Aperiodic Order Part 2

Uwe Grimm

School of Mathematics \& Statistics
The Open University, Milton Keynes http://mcs.open.ac.uk/ugg2/ltcc/

2.1 Substitution Rules

Consider n-letter alphabet $\mathcal{A}_{n}=\left\{a_{i} \mid 1 \leq i \leq n\right\}$
Free group $F_{n}:=\left\langle a_{1}, \ldots, a_{n}\right\rangle$
A general substitution rule ϱ on an n-letter alphabet \mathcal{A}_{n} is an endomorphism of the corresponding free group F_{n}.
This means $\varrho(u v)=\varrho(u) \varrho(v)$ and $\varrho\left(u^{-1}\right)=(\varrho(u))^{-1}$.
Usually, we only consider substitution rules ϱ where the images $\varrho\left(a_{i}\right)$ of the letters contain no negative powers of the letters, but sometimes it can be advantageous to use a more general setting.
Substitution matrix $M(\varrho) \in \operatorname{Mat}(n, \mathbb{Z})$ defined by

$$
(M(\varrho))_{i, j}=\operatorname{card}_{a_{i}}\left(\varrho\left(a_{j}\right)\right) .
$$

2.2 Fibonacci Substitution

Example: Fibonacci's Rabbits

Liber Abaci (1202) by Leonardo of Pisa (Fibonacci)

2.2 Fibonacci Substitution

Substitution rule and matrix

$$
\varrho: \begin{aligned}
& a \mapsto a b \\
& b \mapsto a
\end{aligned} \quad M_{\varrho}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

One-sided fixed point $w=\varrho(w)$ by iteration of ϱ on $w^{(0)}=a$:

$$
a \mapsto a b \mapsto a b a \mapsto a b a a b \mapsto a b a a b a b a \mapsto \ldots \mapsto w^{(n)} \xrightarrow{n \rightarrow \infty} w
$$

Fibonacci numbers:
$\left|w^{(n)}\right|=f_{n+2} \quad$ with $\operatorname{card}_{a}\left(w^{(n)}\right)=f_{n+1}$ and $\operatorname{card}_{b}\left(w^{(n)}\right)=f_{n}$
where $f_{0}=0, f_{1}=1$ and $f_{n+1}=f_{n}+f_{n-1}$
Golden ratio:

$$
\lim _{i \rightarrow \pm \infty} \frac{f_{i+1}}{f_{i}}=\frac{1 \pm \sqrt{5}}{2}=\left\{\begin{array}{l}
\tau \\
\tau^{\prime}
\end{array}\right.
$$

2.2 Fibonacci Substitution

Recursion: $w^{(n+1)}=w^{(n)} w^{(n-1)}$

Proof:

We have $w^{(2)}=a b a=w^{(1)} w^{(0)}$
Induction: assume $w^{(n+1)}=w^{(n)} w^{(n-1)}$ and apply ϱ :
$\varrho\left(w^{(n+1)}\right)=w^{(n+2)}=\varrho\left(w^{(n)} w^{(n-1)}\right)$
$\quad=\varrho\left(w^{(n)}\right) \varrho\left(w^{(n-1)}\right)=w^{(n+1)} w^{(n)}$
Two-sided Fibonacci sequence

$$
\begin{aligned}
a \mid a & \stackrel{\varrho}{\longmapsto} \text { ab|ab } a b \stackrel{\varrho}{\longmapsto} a \underline{b a} \mid a b a \\
& \stackrel{\varrho}{\longmapsto} \text { abaabab|abaab } \stackrel{\varrho}{\longmapsto} \text { abaababab|abaababa } \\
& \stackrel{\varrho}{\longmapsto} \text { abaababaabaab|abaababaabaab } \stackrel{\varrho}{\longmapsto} \cdots
\end{aligned}
$$

limiting 2-cycle \longrightarrow two fixed points under ϱ^{2}

2.3 Substitution Sequences

A (non-negative) substitution rule ϱ on a finite alphabet \mathcal{A}_{n} is called

