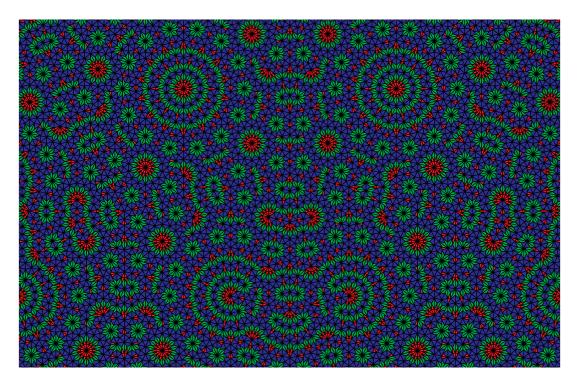
Aperiodic OrderPart 5

Uwe Grimm

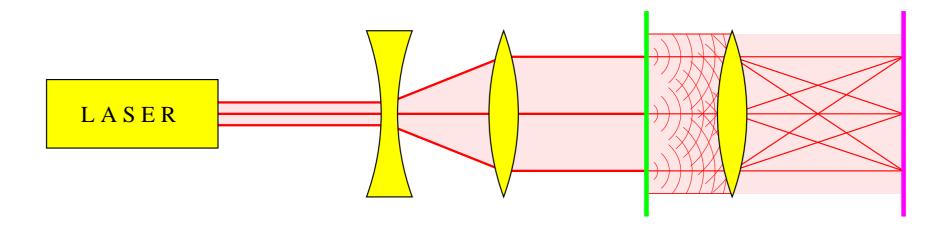
School of Mathematics & Statistics
The Open University, Milton Keynes

http://mcs.open.ac.uk/ugg2/ltcc/



5.1 Diffraction

Optical diffraction



Diffraction pattern

- interference of scattered waves
 - → harmonic analysis
- structure analysis
- X-ray, electron or neutron diffraction
- information on order and symmetry

5.1 Diffraction

Wiener diagram

$$g \xrightarrow{*} g * \widetilde{g}$$

$$\mathcal{F} \downarrow \qquad \qquad \downarrow \mathcal{F}$$

$$\widehat{g} \xrightarrow{|\cdot|^2} |\widehat{g}|^2$$

commutative for integrable function g (with $\widetilde{g}(x) := \overline{g(-x)}$)

Kinematic diffraction:

diagonal map $g \mapsto |\widehat{g}|^2$

Mathematical diffraction theory:

use path via autocorrelation for translation bounded measures

5.2 Why measures?

Measures

- are natural mathematical objects to describe distributions (of scatterers or radiation) is space
- provide a unified generalisation of continuous (density) and discrete (tiling) approaches
- ensure that quantities are mathematically well-defined

Absolutely continuous measure μ (with density ϱ) on \mathbb{R}^d

$$\mu(f) = \int_{\mathbb{R}^d} f(x) d\mu(x) = \int_{\mathbb{R}^d} f(x) \varrho(x) dx$$

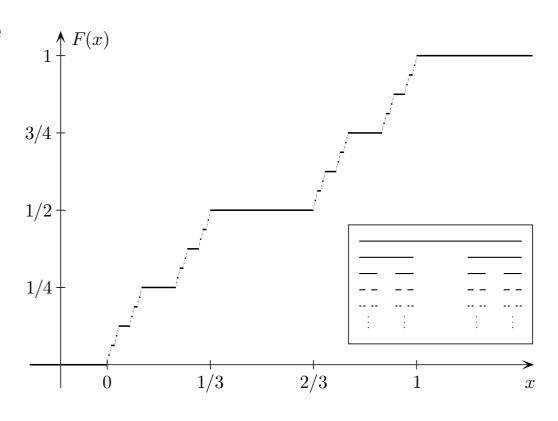
Pure point measure μ on \mathbb{R}^d

$$\mu(f) = \left(\sum_{i \in I} w_i \, \delta_{x_i}\right)(f) = \sum_{i \in I} w_i \, f(x_i)$$

5.2 Why measures?

Singular continuous measure

- gives no weight to any single point
- support is uncountable set of zero Lebesgue measure
- 'trivial' cases (e.g. measures on lines in the plane)
- probability measure μ for middle-thirds Cantor set with continuous distribution function $F(x) = \mu([0, x])$



Using the Riesz–Markov representation theorem, we can introduce measures on \mathbb{R}^d (in one-to-one correspondence with regular Borel measures) via linear functionals in the following way.

