Aperiodic Order Part 1

Uwe Grimm

School of Mathematics \& Statistics
The Open University, Milton Keynes
http://mcs.open.ac.uk/ugg2/ltcc/

1.1 What is Aperiodic Order?

- What is order?
- Symmetry
- Group theory
- Dynamical systems
- Harmonic analysis
- Spectral theory
- Crystals as paradigm of order in nature
- What is a crystal?
- Diffraction
- Crystallographic restriction
- Complete classification of periodic crystal structures
- Aperiodic crystals
- Incommensurate crystals
- Quasicrystals

1.2 A few historical remarks

- Geometric patterns in medieval Islamic art
- Johannes Kepler (1571-1630)
- Hao Wang (1961)
- Undecidability of the domino problem: Robert Berger (1966)
- Model sets: Yves Meyer (1970)
- Roger Penrose (1974)
- Ammann, deBruijn, Kramer, ...
- Discovery of quasicrystals by Dan Shechtman (1982)
- Shechtman receives Nobel prize in Chemistry (2011)

1.2 A few historical remarks

An example of Islamic art from Bukhara, Uzbekistan

1.2 A few historical remarks

Kelper's sketches in Harmonices Mundi Libri V (1619)

1.2 A few historical remarks

Roger Penrose and his rhombus tiling in the foyer of the Mitchell Institute for Fundamental Physics and Astronomy at Texas A\&M University

1.2 A few historical remarks

Dan Shechtman, Nobel Prize in Chemistry 2011

1.3 Point sets

A set consisting of one point is called a singleton set, and countable unions of singleton sets are called point sets.
A point set $\Lambda \subseteq \mathbb{R}^{d}$ is discrete if each element $x \in \Lambda$ has an open neighbourhood $U=U(x) \subseteq \mathbb{R}^{d}$ that does not contain any other point of Λ. For each $x \in \Lambda$, there is an $r>0$ such that $B_{r}(x)$ (open ball of radius r around x) satisfies $B_{r}(x) \cap \Lambda=\{x\}$.
Λ is uniformly discrete if there is an open neighbourhood U of $0 \in \mathbb{R}^{d}$ such that $(x+U) \cap(y+U)=\varnothing$ holds for all distinct $x, y \in \Lambda$.
Here, $x+U:=\{x+u \mid u \in U\}$ and, more generally, we define the Minkowski sum and difference of two arbitrary sets $U, V \subseteq \mathbb{R}^{d}$ as

$$
U \pm V:=\{u \pm v \mid u \in U, v \in V\} .
$$

1.3 Point sets

A point set $\Lambda \subseteq \mathbb{R}^{d}$ is called locally finite if, for all compact $K \subseteq \mathbb{R}^{d}$, the intersection $K \cap A$ is a finite set (or empty). A point set $\Lambda \subseteq \mathbb{R}^{d}$ is relatively dense if a compact $K \subseteq \mathbb{R}^{d}$ exists such that $\Lambda+K=\mathbb{R}^{d}$.
A point set $\Lambda \subseteq \mathbb{R}^{d}$ is a Delone set (Delaunay set), if it is both uniformly discrete and relatively dense.
A point set $\Lambda \subseteq \mathbb{R}^{d}$ is a Meyer set, if Λ is relatively dense and $\Lambda-\Lambda$ is uniformly discrete.
A cluster of a point set $\Lambda \subseteq \mathbb{R}^{d}$ is the intersection $K \cap \Lambda$ for some compact $K \subseteq \mathbb{R}^{d}$.
A point set $\Lambda \subseteq \mathbb{R}^{d}$ has finite local complexity (FLC) w.r.t. to translations when the collection $\left\{(t+K) \cap \Lambda \mid t \in \mathbb{R}^{d}\right\}$, for any given compact $K \subseteq \mathbb{R}^{d}$, contains only finitely many clusters up to translations.

1.3 Point sets

Relation between different properties of point sets:

$$
\Lambda \text { Meyer } \Longrightarrow \Lambda \text { FLC and Delone } \Longrightarrow \Lambda \text { Delone }
$$

Lemma: Let $\Lambda \subseteq \mathbb{R}^{d}$ be a Delone set, such that $\Lambda-\Lambda \subseteq \Lambda+F$ for some finite set $F \subseteq \mathbb{R}^{d}$.
Then Λ is a Meyer set.
Proof: Λ Delone $\Longrightarrow \Lambda$ relatively dense We need to show that $\Lambda-\Lambda$ is also uniformly discrete Let $\Delta:=\Lambda-\Lambda$, then
$\Lambda-\Lambda$ uniformly discrete $\Longleftrightarrow 0$ is isloated point in $\Delta-\Delta$ Now, $\Delta-\Delta \subseteq(\Lambda+F)-(\Lambda+F) \subseteq \Delta+(F-F) \subseteq \Delta+F^{\prime}$ which is locally finite since F^{\prime} is finite
$\Longrightarrow 0$ is isolated point in $\Delta-\Delta$
Lagarias showed that the converse is true in \mathbb{R}^{d} (and more generally), but the argument is more involved.

