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4.1 Minkowski embedding revisited
We consider the example of Z[τ ] = {m + nτ | m,n ∈ Z}.
Algebraic conjugation x 7→ x′ in Q(

√
5 ) is defined by√

5 7→ −
√

5 and its extension to a field automorphism.

The diagonal embedding L =
{

(x, x′) | x ∈ Z[τ ]
}

defines a
lattice in R2, generated by the vectors (1, 1) and (τ, τ ′), so
L =

〈(1
1

)

,
( τ
1−τ

)〉

Z
.

(1,1)

(τ,τ ′)

(x,x′)x′

x
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4.2 Fibonacci chain revisited
The Fibonacci sequence was defined by the substitution
rule

̺ :
a 7→ ab

b 7→ a

on the two-letter alphabet {a, b}, with bi-infinite fixed point
(under ̺2)

w = . . . abaababaabaababaababa|abaababaabaababaababa . . .

In the geometric interpretation

b a

a a b

in terms of intervals of length τ and 1, define two point sets
Λa ⊆ Z[τ ] and Λb ⊆ Z[τ ] as the set of left endpoints of
intervals of type a and type b.
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4.3 Fibonacci projection
The point sets Λa and Λb lift to two strips in the lattice L:

⊲ Λa,b = {x ∈ L | x⋆ ∈ Wa,b} with the windows

Wa = (τ − 2, τ − 1] and Wb = (−1, τ − 2]

⊲ Λ = Λa ∪ Λb = {x ∈ L | x⋆ ∈ W}
⊲ window W = Wa ∪Wb = (−1, τ − 1]
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4.4 Euclidean model sets
Cut and project scheme (CPS):

Rd π←−−−− Rd × Rm πint−−−−→ Rm

∪ ∪ ∪ dense

π(L)
1−1←−−−−− L −−−−−→ πint(L)

‖ ‖
L

⋆−−−−−−−−−−−−−−−−−−−−−→ L⋆

Model set: Λ = {x ∈ L | x⋆ ∈ W }

Window W is a relatively compact subset of Rm with
non-empty interior ⊲ Λ is Meyer set

Regular model set: ∂W has zero Lebesgue measure

Generic (non-singular) model set: L⋆ ∩ ∂W = ∅
3 December 2018 – p.5



4.5 Fibonacci model set
Windows satisfy τ2Wa = Wa ∪̇Wb ∪̇ (Wa + 1),

τ2Wb = (Wa − τ) ∪̇ (Wb − τ), as

τ2(τ − 2, τ − 1] = (−1, τ ]

= (−1, τ − 2) ∪̇ (τ − 2, τ − 1] ∪̇ (τ − 1, τ)

τ2(−1, τ − 2] = (−τ − 1,−1]

= (−τ − 1,−2] ∪̇ (−2,−1]

Algebraic conjugation (τ 7→ −τ−1 = 1− τ ) gives

Λa = τ2Λa ∪̇ τ2Λb ∪̇ (τ2Λa + τ2),

Λb = (τ2Λa + τ) ∪̇ (τ2Λb + τ),

which corresponds to the fixed point equations of the
substitution ̺2 : a 7→ aba, b 7→ ab with inflation multiplier τ2.
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4.6 Uniform distribution
Sequence (xi)i∈N of points in a compact interval I of length
|I| is uniformly distributed in I if

1

N

N
∑

i=1

f(xi)
N→∞−−−−−→ 1

|I|

∫

I
f(x) dx

holds for all continuous functions f on I.

Projections in internal space uniformly distributed

⊲ frequencies proportional to volume of window
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4.7 Frequencies
Example: Consider occurrence of points in Λ at distance 1.
Take x ∈ Λ, so x⋆ ∈ W = (−1, τ − 1]. For x + 1 ∈ Λ, we
require (x + 1)⋆ = x⋆ + 1 ∈ W , which holds if x⋆ ∈ (−1, τ − 2].
Relative frequency (frequency per point) of distance 1:

vol
(

(−1, τ − 2]
)

vol
(

(−1, τ − 1]
) =

τ − 1

τ
= (τ − 1)2 = 2− τ

which is the frequency of the letter b in w.