Let $C_{\mathbf{c}}(\mathbb{R}^d)$ be the space of complex-valued continuous functions on \mathbb{R}^d with compact support. A (complex) $measure \ \mu$ on \mathbb{R}^d is a linear functional on $C_{\mathbf{c}}(\mathbb{R}^d)$ with the extra condition that, for every compact set $K \subseteq \mathbb{R}^d$, there is a constant a_K such that

$$|\mu(g)| \le a_K \|g\|_{\infty}$$

holds for all $g \in C_{\mathbf{c}}(\mathbb{R}^d)$ with support in K. Here, $\|g\|_{\infty} := \sup_{x \in K} |g(x)|$ is the supremum norm of g.

If μ is a measure, the *conjugate* of μ is defined by the mapping $g \mapsto \overline{\mu(\bar{g})}$. It is again a measure and denoted by $\bar{\mu}$.

A measure μ is called *real* (or signed) if $\bar{\mu} = \mu$, or (equivalently) if $\mu(g)$ is real for all real-valued $g \in C_c(\mathbb{R}^d)$.

A real measure μ is called *positive* if $\mu(g) \geq 0$ for all $g \geq 0$.

For every measure μ , there is a smallest positive measure, called its *total variation* $|\mu|$, such that $|\mu(g)| \leq |\mu|(g)$ holds for all non-negative $g \in C_{\mathsf{c}}(\mathbb{R}^d)$.

 $\mu(A)$ (measure of a set) and $\mu(f)$ (measure of a function), related via characteristic function 1_A of a (relatively compact) Borel set A via $\mu(1_A) = \mu(A)$

Point measure δ_x defined as

$$\delta_x(A) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{otherwise,} \end{cases}$$

for an arbitrary Borel set $A \subseteq \mathbb{R}^d$.

The Lebesgue measure of an integrable function g is $\lambda(g) = \int_{\mathbb{R}^d} g \, \mathrm{d}\lambda = \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x$, while the measure of a Borel set A is $\lambda(A) = \int_{\mathbb{R}^d} 1_A \, \mathrm{d}\lambda$.

The measures δ_0 and λ are related by

$$\widehat{\delta_0} = \lambda$$
 and $\widehat{\lambda} = \delta_0$.

A measure μ on \mathbb{R}^d is called *translation bounded* if $\sup_{x \in \mathbb{R}^d} |\mu|(x+K) < \infty$ holds for every compact $K \subseteq \mathbb{R}^d$.

Lebesgue decomposition theorem:

Any positive, regular Borel measure μ on \mathbb{R}^d has a unique decomposition

$$\mu = \mu_{pp} + \mu_{sc} + \mu_{ac}$$

relative to Lebesgue measure λ , where μ_{sc} is the unique part of μ that is both continuous and singular relative to λ .

A complex measure μ on \mathbb{R}^d is called *positive definite* if $\mu(g*\widetilde{g}) \geq 0$ holds for all $g \in C_{\mathbf{c}}(\mathbb{R}^d)$.

If μ is a positive definite measure on \mathbb{R}^d , its Fourier transform $\widehat{\mu}$ exists and is a translation bounded positive measure on \mathbb{R}^d .

The convolution of two finite measures on \mathbb{R}^d , or of a finite with a translation bounded measure, is well-defined. This is no longer the case if both measures are unbounded, but you may attempt to define a volume averaged convolution as

$$\mu \circledast \nu := \lim_{R \to \infty} \frac{\mu_R * \nu_R}{\operatorname{vol}(B_R)},$$

where μ_R and ν_R are the restrictions of μ and ν to the (open) ball $B_R(0)$.

We call two measures μ and ν mutually amenable when this limit exists for balls as well as for arbitrary nested van Hove sequences. The resulting measure is called the *Eberlein convolution* of μ and ν .