1.4 Lattices

A point set $\Gamma \subseteq \mathbb{R}^{d}$ is called a lattice in \mathbb{R}^{d} if there exist d vectors b_{1}, \ldots, b_{d} such that

$$
\Gamma=\mathbb{Z} b_{1} \oplus \cdots \oplus \mathbb{Z} b_{d}:=\left\{\sum_{i=1}^{d} m_{i} b_{i} \mid \text { all } m_{i} \in \mathbb{Z}\right\}
$$

together with the requirement that its \mathbb{R}-span $\langle\Gamma\rangle_{\mathbb{R}}=\mathbb{R}^{d}$. The set $\left\{b_{1}, \ldots, b_{d}\right\}$ is called a basis of the lattice Γ.
$\Lambda \subseteq \mathbb{R}^{d}$ is a crystallographic point packing in \mathbb{R}^{d} if there is a lattice Γ in \mathbb{R}^{d} and a finite set $F \subseteq \mathbb{R}^{d}$ with $\Lambda=\Gamma+F$.
The factor group \mathbb{R}^{d} / Γ of a lattice $\Gamma \subseteq \mathbb{R}^{d}$ is compact. A set of representatives that is relatively compact and measurable is called a fundamental domain FD_{Γ} of Γ. If $\left\{b_{1}, \ldots, b_{d}\right\}$ is a basis of Γ, a natural choice is

$$
\mathrm{FD}_{\Gamma}=\left\{\sum_{i=1}^{d} \alpha_{i} b_{i} \mid 0 \leq \alpha_{i}<1 \text { for all } i\right\} .
$$

Its volume $\operatorname{vol}\left(\mathrm{FD}_{\Gamma}\right)=\left|\operatorname{det}\left(b_{1}, \ldots, b_{d}\right)\right|$ does not depend on the choice of FD_{Γ}.

1.4 Lattices

Lemma: Any lattice $\Gamma \subseteq \mathbb{R}^{d}$ is a Meyer set. Consequently, it is also a Delone set of finite local complexity.

Proof:

Γ lattice $\Longrightarrow \Gamma-\Gamma=\Gamma \quad(\Gamma$ is a group)
It is sufficient to show that Γ is relatively dense and uniformly discrete
Choose $K \subseteq \mathbb{R}^{d}$ to be the closed parallelotope spanned by the d basis vectors
$\Gamma+K=\mathbb{R}^{d} \Longrightarrow$ relative denseness
any open ball $\subseteq K \Longrightarrow$ uniform discreteness

1.4 Lattices

Let Λ be a point set in \mathbb{R}^{d}. An element $t \in \mathbb{R}^{d}$ is a period of Λ when $t+\Lambda=\Lambda$. The set $\operatorname{per}(\Lambda):=\left\{t \in \mathbb{R}^{d} \mid t+\Lambda=\Lambda\right\}$, called the set of periods of Λ, is a subgroup of \mathbb{R}^{d}.
A point set $\Lambda \subseteq \mathbb{R}^{d}$ is called periodic (of rank m) when $\operatorname{per}(\Lambda) \subseteq \mathbb{R}^{d}$ is non-trivial (with $1 \leq m=\operatorname{dim}\langle\operatorname{per}(\Lambda)\rangle_{\mathbb{R}} \leq d$), and non-periodic when $\operatorname{per}(\Lambda)=\{0\}$. The set Λ is called crystallographic when $\operatorname{per}(\Lambda)$ is a lattice in \mathbb{R}^{d}, and non-crystallographic otherwise.
If Γ is a lattice in \mathbb{R}^{d}, its dual lattice Γ^{*} is defined as

$$
\Gamma^{*}=\left\{y \in \mathbb{R}^{d} \mid\langle x \mid y\rangle \in \mathbb{Z} \text { for all } x \in \Gamma\right\},
$$

where $\langle x \mid y\rangle$ is the scalar product in \mathbb{R}^{d}. If $\left\{b_{1}, \ldots, b_{d}\right\}$ is a lattice basis of Γ, the vectors b_{i}^{*} satisfying $\left\langle b_{i}^{*} \mid b_{j}\right\rangle=\delta_{i, j}$ for $1 \leq i, j \leq d$ form a lattice basis of Γ^{*}, called the dual basis.

