Aperiodic Order Part 4

Uwe Grimm

School of Mathematics & Statistics The Open University, Milton Keynes http://mcs.open.ac.uk/ugg2/ltcc/

4.1 Minkowski embedding revisited

We consider the example of $\mathbb{Z}[\tau] = \{m + n\tau \mid m, n \in \mathbb{Z}\}.$ Algebraic conjugation $x \mapsto x'$ in $\mathbb{Q}(\sqrt{5})$ is defined by $\sqrt{5} \mapsto -\sqrt{5}$ and its extension to a field automorphism. The *diagonal embedding* $\mathcal{L} = \{(x, x') \mid x \in \mathbb{Z}[\tau]\}$ defines a lattice in \mathbb{R}^2 , generated by the vectors (1, 1) and (τ, τ') , so $\mathcal{L} = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} \tau \\ 1 - \tau \end{pmatrix} \rangle_{\mathbb{Z}}.$

4.2 Fibonacci chain revisited

The Fibonacci sequence was defined by the substitution rule $a \mapsto ab$

 $\varrho: \begin{array}{c} a \mapsto ab \\ b \mapsto a \end{array}$

on the two-letter alphabet $\{a, b\}$, with bi-infinite fixed point (under ρ^2)

In the geometric interpretation

in terms of intervals of length τ and 1, define two point sets $\Lambda_a \subseteq \mathbb{Z}[\tau]$ and $\Lambda_b \subseteq \mathbb{Z}[\tau]$ as the set of left endpoints of intervals of type *a* and type *b*.

4.3 Fibonacci projection

The point sets Λ_a and Λ_b lift to two strips in the lattice \mathcal{L} :

 $\begin{array}{ll} \blacktriangleright & \Lambda_{a,b} = \{x \in L \mid x^{\star} \in W_{a,b}\} \text{ with the windows} \\ & W_a = (\tau - 2, \tau - 1] \quad \text{and} \quad W_b = (-1, \tau - 2] \\ \hline & \blacktriangleright & \Lambda = \Lambda_a \cup \Lambda_b = \{x \in L \mid x^{\star} \in W\} \\ \hline & \blacktriangleright & \text{window } W = W_a \cup W_b = (-1, \tau - 1] \end{array}$

4.4 Euclidean model sets

Cut and project scheme (CPS):

Model set: $\Lambda = \{x \in L \mid x^{\star} \in W\}$

Window W is a relatively compact subset of \mathbb{R}^m with non-empty interior $\longrightarrow \Lambda$ is Meyer set

Regular model set: ∂W has zero Lebesgue measure

Generic (non-singular) model set: $L^* \cap \partial W = \emptyset$

4.5 Fibonacci model set

Windows satisfy $\tau^2 W_a = W_a \dot{\cup} W_b \dot{\cup} (W_a + 1),$ $\tau^2 W_b = (W_a - \tau) \dot{\cup} (W_b - \tau),$ as $\tau^2 (\tau - 2, \tau - 1] = (-1, \tau]$ $= (-1, \tau - 2) \dot{\cup} (\tau - 2, \tau - 1] \dot{\cup} (\tau - 1, \tau)$ $\tau^2 (-1, \tau - 2] = (-\tau - 1, -1]$ $= (-\tau - 1, -2] \dot{\cup} (-2, -1]$

Algebraic conjugation ($\tau \mapsto -\tau^{-1} = 1 - \tau$) gives

$$\Lambda_a = \tau^2 \Lambda_a \dot{\cup} \tau^2 \Lambda_b \dot{\cup} (\tau^2 \Lambda_a + \tau^2),$$

$$\Lambda_b = (\tau^2 \Lambda_a + \tau) \dot{\cup} (\tau^2 \Lambda_b + \tau),$$

which corresponds to the fixed point equations of the substitution ρ^2 : $a \mapsto aba, b \mapsto ab$ with inflation multiplier τ^2 .

4.6 Uniform distribution

Sequence $(x_i)_{i \in \mathbb{N}}$ of points in a compact interval *I* of length |I| is *uniformly distributed* in *I* if

$$\frac{1}{N} \sum_{i=1}^{N} f(x_i) \xrightarrow{N \to \infty} \frac{1}{|I|} \int_{I} f(x) \, \mathrm{d}x$$

holds for all continuous functions f on I.

Projections in internal space uniformly distributed

frequencies proportional to volume of window

4.7 Frequencies

Example: Consider occurrence of points in Λ at distance 1. Take $x \in \Lambda$, so $x^* \in W = (-1, \tau - 1]$. For $x + 1 \in \Lambda$, we require $(x + 1)^* = x^* + 1 \in W$, which holds if $x^* \in (-1, \tau - 2]$. Relative frequency (frequency per point) of distance 1:

$$\frac{\operatorname{vol}((-1,\tau-2])}{\operatorname{vol}((-1,\tau-1])} = \frac{\tau-1}{\tau} = (\tau-1)^2 = 2-\tau$$

which is the frequency of the letter b in w.