Let $\mathcal{S}(\mathbb{R}^d)$ be the space of rapidly decreasing C^{∞} -functions on \mathbb{R}^d , also known as Schwartz functions.

The *Fourier transform* of a Schwartz function $\phi \in \mathcal{S}(\mathbb{R}^d)$, we mean

$$(\mathcal{F}\phi)(k) = \widehat{\phi}(k) := \int_{\mathbb{R}^d} e^{-2\pi i kx} \phi(x) dx,$$

which is well-defined and again a Schwartz function, with $k \in \mathbb{R}^d$.

The mapping $\mathcal{F}\colon \mathcal{S}(\mathbb{R}^d) \longrightarrow \mathcal{S}(\mathbb{R}^d)$ is a homeomorphism, with inverse

$$(\mathcal{F}^{-1}\psi)(x) = \check{\psi}(x) = \int_{\mathbb{R}^d} e^{2\pi i kx} \psi(k) dk$$

A *tempered distribution* is a continuous linear functional $T \colon \mathcal{S}(\mathbb{R}^d) \longrightarrow \mathbb{C}$ on the Schwartz space $\mathcal{S}(\mathbb{R}^d)$.

 $(T,\phi):=T(\phi)$ denotes the evaluation of T with a function $\phi\in\mathcal{S}(\mathbb{R}^d)$, called a *test function*.

Each continuous function g of at most polynomial growth defines a tempered distribution T_g via

$$T_g(\phi) := \int_{\mathbb{R}^d} \phi(x) g(x) dx.$$

Such distributions are also called regular.

The Fourier transform of a tempered distribution $T \in \mathcal{S}'(\mathbb{R}^d)$ is given by

 $\widehat{T}(\phi) := T(\widehat{\phi})$

for all test functions $\phi \in \mathcal{S}(\mathbb{R}^d)$.

If μ is a *finite* measure on \mathbb{R}^d , its Fourier transform (or Fourier–Stieltjes transform) can directly be defined as

$$\widehat{\mu}(k) = \int_{\mathbb{R}^d} e^{-2\pi i kx} d\mu(x),$$

which is a bounded and uniformly continuous function on \mathbb{R}^d .

If μ and ν are finite measures on \mathbb{R}^d , their *convolution* $\mu*\nu$ is defined by

$$(\mu * \nu)(g) = \int_{\mathbb{R}^d \times \mathbb{R}^d} g(x+y) \, \mathrm{d}\mu(x) \, \mathrm{d}\nu(y),$$

with $g \in C_{\mathbf{c}}(\mathbb{R}^d)$.

Proposition: The convolution $\mu * \nu$ of two finite measures on \mathbb{R}^d satisfies $\widehat{\mu * \nu} = \widehat{\mu} \widehat{\nu}$.

Theorem: Let μ be a finite and ν a translation bounded measure on \mathbb{R}^d . Then, the convolution $\mu * \nu$ exists and is a translation bounded measure.

Proposition: If μ is a positive definite measure on \mathbb{R}^d , its Fourier transform $\widehat{\mu}$ exists, and is a translation bounded positive measure on \mathbb{R}^d .

Useful relations:

 $\widehat{\delta_x} = \mathrm{e}^{-2\pi\mathrm{i}xy}$ (in the sense of tempered distributions,

so
$$\widehat{\delta_x}(\phi) = \delta_x(\widehat{\phi}) = \widehat{\phi}(x) = \int_{\mathbb{R}^d} e^{-2\pi i xy} \phi(y) dy$$

Finite measure ν on \mathbb{R}^d

$$\widehat{\nu * \lambda} = c\delta_0 \text{ with } c = \widehat{\nu}(0) = \nu(\mathbb{R}^d).$$

5.5 Autocorrelation measure

For a locally finite point set Λ , define its *Dirac comb* as

$$\delta_{\Lambda} := \sum_{x \in \Lambda} \delta_x.$$

For a measure μ on \mathbb{R}^d , define $\widetilde{\mu}$ by $\widetilde{\mu}(g) := \overline{\mu(\widetilde{g})}$, with $g \in C_{\mathbf{c}}(\mathbb{R}^d)$.