- irreducible when, for each index pair (i, j), there exists some $k \in \mathbb{N}$ such that a_{j} is a subword of $\varrho^{k}\left(a_{i}\right)$;
- primitive when some $k \in \mathbb{N}$ exists such that every a_{j} is a subword of each $\varrho^{k}\left(a_{i}\right)$.
$-\triangleright \varrho$ is irreducible or primitive if and only if M_{ϱ} is an irreducible or a primitive non-negative integer matrix.
Number of letters under ℓ-fold substitution

$$
\binom{\operatorname{card}_{a}\left(\varrho^{\ell}(u)\right)}{\operatorname{card}_{b}\left(\varrho^{\ell}(u)\right)}=M_{\varrho}^{\ell}\binom{\operatorname{card}_{a}(u)}{\operatorname{card}_{b}(u)},
$$

\longrightarrow right eigenvector for leading eigenvalue of M_{ϱ} encodes letter frequencies in the limit as $\ell \rightarrow \infty$

2.3 Substitution Sequences

Let ϱ be a substitution rule on a finite alphabet \mathcal{A}_{n}. A finite word is called legal for ϱ, if it occurs as a subword of $\varrho^{k}\left(a_{i}\right)$ for some $1 \leq i \leq n$ and some $k \in \mathbb{N}$.

Infinite (one-sided) $w=w_{0} w_{1} w_{2} w_{3} \ldots \in \mathcal{A}_{n}^{\mathbb{N}_{0}}$ and bi-infinite (two-sided) $w=\ldots w_{-2} w_{-1} \mid w_{0} w_{1} w_{2} \ldots \in \mathcal{A}_{n}^{\mathbb{Z}}$ sequences (words)

Local topology: two sequences w, w^{\prime} are close when they agree on a large region around index 0

Convergence of a sequence of finite words (of increasing length) is implicitly considering them as embedded objects in $\mathcal{A}_{n}^{\mathbb{N}_{0}}$ or $\mathcal{A}_{n}^{\mathbb{Z}}$.

2.3 Substitution Sequences

Shift operator S acts on $\mathcal{A}_{n}^{\mathbb{N}_{0}}$ or $\mathcal{A}_{n}^{\mathbb{Z}}$ by $(S w)_{i}:=w_{i+1}$
An S-invariant closed subset $X \subseteq \mathcal{A}_{n}^{\mathbb{N}_{0}}$ or $X \subseteq \mathcal{A}_{n}^{\mathbb{Z}}$ is called a one-sided or a two-sided shift space.

A bi-infinite word w a fixed point of a primitive substitution ϱ if $\varrho(w)=w$ and $w_{-1} \mid w_{0}$ is a legal word of ϱ.

Given $w \in \mathcal{A}_{n}^{\mathbb{Z}}$, the shift space $\mathbb{X}(w):=\overline{\left\{S^{i} w \mid i \in \mathbb{Z}\right\}}$ is called the (two-sided, symbolic or discrete) hull of w.
$(\mathbb{X}(w), \mathbb{Z})$ is a topological dynamical system with the continuous \mathbb{Z}-action of the shift on the compact space $\mathbb{X}(w)$, and the additional action of the substitution ϱ on $\mathbb{X}(w)$, which is continuous as well.

2.4 Geometric Inflation

For a primitive substitution ϱ on a finite alphabet with substitution matrix M_{ϱ} and PF eigenvalue λ, the associated geometric inflation rule with inflation multiplier λ is obtained by turning the letters a_{i} into closed intervals (the prototiles) with lengths proportional to the entries of the left PF eigenvector of M_{ϱ}, and by dissecting the λ-inflated prototiles into copies of the original ones, respecting the order specified by ϱ.
Example: Fibonacci substitution $\lambda=\tau=\frac{1}{2}(1+\sqrt{5})$
Left and right PF eigenvectors are proportional to ($\tau, 1$)
$-\triangleright$ frequency of a is τ times frequency of b
\rightarrow geometric realisation by intervals of length ratio $\tau: 1$.

2.5 Local indistinguishability

Two words u and v in the same alphabet are locally indistinguishable (LI), denoted by $u \stackrel{\text { LI }}{\sim} v$, when each finite subword of u is also a subword of v and vice versa.
The LI class of a word $w \in \mathcal{A}^{\mathbb{Z}}$ is $\operatorname{LI}(w):=\left\{z \in \mathcal{A}^{\mathbb{Z}} \mid z \stackrel{\text { LI }}{\sim} w\right\}$
Lemma: If w is a bi-infinite word, its LI class is contained in the hull of w, and one has $\mathbb{X}(w)=\overline{\mathrm{LI}(w)}$. In particular, $\mathbb{X}(u)=\mathbb{X}(v)$ holds for any two bi-infinite words $u \stackrel{\ddot{\sim}}{\sim} v$.