1.4 Lattices

Proposition: A locally finite point set $\Lambda \subseteq \mathbb{R}^{d}$ is crystallographic if and only if there is a lattice $\Gamma \subseteq \mathbb{R}^{d}$ and a finite point set $F \subseteq \mathbb{R}^{d}$ such that $\Lambda=\Gamma+F$.

Proof:

If $\Lambda=\Gamma+F$, then Λ is locally finite
Clearly, $\Gamma \subseteq \operatorname{per}(\Lambda)$ is a discrete subgroup of \mathbb{R}^{d} $\Longrightarrow \operatorname{per}(\Lambda) / \Gamma$ is a finite group
$\mathbb{R}^{d} / \operatorname{per}(\Lambda)$ compact $\Longrightarrow \operatorname{per}(\Lambda)$ lattice $\Longrightarrow \Lambda$ crystallographic
Conversely, assume that Λ is crystallographic,
with lattice of periods $\Gamma:=\operatorname{per}(\Lambda)$
Choose a fundamental domain K of Γ, so $\mathbb{R}^{d}=\bigcup_{t \in \Gamma}(t+K)$
Define $F:=K \cap \Gamma$ finite $\Longrightarrow \Lambda=\Gamma+F$

1.5 Crystallographic restriction

Lemma: Consider a lattice $\Gamma \subseteq \mathbb{R}^{d}$. If $R \in \mathrm{O}(d)$ satisfies $R \Gamma \subseteq \Gamma$, one has $R \Gamma=\Gamma$. The corresponding characteristic polynomial $P(\lambda)=\operatorname{det}(R-\lambda \mathbf{1})$ has integer coefficients only, so that $P(\lambda) \in \mathbb{Z}[\lambda]$.

Proof:

For any $S \subseteq \mathbb{R}^{d}$, define $S_{r}:=S \cap \overline{B_{r}(0)}$

$$
\begin{aligned}
& R \Gamma \subseteq \Gamma \Longrightarrow(R \Gamma)_{r} \subseteq \Gamma_{r} \text { but } \operatorname{card}(R \Gamma)_{r}=\operatorname{card} \Gamma_{r} \\
& \quad \Longrightarrow(R \Gamma)_{r}=\Gamma_{r} \text { for all } r>0 \Longrightarrow R \Gamma=\Gamma
\end{aligned}
$$

Basis $\left\{b_{1}, \ldots, b_{d}\right\}$ of $\Gamma=\mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{d}$ $R \Gamma=\Gamma \Longrightarrow$ each b_{i} mapped onto linear combination of b_{j}
$R b_{i}=\sum_{j=1}^{d} b_{j} a_{j i} \Longrightarrow R B=B A \Longrightarrow R=B A B^{-1}(\operatorname{det}(B) \neq 0)$
$A \in \mathrm{GL}(d, \mathbb{Z})$, and R and A share characteristic polynomial
$\Longrightarrow P(\lambda)$ has integer coefficients

1.5 Crystallographic restriction

Corollary: A lattice $\Gamma \subseteq \mathbb{R}^{d}$ with $d=2$ or $d=3$ can have n-fold rotational symmetry at most for $n \in\{1,2,3,4,6\}$. Proof:
For $d=2$, rotation matrix $R_{\varphi}=\left(\begin{array}{c}\cos \varphi-\sin \varphi \\ \sin \varphi \\ \cos \varphi\end{array}\right)$

$$
\begin{aligned}
& P(\lambda)=\lambda^{2}-\operatorname{tr}\left(R_{\varphi}\right) \lambda+\operatorname{det}\left(R_{\varphi}\right) \\
& \operatorname{tr}\left(R_{\varphi}\right)=2 \cos \varphi \in \mathbb{Z} \Longrightarrow|\cos \varphi| \in\left\{0, \frac{1}{2}, 1\right\} \\
& \quad \Longrightarrow \varphi \in \frac{\pi}{3} \mathbb{Z} \cup \frac{\pi}{2} \mathbb{Z} \Longrightarrow n \in\{1,2,3,4,6\}
\end{aligned}
$$

For $d=3, R \in \mathrm{SO}(3)$ can be written (by Euler's theorem) as $R=\left(\begin{array}{ccc}\cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1\end{array}\right)$
Characteristic polynomial of R is $(1-\lambda) P(\lambda)$
\Longrightarrow same restriction