For a translation bounded measure μ on \mathbb{R}^d , we define the natural autocorrelation γ by

$$\gamma = \mu \circledast \widetilde{\mu} = \lim_{R \to \infty} \frac{\mu_R * \widetilde{\mu}_R}{\operatorname{vol}(B_R)},$$

if the limit exists. In this case, γ is a translation bounded, positive definite measure on \mathbb{R}^d .

5.6 Diffraction measure

Let μ be a translation bounded complex measure whose natural autocorrelation γ_{μ} exists. The Fourier transform $\widehat{\gamma_{\mu}}$ is then called the *diffraction measure* of μ .

Proposition: Let Λ be a locally finite point set with natural autocorrelation γ . Its diffraction measure $\widehat{\gamma}$ comprises a Dirac measure at 0, with $\widehat{\gamma}(\{0\}) = \left(\operatorname{dens}(\Lambda)\right)^2$.

5.7 Poisson's summation formula

Proposition: For all $\phi \in \mathcal{S}(\mathbb{R}^d)$, one has

$$\sum_{m \in \mathbb{Z}^d} \phi(m) = \sum_{m \in \mathbb{Z}^d} \widehat{\phi}(m).$$

Proof: Define $g(x) = \sum_{\ell \in \mathbb{Z}^d} \phi(x+\ell)$, uniformly convergent

uniformly convergent Fourier series $g(x) = \sum_{m \in \mathbb{Z}^d} c_m e^{2\pi i mx}$

with
$$c_m = \int_{\mathbb{T}^d} e^{-2\pi i m x} g(x) dx \implies g(0) = \sum_{m \in \mathbb{Z}^d} c_m = \sum_{m \in \mathbb{Z}^d} \phi(m)$$

$$c_m = \int_{\mathbb{T}^d} \sum_{\ell \in \mathbb{Z}^d} e^{-2\pi i mx} \phi(x+\ell) dx = \sum_{\ell \in \mathbb{Z}^d} \int_{\ell+\mathbb{T}^d} e^{-2\pi i mx} \phi(x) dx$$

$$= \int_{\mathbb{R}^d} e^{-2\pi i mx} \phi(x) dx = \widehat{\phi}(m)$$

5.7 Poisson's summation formula

Proposition: Interpreted as an equation for tempered distributions, one has the identity $\widehat{\delta_{\mathbb{Z}^d}} = \delta_{\mathbb{Z}^d}$.

Proof:

$$\widehat{\delta_{\mathbb{Z}^d}} = \delta_{\mathbb{Z}^d}$$
 means that $\widehat{\delta_{\mathbb{Z}^d}}(\phi) = \delta_{\mathbb{Z}^d}(\phi)$ for all $\phi \in \mathcal{S}(\mathbb{R}^d)$

Now

$$\widehat{\delta_{\mathbb{Z}^d}}(\phi) = (\widehat{\delta_{\mathbb{Z}^d}}, \phi) = (\delta_{\mathbb{Z}^d}, \widehat{\phi})$$

$$= \sum_{m \in \mathbb{Z}^d} \widehat{\phi}(m) = \sum_{m \in \mathbb{Z}^d} \phi(m)$$

$$= (\delta_{\mathbb{Z}^d}, \phi) = \delta_{\mathbb{Z}^d}(\phi)$$

5.7 Poisson's summation formula

Theorem: If Γ is a lattice in \mathbb{R}^d , with dual lattice Γ^* , and if $\phi \in \mathcal{S}(\mathbb{R}^d)$ is an arbitrary Schwartz function, one has

$$\sum_{m \in \Gamma} \phi(m) = \operatorname{dens}(\Gamma) \sum_{\ell \in \Gamma^*} \widehat{\phi}(\ell).$$

Moreover one has the following identity of lattice Dirac combs,

$$\widehat{\delta_{\Gamma}} = \operatorname{dens}(\Gamma) \, \delta_{\Gamma^*},$$

which simultaneously is an identity between tempered distributions and translation bounded measures.