Proof: Let $z \in \operatorname{LI}(w), \mathbf{s o z} \underset{\sim}{\sim} w$.
For $m \in \mathbb{N}$, the subword $z_{[-m, m]}$ of length $2 m+1$ occurs in w.
Define shifts j_{m} such that $\left(S^{j_{m}} w\right)_{[-m, m]}=z_{[-m, m]}$.
$\left(S^{j_{m}} w\right)_{m \in \mathbb{N}}$ converges to $z \Longrightarrow z \in \mathbb{X}(w) \Longrightarrow \operatorname{LI}(w) \subseteq \mathbb{X}(w)$.
$\mathbb{X}(w)=\overline{\left\{S^{i} w \mid \in \mathbb{Z}\right\}} \subseteq \overline{\mathrm{LI}(w)} \subseteq \overline{\mathbb{X}(w)}=\mathbb{X}(w)$.

2.6 Hulls

A two-sided shift space $\mathbb{X} \subseteq \mathcal{A}^{\mathbb{Z}}$ is called minimal when, for all $w \in \mathbb{X}$, the shift orbit $\left\{S^{i} w \mid i \in \mathbb{Z}\right\}$ is dense in \mathbb{X}.

Proposition: If w is a bi-infinite word in the finite alphabet \mathcal{A}, with LI class $\operatorname{LI}(w)$ and hull $\mathbb{X}(w)$, the following assertions are equivalent.
(1) $\mathbb{X}(w)$ is minimal;
(2) $\mathrm{LI}(w)$ is closed;
(3) $\mathbb{X}(w)=\operatorname{LI}(w)$.

Proof: $(2) \Longleftrightarrow(3)$ follows from previous lemma.
For remaining statements, consider additional elements
prove proceeds by contradiction.

2.7 Fixed Points

Lemma: If ϱ is a primitive substitution rule on a finite alphabet \mathcal{A}_{n} with $n \geq 2$, there exists some $k \in \mathbb{N}$ and some $w \in \mathcal{A}_{n}^{\mathbb{Z}}$ such that w is a fixed point of ϱ^{k} (which means that $w_{-1} w_{0}$ is legal and $\left.\varrho^{k}(w)=w\right)$.
Proof: Assume that $\left|\varrho\left(a_{i}\right)\right|>1$ for all $1 \leqslant i \leqslant n$.
Define $g: \mathcal{A}^{2} \rightarrow \mathcal{A}^{2}$ by $g(x y)=\varrho(x)_{|\varrho(x)|-1} \varrho(y)_{0}$.
Start with any legal two-letter word
\Longrightarrow all images are legal
\Longrightarrow after n^{2} steps one word $x y$ must be repeated
\Longrightarrow there is $1 \leqslant k \leqslant n^{2}-1$ s.t. $g^{k}(x y)=x y$
$\Longrightarrow \varrho^{k}(x \mid y)=\ldots x \mid y \ldots$
\Longrightarrow seed $x y$ produces fixed point under ϱ^{k}.

2.7 Fixed Points

Proposition: Let ϱ be a primitive substitution rule on a finite alphabet \mathcal{A}. Then, any two bi-infinite fixed points u and v of ϱ are LI. The same conclusion holds if u and v are fixed points of possibly different positive powers of ϱ.
Proof: Two fixed points with $\varrho^{k}(u)=u$ and $\varrho^{\ell}(v)=v$.

$$
\Longrightarrow \varrho^{\operatorname{lcm}(k, \ell)}(u)=u \text { and } \varrho^{\operatorname{lcm}(k, \ell)}(v)=v \text {. Let } \widetilde{\varrho}=\varrho^{\operatorname{lcm}(k, \ell)} \text {. }
$$

Choose $a \in \mathcal{A}$ and let w be a finite subword of u
$\Longrightarrow w$ contained in $\widetilde{\varrho}^{p}\left(u_{-1} \mid u_{0}\right)$ for some $p \in \mathbb{N}$.
$u_{-1} u_{0}$ legal
\Longrightarrow subword of $\widetilde{\varrho}^{q}(a)$ for some $q \in \mathbb{N}$ (primitivity).
a is subword of v (primitivity)
$\Longrightarrow \widetilde{\varrho}^{p+q}(a)$ subword of $v \Longrightarrow w$ subword of v.

$$
\Longrightarrow u \stackrel{\mathrm{LI}}{\sim} v
$$

2.8 Repetitivity

A bi-infinite word w (over a finite alphabet) is repetitive when every finite subword of w reappears in w with bounded gaps.