Absolute frequency (frequency per volume) is given by the product of the relative frequency with the volume density dens(A), which is

$$dens(\Lambda) = dens(\mathcal{L}) \operatorname{vol}(W) = \frac{\operatorname{vol}(W)}{\operatorname{vol}(\operatorname{FD}(\mathcal{L}))} = \frac{\tau + 2}{5},$$

because $\operatorname{vol}(W) = \tau$ and $\operatorname{vol}(\operatorname{FD}(\mathcal{L})) = \tau - \tau' = 2\tau - 1.$

4.8 General CPS

A *cut and project scheme* (CPS) is a triple $(\mathbb{R}^d, H, \mathcal{L})$ with a (compactly generated) locally compact Abelian group (LCAG) H, a lattice \mathcal{L} in $\mathbb{R}^d \times H$ and the two natural projections $\pi \colon \mathbb{R}^d \times H \longrightarrow \mathbb{R}^d$ and $\pi_{int} \colon \mathbb{R}^d \times H \longrightarrow H$, subject to the conditions that $\pi|_{\mathcal{L}}$ is injective and that $\pi_{int}(\mathcal{L})$ is dense in H.

Star-map: $\star : L \longrightarrow H$ with $x \mapsto x^{\star} := \pi_{int} ((\pi|_{\mathcal{L}})^{-1}(x))$

4.8 General CPS

Let $(\mathbb{R}^d, H, \mathcal{L})$ be a CPS. If $W \subseteq H$ is a relatively compact set with non-empty interior, the projection set

$$\mathcal{K}(W) := \{ x \in L \mid x^* \in W \}$$

or any translate $t + \mathcal{K}(W)$ with $t \in \mathbb{R}^d$, is called a *model* set.

A model set is termed *regular* when $\mu_H(\partial W) = 0$, where μ_H is the Haar measure of H.

If $L^* \cap \partial W = \emptyset$, the model set is called *generic*.

4.9 Cluster frequencies

Let Λ be a regular model set for the general CPS $(\mathbb{R}^d, H, \mathcal{L})$, with a compact window $W = \overline{W^\circ}$, and let $P \subseteq \Lambda$ be a finite cluster.

The *repetition* set of P,

$$\operatorname{rep}(P) := \left\{ t \in L \mid t + P \subseteq \Lambda \right\} = \left\{ t \in L \mid t^* + P^* \subseteq W \right\}$$
$$= \left\{ t \in L \mid t^* \in \left(\bigcap_{x \in P} (W - x^*)\right) \right\}$$

is itself a regular model set.

The relative frequency (per point of Λ) of P is given by rel freq_{Λ}(P) = $\frac{\operatorname{vol}(\bigcap_{x \in P}(W - x^{\star}))}{\operatorname{vol}(W)}$.

This is related to the absolute frequency of P by abs freq_A(P) = dens(\mathcal{L}) rel freq_A(P).

4.10 Cyclotomic model sets

$$\begin{split} &\xi_n: \text{ primitive } n \text{th root of unity} \\ &\phi: \text{ Euler's totient function} \\ &\star\text{-map:} \quad x\mapsto (\sigma_2(x),\ldots,\sigma_{\frac{1}{2}\phi(n)}(x)) \\ &\sigma_i: \quad \text{Galois automorphisms of } \mathbb{Q}(\xi_n) \\ &\mathcal{L}_n: \text{ Minkowski embedding of } \mathbb{Z}[\xi_n], \text{ given by} \\ &\mathcal{L}_n = \left\{ (x,\sigma_2(x),\ldots,\sigma_{\frac{1}{2}\phi(n)}(x)) \mid x\in\mathbb{Z}[\xi_n] \right\} \ \subseteq \ \mathbb{C}^{\frac{1}{2}\phi(n)} \simeq \ \mathbb{R}^{\phi(n)} \end{split}$$

We use the Minkowski embedding of $\mathbb{Z}[\xi]$ with the explicit choice $\xi = e^{2\pi i/8}$ and the conjugation map defined by $\xi \mapsto \xi^3$.

This leads to the lattice $\mathcal{L} = \sqrt{2} R_8 \mathbb{Z}^4$, with the rotation matrix

$$R_8 = \frac{1}{2} \begin{pmatrix} \sqrt{2} & 1 & 0 & -1 \\ 0 & 1 & \sqrt{2} & 1 \\ \sqrt{2} & -1 & 0 & 1 \\ 0 & 1 & -\sqrt{2} & 1 \end{pmatrix}$$

Ammann–Beenker model set obtained with centred regular octagon of unit edge length as its window

Local inflation/deflation symmetry (LIDS)

The inflation multiplier (in direct space) is $\lambda = 1 + \sqrt{2}$. The corresponding action on the window is multiplication (scaling) by $\lambda^* = -1/\lambda$. The rescaled octagon can be expressed as the intersection of eight translated copies of the original window, with translations that are elements of $\mathbb{Z}[\xi]$. Likewise, W can be written as a union of translated copies of the rescaled window λ^*W , implying LIDS.

vertex	coordination	orbit length	relative frequency
1	3	8	$-1 + \sqrt{2} = \lambda^{-1} \approx 0.41421$
2	4	8	$6 - 4\sqrt{2} = 2\lambda^{-2} \approx 0.34315$
3	5	8	$-14 + 10\sqrt{2} = 2\lambda^{-3} \approx 0.14214$
4	6	8	$34 - 24\sqrt{2} = 2\lambda^{-4} \approx 0.05887$
5	7	8	$-41 + 29\sqrt{2} = \lambda^{-5} \approx 0.01219$
6	8	1	$17 - 12\sqrt{2} = \lambda^{-4} \approx 0.02944$