Aperiodic Order Part 4

Uwe Grimm

School of Mathematics \& Statistics
The Open University, Milton Keynes http://mcs.open.ac.uk/ugg2/ltcc/

4.1 Minkowski embedding revisited

We consider the example of $\mathbb{Z}[\tau]=\{m+n \tau \mid m, n \in \mathbb{Z}\}$.
Algebraic conjugation $x \mapsto x^{\prime}$ in $\mathbb{Q}(\sqrt{5})$ is defined by $\sqrt{5} \mapsto-\sqrt{5}$ and its extension to a field automorphism.
The diagonal embedding $\mathcal{L}=\left\{\left(x, x^{\prime}\right) \mid x \in \mathbb{Z}[\tau]\right\}$ defines a lattice in \mathbb{R}^{2}, generated by the vectors $(1,1)$ and $\left(\tau, \tau^{\prime}\right)$, so $\mathcal{L}=\left\langle\binom{ 1}{1},\binom{\tau}{1-\tau}\right\rangle_{\mathbb{Z}}$.

4.2 Fibonacci chain revisited

The Fibonacci sequence was defined by the substitution rule

$$
\varrho: \begin{aligned}
& a \mapsto a b \\
& b \mapsto a
\end{aligned}
$$

on the two-letter alphabet $\{a, b\}$, with bi-infinite fixed point (under ϱ^{2})
$w=\ldots$ abaababaabaababaababa|abaababaabaababaababa \ldots
In the geometric interpretation

in terms of intervals of length τ and 1, define two point sets $\Lambda_{a} \subseteq \mathbb{Z}[\tau]$ and $\Lambda_{b} \subseteq \mathbb{Z}[\tau]$ as the set of left endpoints of intervals of type a and type b.

4.3 Fibonacci projection

The point sets Λ_{a} and Λ_{b} lift to two strips in the lattice \mathcal{L} :

$\rightarrow \Lambda_{a, b}=\left\{x \in L \mid x^{\star} \in W_{a, b}\right\}$ with the windows

$$
W_{a}=(\tau-2, \tau-1] \quad \text { and } \quad W_{b}=(-1, \tau-2]
$$

$\longrightarrow \Lambda=\Lambda_{a} \cup \Lambda_{b}=\left\{x \in L \mid x^{\star} \in W\right\}$
$\rightarrow \triangleright$ window $W=W_{a} \cup W_{b}=(-1, \tau-1]$

4.4 Euclidean model sets

Cut and project scheme (CPS):

Model set: $\quad \Lambda=\left\{x \in L \mid x^{\star} \in W\right\}$
Window W is a relatively compact subset of \mathbb{R}^{m} with non-empty interior $\quad \square \Lambda$ is Meyer set

Regular model set: ∂W has zero Lebesgue measure
Generic (non-singular) model set: $\quad L^{\star} \cap \partial W=\varnothing$

4.5 Fibonacci model set

Windows satisfy $\tau^{2} W_{a}=W_{a} \dot{\cup} W_{b} \dot{\cup}\left(W_{a}+1\right)$,

$$
\begin{aligned}
& \tau^{2} W_{b}=\left(W_{a}-\tau\right) \dot{\cup}\left(W_{b}-\tau\right), \quad \text { as } \\
\tau^{2}(\tau-2, \tau-1] & =(-1, \tau] \\
& =(-1, \tau-2) \dot{\cup}(\tau-2, \tau-1] \dot{\cup}(\tau-1, \tau) \\
\tau^{2}(-1, \tau-2] & =(-\tau-1,-1] \\
& =(-\tau-1,-2] \dot{\cup}(-2,-1]
\end{aligned}
$$

Algebraic conjugation $\left(\tau \mapsto-\tau^{-1}=1-\tau\right)$ gives

$$
\begin{aligned}
\Lambda_{a} & =\tau^{2} \Lambda_{a} \dot{\cup} \tau^{2} \Lambda_{b} \dot{\cup}\left(\tau^{2} \Lambda_{a}+\tau^{2}\right), \\
\Lambda_{b} & =\left(\tau^{2} \Lambda_{a}+\tau\right) \dot{\cup}\left(\tau^{2} \Lambda_{b}+\tau\right),
\end{aligned}
$$

which corresponds to the fixed point equations of the substitution $\varrho^{2}: a \mapsto a b a, b \mapsto a b$ with inflation multiplier τ^{2}.