Proposition: If w is a bi-infinite word in a finite alphabet, the hull $\mathbb{X}(w)$ is minimal if and only if w is repetitive.
Lemma: Any bi-infinite fixed point of a primitive substitution on a finite alphabet is repetitive.
Proof: Alphabet $\mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\}$.
w bi-infinite fixed point of ϱ (primitive)
$\Longrightarrow k \in \mathbb{N}$ s.t. a_{1} is subword of $\varrho^{k}\left(a_{i}\right)$ for all i
$\Longrightarrow a_{1}$ occurs in w with bounded gaps
u subword of $w \Longrightarrow u$ subword of $\varrho^{\ell}\left(a_{1}\right)$ for some ℓ
$\Longrightarrow u$ appears in w with bounded gaps.

2.8 Repetitivity

Theorem: Every primitive substitution rule on a finite alphabet possesses a unique hull. This hull consists of a single, closed LI class.

Proof:

ϱ primitive \Longrightarrow bi-infinite fixed point w of ϱ^{k}.
Hull $\mathbb{X}(w)$ is independent of choice of fixed point.
w repetitive

$$
\begin{aligned}
& \Longrightarrow \mathbb{X}(w)=\overline{\mathrm{LI}(w)}=\operatorname{LI}(w) \\
& \Longrightarrow \mathbb{X}(w) \text { minimal }
\end{aligned}
$$

A bi-infinite sequence w in a finite alphabet is called (topologically) aperiodic when $\mathbb{X}(w)$ contains no periodic sequence. A primitive substitution rule ϱ is aperiodic when its unique hull contains no periodic element.

2.9 Invariant Measures

Consider a two-sided shift space $\mathbb{X} \subseteq \mathcal{A}^{\mathbb{Z}}$ for a finite alphabet \mathcal{A}. For any $w \in \mathbb{X}$, the point (or Dirac) measure δ_{w} is an element of the set of probability measures $\mathbb{P}(\mathbb{X})$ on \mathbb{X}. It is defined by $\delta_{w}(A)=1$ if w is an element of $A \subseteq \mathcal{A}^{\mathbb{Z}}$, and $\delta_{w}(A)=0$ otherwise. Clearly,

$$
\mu_{N}:=\frac{1}{2 N+1} \sum_{i=-N}^{N} \delta_{S^{i} w}
$$

defines a sequence in $\mathbb{P}(\mathbb{X})$. It has a converging subsequence, whose limit μ is then a shift invariant element of $\mathbb{P}(\mathbb{X})$, which means that $S . \mu(A):=\mu\left(S^{-1}(A)\right)=\mu(A)$ for all Borel sets A.

A shift invariant probability measure μ on \mathbb{X} is called ergodic (with respect to the \mathbb{Z}-action of the shift) if the measure $\mu(A)$ of any invariant Borel set A is either 0 or 1 .

2.9 Invariant Measures

A system with a unique invariant probability measure is called uniquely ergodic. If a uniquely ergodic system is also minimal, it is called strictly ergodic.
Theorem: Let ϱ be a primitive substitution on a finite alphabet. Its hull \mathbb{X} is then strictly ergodic under the \mathbb{Z}-action of the shift.
Proposition: Let \mathcal{A} be a finite alphabet and let $\mathbb{X} \subseteq \mathcal{A}^{\mathbb{Z}}$ be a two-sided shift space. Then, the dynamical system of \mathbb{X} under the shift action is uniquely ergodic if and only if the frequencies of all finite words exist uniformly, for each element of \mathbb{X}. Moreover, it is strictly ergodic if and only if all frequencies exist uniformly and are positive.

2.10 Aperiodic Sequences

Theorem: Let w be a bi-infinite word in a finite alphabet that is repetitive and non-periodic. Then, the hull $\mathbb{X}(w)$ is uncountable, and even contains uncountably many pairwise disjoint translation orbits.