Absolute frequency (frequency per volume) is given by the
product of the relative frequency with the volume density
dens(Λ), which is

dens(Λ) = dens(L) vol(W ) =
vol(W )

vol
(

FD(L)
) =

τ + 2

5
,

because vol(W ) = τ and vol
(

FD(L)
)

= τ − τ ′ = 2τ − 1.
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4.8 General CPS
A cut and project scheme (CPS) is a triple (Rd, H,L) with a
(compactly generated) locally compact Abelian group
(LCAG) H, a lattice L in Rd ×H and the two natural
projections π : Rd ×H −→ Rd and πint : Rd ×H −→ H,
subject to the conditions that π|

L
is injective and that πint(L)

is dense in H.

Rd π←−−− Rd ×H
πint−−−→ H

∪ ∪ ∪ dense

π(L)
1−1←−−− L −−−→ πint(L)

‖ ‖
L

⋆−−−−−−−−−−−−−−−−−→ L⋆

Star-map: ⋆ : L −→ H with x 7→ x⋆ := πint

(

(π|
L
)−1(x)

)
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4.8 General CPS
Let (Rd, H,L) be a CPS. If W ⊆ H is a relatively compact
set with non-empty interior, the projection set

f(W ) := {x ∈ L | x⋆ ∈ W}

or any translate t +f(W ) with t ∈ Rd, is called a model set.

A model set is termed regular when µH(∂W ) = 0, where µH

is the Haar measure of H.

If L⋆ ∩ ∂W = ∅, the model set is called generic.
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4.9 Cluster frequencies
Let Λ be a regular model set for the general CPS (Rd, H,L),
with a compact window W = W◦, and let P ⊆ Λ be a finite
cluster.

The repetition set of P ,

rep(P ) :=
{

t ∈ L | t + P ⊆ Λ
}

=
{

t ∈ L | t⋆ + P ⋆ ⊆ W
}

=
{

t ∈ L | t⋆ ∈
(

⋂

x∈P

(W − x⋆)
)}

is itself a regular model set.

The relative frequency (per point of Λ) of P is given by

rel freqΛ(P ) =
vol

(
⋂

x∈P (W − x⋆)
)

vol(W )
.

This is related to the absolute frequency of P by
abs freqΛ(P ) = dens(L) rel freqΛ(P ).

3 December 2018 – p.11



4.10 Cyclotomic model sets

R2 π←−−− R2 × Rφ(n)−2 πint−−−→ Rφ(n)−2

∪ ∪ ∪ dense

π(Ln)
1−1←−−−−−−− Ln −−−−−−−→ πint(Ln)

‖ ‖
Z[ξn]

⋆−−−−−−−−−−−−−−−−−−−−−→ Z[ξn]⋆

ξn: primitive nth root of unity

φ: Euler’s totient function

⋆-map: x 7→ (σ2(x), . . . , σ 1

2
φ(n)

(x))

σi: Galois automorphisms of Q(ξn)

Ln: Minkowski embedding of Z[ξn], given by

Ln =
{

(x, σ2(x), . . . , σ 1

2
φ(n)

(x))
∣

∣ x ∈ Z[ξn]
}

⊆ C
1

2
φ(n) ≃ Rφ(n)
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4.11 Ammann–Beenker model set
We use the Minkowski embedding of Z[ξ] with the explicit
choice ξ = e2πi/8 and the conjugation map defined by
ξ 7→ ξ3.

This leads to the lattice L =
√

2 R8 Z4, with the rotation
matrix

R8 =
1

2











√
2 1 0 −1

0 1
√

2 1√
2 −1 0 1

0 1 −
√

2 1











.

Ammann–Beenker model set obtained with centred regular
octagon of unit edge length as its window
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4.11 Ammann–Beenker model set
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4.11 Ammann–Beenker model set
Local inflation/deflation symmetry (LIDS)

The inflation multiplier (in direct space) is λ = 1 +
√

2. The
corresponding action on the window is multiplication
(scaling) by λ⋆ = −1/λ. The rescaled octagon can be
expressed as the intersection of eight translated copies of
the original window, with translations that are elements of
Z[ξ]. Likewise, W can be written as a union of translated
copies of the rescaled window λ⋆W , implying LIDS.
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4.11 Ammann–Beenker model set

vertex coordination orbit length relative frequency

1 3 8 −1 +
√

2 = λ−1 ≈ 0.41421

2 4 8 6 − 4
√

2 = 2λ−2 ≈ 0.34315

3 5 8 −14 + 10
√

2 = 2λ−3 ≈ 0.14214

4 6 8 34 − 24
√

2 = 2λ−4 ≈ 0.05887

5 7 8 −41 + 29
√

2 = λ−5 ≈ 0.01219

6 8 1 17 − 12
√

2 = λ
−4 ≈ 0.02944
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