4.6 Uniform distribution

Sequence $\left(x_{i}\right)_{i \in \mathbb{N}}$ of points in a compact interval I of length $|I|$ is uniformly distributed in I if

$$
\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \xrightarrow{N \rightarrow \infty} \frac{1}{|I|} \int_{I} f(x) \mathrm{d} x
$$

holds for all continuous functions f on I.
Projections in internal space uniformly distributed
$-\triangleright$ frequencies proportional to volume of window

4.7 Frequencies

Example: Consider occurrence of points in Λ at distance 1. Take $x \in \Lambda$, so $x^{\star} \in W=(-1, \tau-1]$. For $x+1 \in \Lambda$, we require $(x+1)^{\star}=x^{\star}+1 \in W$, which holds if $x^{\star} \in(-1, \tau-2]$. Relative frequency (frequency per point) of distance 1:

$$
\frac{\operatorname{vol}((-1, \tau-2])}{\operatorname{vol}((-1, \tau-1])}=\frac{\tau-1}{\tau}=(\tau-1)^{2}=2-\tau
$$

which is the frequency of the letter b in w.
Absolute frequency (frequency per volume) is given by the product of the relative frequency with the volume density dens (Λ), which is

$$
\operatorname{dens}(\Lambda)=\operatorname{dens}(\mathcal{L}) \operatorname{vol}(W)=\frac{\operatorname{vol}(W)}{\operatorname{vol}(\operatorname{FD}(\mathcal{L}))}=\frac{\tau+2}{5}
$$

because $\operatorname{vol}(W)=\tau$ and $\operatorname{vol}(\operatorname{FD}(\mathcal{L}))=\tau-\tau^{\prime}=2 \tau-1$.

4.8 General CPS

A cut and project scheme (CPS) is a triple $\left(\mathbb{R}^{d}, H, \mathcal{L}\right)$ with a (compactly generated) locally compact Abelian group (LCAG) H, a lattice \mathcal{L} in $\mathbb{R}^{d} \times H$ and the two natural projections $\pi: \mathbb{R}^{d} \times H \longrightarrow \mathbb{R}^{d}$ and $\pi_{\text {int }}: \mathbb{R}^{d} \times H \longrightarrow H$, subject to the conditions that $\left.\pi\right|_{\mathcal{L}}$ is injective and that $\pi_{\text {int }}(\mathcal{L})$ is dense in H.

Star-map: $\quad \star: L \longrightarrow H$ with $x \mapsto x^{\star}:=\pi_{\text {int }}\left(\left(\left.\pi\right|_{\mathcal{L}}\right)^{-1}(x)\right)$

4.8 General CPS

Let $\left(\mathbb{R}^{d}, H, \mathcal{L}\right)$ be a CPS. If $W \subseteq H$ is a relatively compact set with non-empty interior, the projection set

$$
\widehat{ }(W):=\left\{x \in L \mid x^{\star} \in W\right\}
$$

or any translate $t+\lambda(W)$ with $t \in \mathbb{R}^{d}$, is called a model set. A model set is termed regular when $\mu_{H}(\partial W)=0$, where μ_{H} is the Haar measure of H.
If $L^{\star} \cap \partial W=\varnothing$, the model set is called generic.

4.9 Cluster frequencies

Let Λ be a regular model set for the general CPS $\left(\mathbb{R}^{d}, H, \mathcal{L}\right)$, with a compact window $W=\overline{W^{\circ}}$, and let $P \subseteq \Lambda$ be a finite cluster.

