Aperiodic Order Part 2

Uwe Grimm

School of Mathematics & Statistics The Open University, Milton Keynes http://mcs.open.ac.uk/ugg2/ltcc/

2.1 Substitution Rules

Consider *n*-letter alphabet $\mathcal{A}_n = \{a_i \mid 1 \le i \le n\}$ Free group $F_n := \langle a_1, \dots, a_n \rangle$

A general substitution rule ρ on an *n*-letter alphabet A_n is an endomorphism of the corresponding free group F_n .

This means
$$\varrho(uv) = \varrho(u)\varrho(v)$$
 and $\varrho(u^{-1}) = (\varrho(u))^{-1}$.

Usually, we only consider substitution rules ρ where the images $\rho(a_i)$ of the letters contain no negative powers of the letters, but sometimes it can be advantageous to use a more general setting.

Substitution matrix $M(\varrho) \in Mat(n, \mathbb{Z})$ defined by

$$(M(\varrho))_{i,j} = \operatorname{card}_{a_i}(\varrho(a_j)).$$

2.2 Fibonacci Substitution

Example: Fibonacci's Rabbits

Liber Abaci (1202) by Leonardo of Pisa (Fibonacci)

19 November 2018

2.2 Fibonacci Substitution

Substitution rule and matrix

$$\varrho: \begin{array}{cc} a \mapsto ab \\ b \mapsto a \end{array} \qquad M_{\varrho} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

One-sided fixed point $w = \varrho(w)$ by iteration of ϱ on $w^{(0)} = a$: $a \mapsto ab \mapsto aba \mapsto abaab \mapsto abaababa \mapsto \ldots \mapsto w^{(n)} \xrightarrow{n \to \infty} w$

Fibonacci numbers:

 $|w^{(n)}| = f_{n+2}$ with $\operatorname{card}_a(w^{(n)}) = f_{n+1}$ and $\operatorname{card}_b(w^{(n)}) = f_n$ where $f_0 = 0$, $f_1 = 1$ and $f_{n+1} = f_n + f_{n-1}$

Golden ratio:

$$\lim_{i \to \pm \infty} \frac{f_{i+1}}{f_i} = \frac{1 \pm \sqrt{5}}{2} = \begin{cases} \tau \\ \tau' \end{cases}$$

2.2 Fibonacci Substitution

Recursion: $w^{(n+1)} = w^{(n)}w^{(n-1)}$

Proof:

We have $w^{(2)} = aba = w^{(1)}w^{(0)}$ Induction: assume $w^{(n+1)} = w^{(n)}w^{(n-1)}$ and apply ϱ : $\varrho(w^{(n+1)}) = w^{(n+2)} = \varrho(w^{(n)}w^{(n-1)})$ $= \varrho(w^{(n)})\varrho(w^{(n-1)}) = w^{(n+1)}w^{(n)}$

Two-sided Fibonacci sequence

$$\begin{aligned} a|a \stackrel{\varrho}{\longmapsto} \underline{ab}|ab \stackrel{\varrho}{\longmapsto} a\underline{ba}|aba\\ \stackrel{\varrho}{\longmapsto} aba\underline{ab}|abaab \stackrel{\varrho}{\longmapsto} abaaba\underline{ba}|abaababa\\ \stackrel{\varrho}{\longmapsto} abaababaaba\underline{ab}|abaababaabaabaaba \stackrel{\varrho}{\longmapsto} \cdots \end{aligned}$$

2.3 Substitution Sequences

A (non-negative) substitution rule ϱ on a finite alphabet \mathcal{A}_n is called

- *irreducible* when, for each index pair (*i*, *j*), there exists some *k* ∈ N such that *a_j* is a subword of $\rho^k(a_i)$;
- *primitive* when some *k* ∈ N exists such that every *a_j* is a subword of each $\rho^k(a_i)$.

Number of letters under *l*-fold substitution

$$\begin{pmatrix} \operatorname{card}_a(\varrho^{\ell}(u)) \\ \operatorname{card}_b(\varrho^{\ell}(u)) \end{pmatrix} = M_{\varrho}^{\ell} \begin{pmatrix} \operatorname{card}_a(u) \\ \operatorname{card}_b(u) \end{pmatrix},$$

→ right eigenvector for leading eigenvalue of M_{ϱ} encodes letter frequencies in the limit as $\ell \to \infty$

2.3 Substitution Sequences

Let ρ be a substitution rule on a finite alphabet \mathcal{A}_n . A finite word is called *legal* for ρ , if it occurs as a subword of $\rho^k(a_i)$ for some $1 \leq i \leq n$ and some $k \in \mathbb{N}$.