Corollary: The symbolic hull of a repetitive word over a finite alphabet consists of either one (periodic case) or uncountably many (non-periodic case) pairwise disjoint \mathbb{Z}-orbits under the shift action. In the periodic case, the hull itself is a finite set.

Proposition: The symbolic hull of a repetitive, bi-infinite word over a finite alphabet is either finite or a Cantor set.

2.10 Aperiodic Sequences

Theorem: Let ϱ be a primitive substitution rule on a finite alphabet with substitution matrix M_{ϱ}, and let w be a bi-infinite fixed point of ϱ. If the PF eigenvalue of M_{ϱ} is irrational, the sequence w is aperiodic.

Proof:

Assume to the contrary that w has a non-trivial finite period
\Longrightarrow all letter frequencies are rational
\Longrightarrow entries of right PF eigenvector are rational
\Longrightarrow PF eigenvalue is rational - contradiction
$\mathbb{X}(w)=\operatorname{LI}(w)$
\Longrightarrow hull cannot contain periodic elements

2.11 Further Examples

Noble means substitutions:

$$
\varrho_{p}: \begin{aligned}
& a \mapsto a^{p} b \\
& b \mapsto a
\end{aligned}
$$

with $\lambda=\frac{1}{2}\left(p+\sqrt{p^{2}+4}\right)=[p ; p, p, p, \ldots]$, a PV unit.
Period doubling substitution:

$$
\varrho_{\mathrm{pd}}: \begin{gathered}
a \mapsto a b \\
b \mapsto a a
\end{gathered}
$$

with $\lambda=2$.
Thue-Morse substitution:

$$
\varrho_{\mathrm{TM}}: \quad \begin{aligned}
& a \mapsto a b \\
& \\
& b \mapsto b a
\end{aligned}
$$

with $\lambda=2$.

2.12 Thue-Morse Sequence

Bi-infinite fixed point sequences:
$a\left|a \stackrel{\varrho^{2}}{\longrightarrow} a b b a\right| a b b a \stackrel{\varrho^{2}}{\xrightarrow{\varrho^{2}}}$ abbabaabbaababba|abbabaabbaababba $\stackrel{\varrho^{2}}{\longmapsto} \cdots \longrightarrow w$
$b\left|a \stackrel{\varrho^{2}}{\longrightarrow} b a a b\right| a b b a \stackrel{\varrho^{2}}{\longmapsto}$ baababbaabbabaab|abbabaabbaababba $\xrightarrow{\varrho^{2}} \cdots \longrightarrow w^{\prime}$
forming a two-cycle $w \stackrel{\varrho}{\longmapsto} w^{\prime} \stackrel{\varrho}{\longmapsto} w$ with $w \stackrel{山}{\sim} w^{\prime}$
$w=u \mid v$ and $w^{\prime}=\bar{u} \mid v(\bar{a}=b, \bar{b}=a), v$ satisfies

$$
\begin{gathered}
v_{2 i}=v_{i} \quad \text { and } \quad v_{2 i+1}=\bar{v}_{i} \\
v=v_{0} v_{2} v_{4} \ldots \quad \text { and } \bar{v}=v_{1} v_{3} v_{5} \ldots \\
v_{i}= \begin{cases}a, & \text { ift the binary digits of } i \text { sum to an even number, } \\
b, & \text { otherwise. }\end{cases}
\end{gathered}
$$

2.12 Thue-Morse Sequence

Proposition: The one-sided fixed point v of the Thue-Morse substitution does not contain any subword of the form $z z z_{0}$ with a non-empty finite word z.
Proof: $v_{i}=v_{i+1} \Longrightarrow i$ odd $\Longrightarrow v$ cannot contain $a a a$ or $b b b$. Also, ababa or babab cannot occur
\Longrightarrow any subword of length $\geqslant 5$ contains $a a$ or $b b$.
Proof by contradiction: assume z subword s.t. $z z z_{0}$ subword of v, of minimal length $|z|=\ell$.
If ℓ is odd, $\left|z z z_{0}\right|>5$ contains $a a$ or $b b$ at least twice, starting at odd positions, so at even distances. One distance must be $\ell \Longrightarrow$ contradiction.
If ℓ is even, then $z^{\prime}=z_{0} z_{2} \ldots z_{\ell-2}$ would be a shorter word, in contradiction to ℓ being minimal.
As v is (strongly) cubefree (or overlap-free), the Thue-Morse substitution is aperiodic.