5.8 Lattice periodic case

Proposition: If $\Gamma \subseteq \mathbb{R}^d$ is a lattice, with fundamental domain $\mathrm{FD}(\Gamma)$, and if μ is a Γ -periodic measure on \mathbb{R}^d , there is a *finite* measure ϱ that is concentrated on $\mathrm{FD}(\Gamma)$, or on a subset of $\mathrm{FD}(\Gamma)$, so that $\mu = \varrho * \delta_{\Gamma}$.

Theorem: Let Γ be a lattice in \mathbb{R}^d , and ω a Γ -invariant measure, represented as $\omega = \varrho * \delta_\Gamma$ with ϱ a finite measure. Then, the autocorrelation γ_ω of ω is given by

$$\gamma_{\omega} = (\varrho * \widetilde{\varrho}) * \gamma_{\Gamma} = \operatorname{dens}(\Gamma) (\varrho * \widetilde{\varrho}) * \delta_{\Gamma},$$

with the diffraction measure

$$\widehat{\gamma_{\omega}} = \left(\operatorname{dens}(\Gamma)\right)^2 |\widehat{\varrho}|^2 \delta_{\Gamma^*}$$

In particular, $\widehat{\gamma_{\omega}}$ is a positive pure point measure, with $\operatorname{supp}(\widehat{\gamma}) \subseteq \Gamma^*$ and $\widehat{\gamma_{\omega}}\big(\{0\}\big) = \big(\operatorname{dens}(\Gamma)\big)^2 \, |\widehat{\varrho}(0)|^2$.

5.8 Lattice periodic case

Example: Consider the \mathbb{Z}^2 -periodic weighted Dirac comb

$$\omega = \varrho * \delta_{\mathbb{Z}^2}$$
 with $\varrho = \delta_{(0,0)} + \delta_{(a,b)}$.

The autocorrelation is $\gamma_{\omega}=(\varrho*\widetilde{\varrho})*\delta_{\mathbb{Z}^2}$, with

$$\varrho * \widetilde{\varrho} = (\delta_{(0,0)} + \delta_{(a,b)}) * (\delta_{(0,0)} + \delta_{-(a,b)})
= 2 \delta_{(0,0)} + \delta_{(a,b)} + \delta_{-(a,b)}.$$

The corresponding diffraction measure is $\widehat{\gamma_{\omega}}=|\widehat{\varrho}\,|^2\delta_{\mathbb{Z}^2}$ with

$$|\widehat{\varrho}|^{2}(k,\ell) = 2 + 2\operatorname{Re}(e^{-2\pi i(ka+\ell b)})$$

$$= 2 + 2\cos(2\pi(ka+\ell b))$$

$$= (2\cos(\pi(ka+\ell b)))^{2} \quad \text{for } k,\ell \in \mathbb{Z}.$$

5.9 Incommensurate structures

Example:

Let $\alpha > 0$ be an irrational number and consider the Dirac comb

$$\omega_{\alpha} := \delta_{\mathbb{Z}} + \delta_{\alpha\mathbb{Z}}.$$

The corresponding autocorrelation $\gamma_{\alpha}=\omega_{\alpha}\circledast\widetilde{\omega_{\alpha}}$ exists and reads

$$\gamma_{\alpha} = \delta_{\mathbb{Z}} + \frac{1}{\alpha} \delta_{\alpha \mathbb{Z}} + \frac{2}{\alpha} \lambda.$$

The diffraction measure is

$$\widehat{\gamma_{\alpha}} = \delta_{\mathbb{Z}} + \frac{1}{\alpha^2} \delta_{\mathbb{Z}/\alpha} + \frac{2}{\alpha} \delta_0.$$