Infinite (one-sided) $w = w_0 w_1 w_2 w_3 \ldots \in \mathcal{A}_n^{\mathbb{N}_0}$ and bi-infinite (two-sided) $w = \ldots w_{-2} w_{-1} | w_0 w_1 w_2 \ldots \in \mathcal{A}_n^{\mathbb{Z}}$ sequences (words)

Local topology: two sequences w, w' are close when they agree on a large region around index 0

Convergence of a sequence of finite words (of increasing length) is implicitly considering them as embedded objects in $\mathcal{A}_n^{\mathbb{N}_0}$ or $\mathcal{A}_n^{\mathbb{Z}}$.

2.3 Substitution Sequences

Shift operator S acts on $\mathcal{A}_n^{\mathbb{N}_0}$ or $\mathcal{A}_n^{\mathbb{Z}}$ by $(Sw)_i := w_{i+1}$

An *S*-invariant closed subset $X \subseteq \mathcal{A}_n^{\mathbb{N}_0}$ or $X \subseteq \mathcal{A}_n^{\mathbb{Z}}$ is called a one-sided or a two-sided *shift space*.

A bi-infinite word w a *fixed point* of a primitive substitution ρ if $\rho(w) = w$ and $w_{-1}|w_0$ is a legal word of ρ .

Given $w \in \mathcal{A}_n^{\mathbb{Z}}$, the shift space $\mathbb{X}(w) := \overline{\{S^i w \mid i \in \mathbb{Z}\}}$ is called the (two-sided, symbolic or discrete) *hull* of *w*.

 $(\mathbb{X}(w),\mathbb{Z})$ is a *topological dynamical system* with the continuous \mathbb{Z} -action of the shift on the compact space $\mathbb{X}(w)$, and the additional action of the substitution ϱ on $\mathbb{X}(w)$, which is continuous as well.

2.4 Geometric Inflation

For a primitive substitution ρ on a finite alphabet with substitution matrix M_{ρ} and PF eigenvalue λ , the associated *geometric inflation rule* with inflation multiplier λ is obtained by turning the letters a_i into closed intervals (the *prototiles*) with lengths proportional to the entries of the left PF eigenvector of M_{ρ} , and by dissecting the λ -inflated prototiles into copies of the original ones, respecting the order specified by ρ .

Example: Fibonacci substitution $\lambda = \tau = \frac{1}{2}(1 + \sqrt{5})$

Left and right PF eigenvectors are proportional to $(\tau, 1)$

- **—** Frequency of a is τ times frequency of b
- -> geometric realisation by intervals of length ratio $\tau : 1$.

2.5 Local indistinguishability

Two words u and v in the same alphabet are *locally indistinguishable* (LI), denoted by $u \stackrel{\text{LI}}{\sim} v$, when each finite subword of u is also a subword of v and vice versa.

The *LI* class of a word $w \in \mathcal{A}^{\mathbb{Z}}$ is $LI(w) := \{z \in \mathcal{A}^{\mathbb{Z}} \mid z \stackrel{\scriptscriptstyle \text{LI}}{\sim} w\}$

Lemma: If w is a bi-infinite word, its LI class is contained in the hull of w, and one has $\mathbb{X}(w) = \overline{\mathrm{LI}(w)}$. In particular, $\mathbb{X}(u) = \mathbb{X}(v)$ holds for any two bi-infinite words $u \stackrel{\text{LI}}{\sim} v$.

Proof: Let $z \in LI(w)$, so $z \stackrel{{}_{\sim}}{\sim} w$.

For $m \in \mathbb{N}$, the subword $z_{[-m,m]}$ of length 2m + 1 occurs in w. Define shifts j_m such that $(S^{j_m}w)_{[-m,m]} = z_{[-m,m]}$. $(S^{j_m}w)_{m\in\mathbb{N}}$ converges to $z \implies z \in \mathbb{X}(w) \implies \mathrm{LI}(w) \subseteq \mathbb{X}(w)$. $\mathbb{X}(w) = \overline{\{S^iw \mid \in \mathbb{Z}\}} \subseteq \overline{\mathrm{LI}(w)} \subseteq \overline{\mathbb{X}(w)} = \mathbb{X}(w)$.

2.6 Hulls

A two-sided shift space $\mathbb{X} \subseteq \mathcal{A}^{\mathbb{Z}}$ is called *minimal* when, for all $w \in \mathbb{X}$, the shift orbit $\{S^i w \mid i \in \mathbb{Z}\}$ is dense in \mathbb{X} .

Proposition: If w is a bi-infinite word in the finite alphabet \mathcal{A} , with LI class LI(w) and hull X(w), the following assertions are equivalent.

- (1) $\mathbb{X}(w)$ is minimal;
- (2) LI(w) is closed;
- (3) X(w) = LI(w).

Proof: (2) \iff (3) follows from previous lemma. For remaining statements, consider additional elements prove proceeds by contradiction.