1.6 Cyclotomic fields

Let $\xi_{n} \in \mathbb{C}$ be a primitive nth root of unity (with $n>2$), so $\xi_{n}^{m}=1$ precisely when $n \mid m$.
The cyclotomic field $\mathbb{Q}\left(\xi_{n}\right)$ is a field extension of \mathbb{Q} of degree $\phi(n)$, where ϕ is Euler's totient function

$$
\phi(n):=\operatorname{card}\{1 \leq k \leq n \mid \operatorname{gcd}(k, n)=1\} .
$$

$\mathbb{Z}\left[\xi_{n}\right]$ is the ring of integers $\mathbb{Q}\left(\xi_{n}\right)$, it is a \mathbb{Z}-module of rank $\phi(n)$.
$\mathbb{Z}\left[\xi_{n}\right]$ is a Principal Ideal Domain for several important values of n (including all $n<23$), though this is not true in general.
The maximal real subfield of $\mathbb{Q}\left(\xi_{n}\right)$ is $\mathbb{Q}\left(\xi_{n}+\bar{\xi}_{n}\right)$, with relative degree 2 (for $n>2$). Its ring of integers is $\mathbb{Z}\left[\xi_{n}+\bar{\xi}_{n}\right]$.

1.6 Cyclotomic fields

The polynomial $x^{n}-1$ (with $n \geq 1$) has a unique factorisation (in $\mathbb{Q}[x]$) into integer polynomials that are irreducible over \mathbb{Q},

$$
x^{n}-1=\prod_{\ell \mid n} Q_{\ell}(x),
$$

where $Q_{\ell}(x) \in \mathbb{Z}[x]$ has degree $\phi(\ell)$ and is called the ℓ-th cyclotomic polynomial. The polynomials are recursively defined this way, via the Euclidean algorithm. Explicitly, they are given by

$$
Q_{\ell}(x)=\prod_{\xi}(x-\xi)=\prod_{k \mid \ell}\left(x^{k}-1\right)^{\mu(\ell / k)},
$$

where ξ runs over the $\phi(\ell)$ distinct primitive ℓ-th roots of unity, and μ denotes the Möbius function.

1.7 Algebraic numbers

A real algebraic integer $\alpha>1$ is called a
Pisot-Vijayaraghavan number, or PV number for short, if all its algebraic conjugates (apart from α itself) lie inside the open unit disk.
Example: The golden ratio $\tau=(1+\sqrt{5}) / 2 \approx 1.618$ is an algebraic unit of degree 2 , as a root of $x^{2}-x-1=0$. Its algebraic conjugate is $\tau^{\prime}=(1-\sqrt{5}) / 2=1-\tau \approx-0.618$, so τ is a PV number.
A real algebraic integer $\alpha>1$ is called a Salem number, if all its algebraic conjugates (apart from α itself) lie inside the closed unit disk, with at least one conjugate on the unit circle.
Theorem (Lagarias): If $\Lambda \subseteq \mathbb{R}^{d}$ is a Meyer set with $\alpha \Lambda \subseteq \Lambda$ for some $\alpha>1$, then α is a PV or a Salem number.

1.8 Minkowski embedding

We consider the example of $\mathbb{Z}[\tau]=\{m+n \tau \mid m, n \in \mathbb{Z}\}$. Algebraic conjugation $x \mapsto x^{\prime}$ in $\mathbb{Q}(\sqrt{5})$ is defined by $\sqrt{5} \mapsto-\sqrt{5}$ and its extension to a field automorphism.
The diagonal embedding $\mathcal{L}=\left\{\left(x, x^{\prime}\right) \mid x \in \mathbb{Z}[\tau]\right\}$ defines a lattice in \mathbb{R}^{2}, generated by the vectors $(1,1)$ and $\left(\tau, \tau^{\prime}\right)$.

The Minkowski embedding of real algebraic integers of rank m into \mathbb{R}^{m} is defined analogously in terms of algebraic conjugates.

1.9 Lattice projections

Lemma: Let Γ be a lattice with a point symmetry group that contains an element of order p^{r}, with p a prime and $r \geq 1$. Then, the minimal dimension of Γ is
$d=\phi\left(p^{r}\right)=p^{r-1} \cdot(p-1)$.
Theorem: Consider a locally finite planar point set with n-fold symmetry that is constructed from a lattice in \mathbb{R}^{d} by a symmetry-preserving (partial) projection. Then, $d \geq \phi(n)$, with the lower bound being sharp.