The repetition set of P,

$$
\begin{aligned}
\operatorname{rep}(P) & :=\{t \in L \mid t+P \subseteq \Lambda\}=\left\{t \in L \mid t^{\star}+P^{\star} \subseteq W\right\} \\
& =\left\{t \in L \mid t^{\star} \in\left(\bigcap_{x \in P}\left(W-x^{\star}\right)\right)\right\}
\end{aligned}
$$

is itself a regular model set.
The relative frequency (per point of Λ) of P is given by

$$
\operatorname{relfreq}_{\Lambda}(P)=\frac{\operatorname{vol}\left(\bigcap_{x \in P}\left(W-x^{\star}\right)\right)}{\operatorname{vol}(W)}
$$

This is related to the absolute frequency of P by

$$
\operatorname{absfreq}_{\Lambda}(P)=\operatorname{dens}(\mathcal{L}) \operatorname{rel}^{\text {freq}}{ }_{\Lambda}(P) .
$$

4.10 Cyclotomic model sets

ξ_{n} : primitive nth root of unity
ϕ : Euler's totient function
\star-map: $\quad x \mapsto\left(\sigma_{2}(x), \ldots, \sigma_{\frac{1}{2} \phi(n)}(x)\right)$
σ_{i} : Galois automorphisms of $\mathbb{Q}\left(\xi_{n}\right)$
\mathcal{L}_{n} : Minkowski embedding of $\mathbb{Z}\left[\xi_{n}\right]$, given by
$\mathcal{L}_{n}=\left\{\left.\left(x, \sigma_{2}(x), \ldots, \sigma_{\frac{1}{2} \phi(n)}(x)\right) \right\rvert\, x \in \mathbb{Z}\left[\xi_{n}\right]\right\} \subseteq \mathbb{C}^{\frac{1}{2} \phi(n)} \simeq \mathbb{R}^{\phi(n)}$

4.11 Ammann-Beenker model set

We use the Minkowski embedding of $\mathbb{Z}[\xi]$ with the explicit choice $\xi=\mathrm{e}^{2 \pi \mathrm{i} / 8}$ and the conjugation map defined by $\xi \mapsto \xi^{3}$.

This leads to the lattice $\mathcal{L}=\sqrt{2} R_{8} \mathbb{Z}^{4}$, with the rotation matrix

$$
R_{8}=\frac{1}{2}\left(\begin{array}{cccc}
\sqrt{2} & 1 & 0 & -1 \\
0 & 1 & \sqrt{2} & 1 \\
\sqrt{2} & -1 & 0 & 1 \\
0 & 1 & -\sqrt{2} & 1
\end{array}\right) .
$$

Ammann-Beenker model set obtained with centred regular octagon of unit edge length as its window
4.11 Ammann-Beenker model set

4.11 Ammann-Beenker model set

Local inflation/deflation symmetry (LIDS)

The inflation multiplier (in direct space) is $\lambda=1+\sqrt{2}$. The corresponding action on the window is multiplication (scaling) by $\lambda^{\star}=-1 / \lambda$. The rescaled octagon can be expressed as the intersection of eight translated copies of the original window, with translations that are elements of $\mathbb{Z}[\xi]$. Likewise, W can be written as a union of translated copies of the rescaled window $\lambda^{\star} W$, implying LIDS.

4.11 Ammann-Beenker model set

vertex	coordination	orbit length	relative frequency
1	3	8	$-1+\sqrt{2}=\lambda^{-1} \approx 0.41421$
2	4	8	$6-4 \sqrt{2}=2 \lambda^{-2} \approx 0.34315$
3	5	8	$-14+10 \sqrt{2}=2 \lambda^{-3} \approx 0.14214$
4	6	8	$34-24 \sqrt{2}=2 \lambda^{-4} \approx 0.05887$
5	7	8	$-41+29 \sqrt{2}=\lambda^{-5} \approx 0.01219$
6	8	1	$17-12 \sqrt{2}=\lambda^{-4} \approx 0.02944$