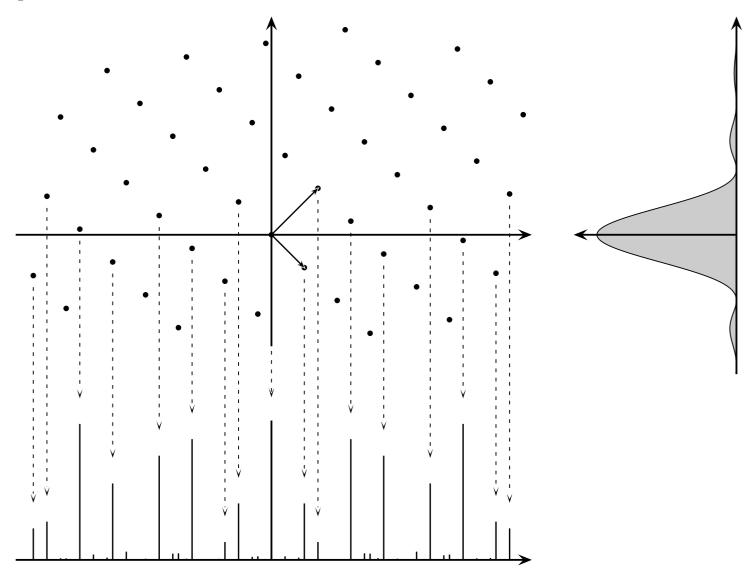
Theorem: Let $\Lambda = \mathcal{K}(W)$ be a regular model set for the CPS $(\mathbb{R}^d, H, \mathcal{L})$, with compact window $W = \overline{W}^\circ$. The diffraction measure $\widehat{\gamma_{\Lambda}}$ is a positive and positive definite, translation bounded, pure point measure. It is explicitly given by

$$\widehat{\gamma_{\Lambda}} = \sum_{k \in L^{\circledast}} I(k) \, \delta_k,$$

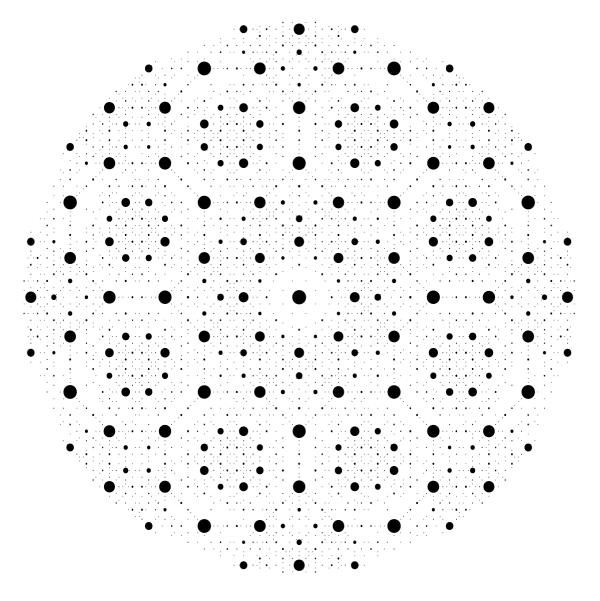
where $L^{\circledast} := \pi(\mathcal{L}^{*})$. The diffraction intensities are $I(k) = |A(k)|^{2}$ with the amplitudes

$$A(k) = \frac{\operatorname{dens}(\Lambda)}{\mu_H(W)} \, \widehat{1}_W(-k^*) = \frac{\operatorname{dens}(\Lambda)}{\mu_H(W)} \int_W \langle k^*, y \rangle \, \mathrm{d}\mu_H(y).$$

Example:



Ammann-Beenker diffraction:



Diffraction intensity for Ammann–Beenker case:

Bragg peaks at positions $k_1 + k_2 \xi^2 \in \frac{1}{2}\mathbb{Z}[\xi] \subseteq \mathbb{C}$ (where $\xi = \exp(2\pi i/8)$) with intensities

$$I((k_1, k_2)) = \frac{1}{(4\pi^2(k_2' + k_1')(k_2' - k_1'))^2} \left(\cos(k_2'\pi)\cos(\lambda k_1'\pi) - \cos(k_1'\pi)\cos(\lambda k_2'\pi) - \frac{k_1'}{k_2'}\sin(k_2'\pi)\sin(\lambda k_1'\pi) + \frac{k_2'}{k_1'}\sin(k_1'\pi)\sin(\lambda k_2'\pi)\right)^2$$

with $\lambda = 1 + \sqrt{2}$ and algebraic conjugation ': $\sqrt{2} \mapsto -\sqrt{2}$

5.11 Experiment

Diffraction of icosahedral quasicrystal:

