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3.1 Patterns
A pattern T in Euclidean space R

d is a non-empty set of
non-empty subsets of R

d. We refer to the elements of T as
the fragments of the pattern T .

A locally finite point set Λ ⊆ R
d can be interpreted as a

pattern TΛ =
{

{x} | x ∈ Λ
}

where we tacitly identify Λ and TΛ.

A tiling in R
d is a pattern T = {Ti | i ∈ I} ⊏ R

d, with
(countable) index set I and non-empty closed sets Ti ⊆ R

d,
subject to the conditions

⋃

i∈I Ti = R
d and T ◦

i ∩ T ◦

j = ∅ for
all i 6= j.

The fragments Ti of T are called the tiles of the tiling, and
their equivalence classes up to translations (or,
alternatively, up to congruence) are called prototiles.
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3.1 Patterns
A pattern T ⊏ R

d is called locally finite if T ⊓ K has finite
cardinality, for all compact K ⊆ R

d.

Let T ⊏ R
d be a locally finite pattern. When K ⊆ R

d is
compact, the pattern T ⊓K is called a cluster of T . We also
speak of a patch when K is convex.

Two (locally finite) patterns T and T ′ in R
d are locally

indistinguishable, or LI for short and written as T LI∼ T ′,
when any cluster of T occurs also in T ′ and vice versa.
This means that, for any compact K ⊆ R

d, there are
translations t, t′ ∈ R

d such that T ⊓ K = (−t′ + T ′) ⊓ K
together with T ′ ⊓ K = (−t + T ) ⊓ K.

Here, T ⊓ A = {T ∈ T | T ∩ A 6= ∅} (all fragments in T that
intersect A).
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3.1 Patterns
Two patterns T , T ′ ⊏ R

d are ε-close in the local topology
when

T ⊓ B1/ε(0) = (−t + T ′) ⊓ B1/ε(0)

holds for some t ∈ Bε(0).

Lemma: If t 6= 0 is a period of a locally finite pattern
T ⊏ R

d, any T ′ ∈ LI(T ) is t-periodic as well. The group of
periods is thus an invariant of an LI class. Moreover, if
Γ = per(T ) is a lattice in R

d (T is crystallographic), one has

LI(T ) = {t + T | t ∈ FD(Γ )} = {x + T | x ∈ Rd},
where FD(Γ ) is a fundamental domain of Γ , and where the
closure is taken in the local topology. In particular, LI(T ) is
compact in the local topology, and one has LI(T ) ≃ R

d/Γ
as topological spaces.

26 November 2018 – p.4



3.2 Limit translation module
For a pattern T ⊏ R

d and a compact set K ⊆ R
d, define

∆K(T ) to be
〈

t
∣

∣

∣
T ⊓ (x + K) = (−t + T ) ⊓ (x + K) for some x ∈ R

d
〉

Z

,

the Z-module generated by all translations between
occurrences of some K-cluster in T .

The limit translation module (LTM) ∆(T ) is defined as the
inverse limit of the ∆K(T ) over all compact subsets K ⊆ R

d,
ordered according to inclusion.

Proposition: The limit translation module of a (locally
finite) pattern T ⊏ R

d is an invariant of LI(T ).

The LTM of a crystallograhic pattern is its lattice of periods.
The LTM of the geometric realisation of the Fibonacci
sequence by intervals of lengths τ and 1 is Z[τ ].
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3.3 Local derivability

A pattern T ′ ⊏ R
d is said to be locally derivable from a

pattern T ⊏ R
d, written as T LD

 T ′, when a compact
neighbourhood K ⊆ R

d of 0 exists such that, whenever
(−x + T ) ⊓ K = (−y + T ) ⊓ K holds for x, y ∈ R

d, one also
has (−x + T ′) ⊓ {0} = (−y + T ′) ⊓ {0}.

Lemma: Let the pattern T ′

1 be locally derivable from
T1 ⊏ R

d, and let T2 ∈ LI(T1). Then, there exists some
T ′

2 ∈ LI(T ′

1 ) which is locally derivable from T2.

Two patterns T1, T2 ⊏ R
d are called mutually locally

derivable (MLD) from each other when T1

LD
 T2 and

T2

LD
 T1. Similarly, two LI classes are MLD when they are

locally derivable from each other.
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3.3 Local derivability

Proposition: For T , T ′ ⊏ R
d with T LD

 T ′, one has
∆(T ) ⊆ ∆(T ′).

Proof:
Local derivation T LD

 T ′ with compact K ⊆ R
d

=⇒ ∆K+K′(T ) ⊆ ∆K′(T ′) for all compact K ′ ⊆ R
d

=⇒ ∆(T ) ⊆ ∆(T ′) inclusion preserved by limit. �

Corollary: The LTM ∆(T ) of a pattern T ⊏ R
d is an

invariant of the entire MLD class of LI(T ).

Corollary: Two crystallographic, locally finite point sets
Λ,Λ′ ⊆ R

d are MLD if and only if they have the same lattice
of periods.
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3.4 Repetitivity

A pattern T ⊏ R
d is called (translationally) repetitive when,

for every compact K ⊆ R
d, there is a compact K ′ ⊆ R

d such
that, for every x, y ∈ R

d, the relation
T ⊓ (x + K) = (−t + T ) ⊓ (y + K) holds for some t ∈ K ′.

Choose K = Kr := Br(0) and K ′ = KR such that R ≥ r is
minimal. The function R = R(r) is called the repetitivity
function.

A repetitive pattern T ⊏ R
d is called linearly repetitive when

its repetitivity function satisfies R(r) = O(r) as r → ∞.

Proposition: Let T ⊏ R be a tiling that emerges via the
geometric interpretation of a primitive substitution rule on a
finite alphabet. Then, T is linearly repetitive.
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3.5 Continuous hulls
A pattern T ⊏ R

d is FLC when, for every compact set
K ⊆ R

d, the set of K-clusters {(t + K) ⊓ T | t ∈ R
d} consists

of finitely many equivalence classes up to R
d-translations.

If Λ ⊆ R
d is an FLC set, its geometric or continuous hull is

X(Λ) = {t + Λ | t ∈ Rd}, where the closure is taken in the
local topology. If the R

d-orbit of every element Λ′ ∈ X(Λ) is
dense, the hull X(Λ) is called minimal.

The subset

X0(Λ) = {Λ′ ∈ X(Λ) | 0 ∈ Λ′},

is sometimes called the discrete hull or the transversal.

26 November 2018 – p.9



3.6 Symmetry
A point set Λ ⊆ R is called reflection symmetric in the point
x if rx(Λ) = Λ, where rx : R −→ R is defined by
rx(y) = 2x − y.

Lemma: Let Λ ⊆ R be a point set that is reflection
symmetric in the distinct points x and y. Then, Λ is periodic
with period 2|x − y|.

Proposition: Let Λ ⊆ R
2 be a uniformly discrete point set

with an exact n-fold rotational symmetry. If n is
non-crystallographic, which means n = 5 or n ≥ 7, there can
only be one such rotation centre. When n ∈ {3, 4, 6}, the
existence of more than one rotation centre is possible, and
then implies lattice periodicity of Λ. When n = 2, the
existence of another rotation centre means that Λ is at least
rank-1 periodic.
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3.6 Symmetry
Let R be a linear or affine transformation of R

d. A pattern
T ⊏ R

d is symmetric under the action of R when
R(T )

LI∼ T . Moreover, the hull X(T ) is symmetric under the
action of R when R(X(T )) ⊆ X(T ).

A discrete structure T in R
d is said to have a local scaling

property with respect to the homothety x 7→ λx for some
0 6= λ ∈ R, if λT LD

 T . When MT LD
 T for some

M ∈ GL(d), one speaks of a local scaling property relative
to the linear map defined by M .

A discrete structure T in R
d is said to have a local inflation

deflation symmetry (LIDS) relative to the linear map L if
T MLD
! L(T ). When L(x) = λx, or when L(x) = λRx with

R ∈ O(d, R), the number λ is called the inflation multiplier of
the LIDS.
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3.7 Inflation
Consider a finite set {T1, T2, . . . , Tn} of tiles, where each
Ti ⊆ R

d is a compact set with non-empty interior and
T ◦

i = Ti, so that we also have 0 < vol(Ti) < ∞. An inflation
rule with inflation multiplier λ > 1 (and an extension map
x 7→ λx) consists of the mappings

λTi 7−→
n
⋃

j=1

Tj + Aji

with finite sets Aji ⊆ R
d, subject to the mutual disjointness

of the interiors of the sets on the right hand side and to the
(individual) volume consistency conditions
vol(λTi) =

∑n
j=1

vol(Tj) card(Aji), both for each 1 ≤ i ≤ n.

More generally, one can equally well work with an extension
map of the form x 7→ λRx with R ∈ O(d, R), or with an
expanding linear map.
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3.7 Inflation
The matrix M defined by Mkℓ = card(Akℓ) is called the
inflation matrix. The consistency conditions mean that λd is
the leading eigenvalue of M and that

(

vol(T1), . . . , vol(Tn)
)

is
a corresponding left eigenvector of M .

Example: Table tiling

Inflation matrix (distringuishing orientation)

M =

(

2 2

2 2

)

with leading eigenvalue λ2 = 4 and eigenvector (1, 1).
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3.7 Inflation
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3.8 Ammann–Beenker tiling
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3.8 Ammann–Beenker tiling
Inflation matrix (distinguishing triangles and rhombuses)

M =

(

3 4

2 3

)

PF eigenvalue λ2 = (1 +
√

2)2 = 3 + 2
√

2.

Left eigenvector 1

2
(1,

√
2 ), so areas of the two prototiles are

1

2
(triangle) and 1

2

√
2 (rhombus), when choosing edge length

of rhombus as 1.

Right eigenvector in statistical normalisation

ν =
(

2 −
√

2,
√

2 − 1
)T

gives frequencies of triangles and rhombuses.

⊲ triangles and rhombuses cover same area fraction
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3.8 Ammann–Beenker tiling
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3.8 Ammann–Beenker tiling

two cycle ⊲ fixed point tilings ⊲ continuous hull
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3.8 Ammann–Beenker tiling
Proposition: The Ammann–Beenker tiling T is a linearly
repetitive FLC tiling that is aperiodic. It possesses an LIDS
with inflation multiplier 1 +

√
2. The continuous hull is

compact and satisfies X(T ) = LI(T ). The corresponding
dynamical system (X(T ), R2, µ) is strictly ergodic.

Note that the two inflation rules define two LI classes that
are not MLD.
While the decorated version of the Ammann–Beenker tiling
can be reduced to the undecorated one by simply removing
all markings except for the arrows on the hypotenuses of
the triangles, the converse is not true because the
decorated version of the tiling contains information that
cannot be locally derived from the undecorated tiling. There
is no local way to decide upon the position of the
symmetry-breaking (house-shaped) vertex markers.
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3.8 Ammann–Beenker tiling
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3.9 Penrose and TTT tilings

PRT TTT

generating the Penrose–Robinson tiling and the Tübingen
triangle tiling

Inflation matrix

MT =

(

2 1

1 1

)

=

(

1 1

1 0

)2

,

with PF eigenvalue τ2. The area ration of the prototiles is τ ,
and the frequency vector is ν = (τ − 1, 2 − τ)T . The larger
triangles cover 1

5
(2 + τ) ≈ 0.7236 of the plane.
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3.9 Penrose and TTT tilings
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3.9 Penrose and TTT tilings
central patch of 4-cycle under the PRT inflation
⊲ 4 fixed point tilings with individual fivefold symmetry

Proposition: The Penrose–Robinson tiling T is a linearly
repetitive FLC tiling of R

2 that is aperiodic, with an LIDS
with inflation multiplier τ . The continuous hull is compact
and satisfies X(T ) = LI(T ). The corresponding dynamical
system (X(T ), R2, µ) is strictly ergodic.
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3.9 Penrose and TTT tilings
Robinson’s triangle inflation:

Relation to PRT tiling:

⊲ the two tilings are MLD
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3.9 Penrose and TTT tilings
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3.9 Penrose and TTT tilings
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3.9 Penrose and TTT tilings

Theorem: The LI classes of the following planar tilings (in
appropriate scale and relative orientation) belong to the
same MLD class:

(1) Robinson’s triangular version of the Penrose tiling;

(2) the Penrose–Robinson tiling (PRT);

(3) the rhombic Penrose tiling;

(4) the Penrose pentagon tiling;

(5) the kites and darts version of the Penrose tiling;

(6) the vertex point set of the rhombic Penrose tiling.
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3.9 Penrose and TTT tilings
TTT:
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3.9 Penrose and TTT tilings

The hulls of the rhombic Penrose tilings and the TTT are
both D10-symmetric, but neither hull contains tilings with
individual tenfold symmetry.

There are individual D5-symmetric Penrose tilings, but no
such tiling exists in the TTT hull.

One can construct a local rule to turn each TTT element
into a rhombic Penrose tiling, but the converse is not
possible.

Consequently, the TTT and the Penrose tilings define
distinct MLD classes.
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3.10 Inflation tilings and periodicity

Theorem: Let T ⊆ R
d be an FLC pattern that satisfies

λT LD
 T for some λ > 1. If λ is irrational, the pattern T is

non-periodic.

Proof:
Assume there there is a nontrivial period t,
so t + T = T for some 0 6= t ∈ R

d

=⇒ λt + λT = λT
λT LD
 T =⇒ λt is also a period of T .

λ irrational
=⇒ group of translations generated by t and λt

is dense in Rt

=⇒ contradiction. �
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