2.7 Fixed Points

Lemma: If ρ is a primitive substitution rule on a finite alphabet \mathcal{A}_n with $n \ge 2$, there exists some $k \in \mathbb{N}$ and some $w \in \mathcal{A}_n^{\mathbb{Z}}$ such that w is a fixed point of ρ^k (which means that $w_{-1}w_0$ is legal and $\rho^k(w) = w$).

Proof: Assume that $|\varrho(a_i)| > 1$ for all $1 \le i \le n$. Define $g: \mathcal{A}^2 \to \mathcal{A}^2$ by $g(xy) = \varrho(x)_{|\varrho(x)|-1} \varrho(y)_0$.

Start with any legal two-letter word

- \implies all images are legal
- \implies after n^2 steps one word xy must be repeated
- \implies there is $1 \leqslant k \leqslant n^2 1$ s.t. $g^k(xy) = xy$
- $\implies \varrho^k(x|y) = \dots x|y\dots$
- \implies seed xy produces fixed point under ϱ^k .

2.7 Fixed Points

Proposition: Let ρ be a primitive substitution rule on a finite alphabet A. Then, any two bi-infinite fixed points u and v of ρ are LI. The same conclusion holds if u and v are fixed points of possibly different positive powers of ρ .

Proof: Two fixed points with $\rho^k(u) = u$ and $\rho^\ell(v) = v$. $\implies \rho^{\operatorname{lcm}(k,\ell)}(u) = u$ and $\rho^{\operatorname{lcm}(k,\ell)}(v) = v$. Let $\tilde{\rho} = \rho^{\operatorname{lcm}(k,\ell)}$. Choose $a \in \mathcal{A}$ and let w be a finite subword of u $\implies w$ contained in $\tilde{\rho}^p(u_{-1}|u_0)$ for some $p \in \mathbb{N}$. $u_{-1}u_0$ legal

⇒ subword of $\tilde{\varrho}^q(a)$ for some $q \in \mathbb{N}$ (primitivity). *a* is subword of *v* (primitivity)

 $\implies \widetilde{\varrho}^{p+q}(a)$ subword of $v \implies w$ subword of v.

 $\implies u \stackrel{\sqcup}{\sim} v.$

2.8 Repetitivity

A bi-infinite word w (over a finite alphabet) is *repetitive* when every finite subword of w reappears in w with bounded gaps.

Proposition: If w is a bi-infinite word in a finite alphabet, the hull $\mathbb{X}(w)$ is minimal if and only if w is repetitive.

Lemma: Any bi-infinite fixed point of a primitive substitution on a finite alphabet is repetitive.

Proof: Alphabet $\mathcal{A} = \{a_1, \ldots, a_n\}$.

w bi-infinite fixed point of ϱ (primitive)

- $\implies k \in \mathbb{N} \text{ s.t. } a_1 \text{ is subword of } \varrho^k(a_i) \text{ for all } i$
- $\implies a_1 \text{ occurs in } w \text{ with bounded gaps}$

 $u \text{ subword of } w \implies u \text{ subword of } \varrho^{\ell}(a_1) \text{ for some } \ell$

 \implies u appears in w with bounded gaps.

2.8 Repetitivity

Theorem: Every primitive substitution rule on a finite alphabet possesses a unique hull. This hull consists of a single, closed LI class.

Proof:

 ρ primitive \implies bi-infinite fixed point w of ρ^k .

Hull $\mathbb{X}(w)$ is independent of choice of fixed point. w repetitive

$$\implies \mathbb{X}(w) = \overline{\mathrm{LI}(w)} = \mathrm{LI}(w)$$

 $\implies \mathbb{X}(w) \text{ minimal}$

A bi-infinite sequence w in a finite alphabet is called (topologically) *aperiodic* when X(w) contains no periodic sequence. A primitive substitution rule ρ is *aperiodic* when its unique hull contains no periodic element.

2.9 Invariant Measures

Consider a two-sided shift space $\mathbb{X} \subseteq \mathcal{A}^{\mathbb{Z}}$ for a finite alphabet \mathcal{A} . For any $w \in \mathbb{X}$, the point (or Dirac) measure δ_w is an element of the set of probability measures $\mathbb{P}(\mathbb{X})$ on \mathbb{X} . It is defined by $\delta_w(A) = 1$ if w is an element of $A \subseteq \mathcal{A}^{\mathbb{Z}}$, and $\delta_w(A) = 0$ otherwise. Clearly,

$$\mu_N := \frac{1}{2N+1} \sum_{i=-N}^N \delta_{S^i w}$$

defines a sequence in $\mathbb{P}(\mathbb{X})$. It has a converging subsequence, whose limit μ is then a *shift invariant* element of $\mathbb{P}(\mathbb{X})$, which means that $S.\mu(A) := \mu(S^{-1}(A)) = \mu(A)$ for all Borel sets A.

