:

(a) Clearly Λa = 2 Z is uniformly discrete and relatively dense, so also Delone. All points
are equivalent by translation so Λa is obviously FLC. As Λa − Λa = Λa it is also Meyer.

(b) The set Λb = {n + 1/n | n ∈ Z \ {0}} is relatively dense as the maximum distance
between points does not exceed 4. It is also unformly discrete as points have minimum
distance 1/2. The set Λb is not FLC because the distances between neighbouring points
take on infinitely many values, and neither is it Meyer, because the difference set Λb − Λb

fails to be uniformly discrete. This can be seen, for instance, by looking at the distances
between neighbouring points,
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so Λb − Λb has an accumulation point at 1 (which itself is neither in Λb nor in Λb − Λb).

(c) The set Λc = −N∪{0}∪
√

3 N is clearly uniformly discrete and relatively dense, as point
have minimum distance 1 and maximum distance

√
3, and hence also Delone. Moreover, it

is clearly FLC as there are only finitely many local surrounding for any given finite radius.
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so Λc is not Meyer.

(d) Finally, consider Λd = Z \ S, where S is an arbitrary subset of 2 Z. Since all odd
numbers are in Λd, it is clearly relatively dense. The minimum distance is still 1, so it
is also uniformly discrete, and hence Meyer. For any given radius, there are only finitely
many ways in which points can be present or removed, so it is FLC. The difference set
Λd − Λd ⊆ Z, and actually equal to Z unless all odd points have been removed, in which
case it is 2 Z. So it is always uniformly discrete, and hence Λd is Meyer.



Exercise 2: Using the relation xn − 1 =
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Exercise 3: Rotation by π/5 in R
2 corresponds to multiplication by exp(πi/5) in C, so

the point set in R
2 is invariant under rotation by π/5 if exp(πi/5) Z[ξ] = Z[ξ].

Observing that − exp(πi/5) = exp(πi + πi/5) = exp(6πi/5) = ξ3, and using that ξ5 = 1
and 1 + ξ + ξ2 + ξ3 + ξ4 = 0, we find
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= Z[ξ],

where the final equality is true because the coefficients take all possible values in Z.

Exercise 4: By definition, we have
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Exercise 5: The diagonal embedding is
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which is a planar lattice with basis vectors v
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= 0, L is a rotated rectangular lattice.