A shift invariant probability measure μ on \mathbb{X} is called *ergodic* (with respect to the \mathbb{Z} -action of the shift) if the measure $\mu(A)$ of any invariant Borel set A is either 0 or 1.

2.9 Invariant Measures

A system with a unique invariant probability measure is called *uniquely ergodic*. If a uniquely ergodic system is also minimal, it is called *strictly ergodic*.

Theorem: Let ϱ be a primitive substitution on a finite alphabet. Its hull X is then strictly ergodic under the \mathbb{Z} -action of the shift.

Proposition: Let \mathcal{A} be a finite alphabet and let $\mathbb{X} \subseteq \mathcal{A}^{\mathbb{Z}}$ be a two-sided shift space. Then, the dynamical system of \mathbb{X} under the shift action is uniquely ergodic if and only if the frequencies of all finite words exist uniformly, for each element of \mathbb{X} . Moreover, it is strictly ergodic if and only if all frequencies exist uniformly and are positive.

2.10 Aperiodic Sequences

Theorem: Let w be a bi-infinite word in a finite alphabet that is repetitive and non-periodic. Then, the hull $\mathbb{X}(w)$ is uncountable, and even contains uncountably many pairwise disjoint translation orbits.

Corollary: The symbolic hull of a repetitive word over a finite alphabet consists of either one (periodic case) or uncountably many (non-periodic case) pairwise disjoint \mathbb{Z} -orbits under the shift action. In the periodic case, the hull itself is a finite set.

Proposition: The symbolic hull of a repetitive, bi-infinite word over a finite alphabet is either finite or a Cantor set.

2.10 Aperiodic Sequences

Theorem: Let ρ be a primitive substitution rule on a finite alphabet with substitution matrix M_{ρ} , and let w be a bi-infinite fixed point of ρ . If the PF eigenvalue of M_{ρ} is irrational, the sequence w is aperiodic.

Proof:

Assume to the contrary that w has a non-trivial finite period

- \implies all letter frequencies are rational
- \implies entries of right PF eigenvector are rational
- \implies PF eigenvalue is rational contradiction

 $\mathbb{X}(w) = \mathrm{LI}(w)$

 \implies hull cannot contain periodic elements

2.11 Further Examples

Noble means substitutions:

$$\varrho_p: \begin{array}{c} a \mapsto a^p b \\ b \mapsto a \end{array}$$

with $\lambda = \frac{1}{2} (p + \sqrt{p^2 + 4}) = [p; p, p, p, ...]$, a PV unit.

Period doubling substitution:

$$\begin{array}{ll} \varrho_{\mathrm{pd}}: & a \mapsto ab \\ & b \mapsto aa \end{array}$$

with $\lambda = 2$.

Thue–Morse substitution:

$$\varrho_{\rm TM}: \begin{array}{c} a \mapsto ab \\ b \mapsto ba \end{array}$$

with $\lambda = 2$.

2.12 Thue–Morse Sequence

Bi-infinite fixed point sequences:

forming a two-cycle $w \stackrel{\varrho}{\longmapsto} w' \stackrel{\varrho}{\longmapsto} w$ with $w \stackrel{\iota}{\sim} w'$

w = u|v and $w' = \overline{u}|v$ ($\overline{a} = b$, $\overline{b} = a$), v satisfies

$$v_{2i} = v_i$$
 and $v_{2i+1} = \overline{v}_i$

$$v = v_0 v_2 v_4 \dots$$
 and $\bar{v} = v_1 v_3 v_5 \dots$

 $v_i = \begin{cases} a, & \text{if the binary digits of } i \text{ sum to an even number}, \\ b, & \text{otherwise}. \end{cases}$

2.12 Thue–Morse Sequence

Proposition: The one-sided fixed point v of the Thue–Morse substitution does not contain any subword of the form zzz_0 with a non-empty finite word z.

Proof: $v_i = v_{i+1} \implies i \text{ odd } \implies v \text{ cannot contain } aaa \text{ or } bbb.$ Also, ababa or babab cannot occur

 \implies any subword of length ≥ 5 contains aa or bb.

Proof by contradiction: assume z subword s.t. zzz_0 subword of v, of minimal length $|z| = \ell$.

If ℓ is odd, $|zzz_0| > 5$ contains aa or bb at least twice, starting at odd positions, so at even distances. One distance must be $\ell \implies$ contradiction.

If ℓ is even, then $z' = z_0 z_2 \dots z_{\ell-2}$ would be a shorter word, in contradiction to ℓ being minimal.

As v is (strongly) cubefree (or overlap-free), the Thue–Morse substitution is aperiodic.