Aperiodic Order Part 1

Uwe Grimm

School of Mathematics & Statistics The Open University, Milton Keynes http://mcs.open.ac.uk/ugg2/ltcc/

1.1 What is Aperiodic Order?

- What is order?
 - Symmetry
 - Group theory
 - Dynamical systems
 - Harmonic analysis
 - Spectral theory
- Crystals as paradigm of order in nature
- What is a crystal?
 - Diffraction
 - Crystallographic restriction
 - Complete classification of periodic crystal structures
- Aperiodic crystals
 - Incommensurate crystals
 - Quasicrystals

- Geometric patterns in medieval Islamic art
- Johannes Kepler (1571–1630)
- Hao Wang (1961)
- Undecidability of the domino problem: Robert Berger (1966)
- Model sets: Yves Meyer (1970)
- Roger Penrose (1974)
- Ammann, deBruijn, Kramer, ...
- Discovery of quasicrystals by Dan Shechtman (1982)
- Shechtman receives Nobel prize in Chemistry (2011)

An example of Islamic art from Bukhara, Uzbekistan

Kelper's sketches in Harmonices Mundi Libri V (1619)

Roger Penrose and his rhombus tiling in the foyer of the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University

Dan Shechtman, Nobel Prize in Chemistry 2011

1.3 Point sets

A set consisting of one point is called a *singleton set*, and countable unions of singleton sets are called *point sets*.

A point set $\Lambda \subseteq \mathbb{R}^d$ is *discrete* if each element $x \in \Lambda$ has an open neighbourhood $U = U(x) \subseteq \mathbb{R}^d$ that does not contain any other point of Λ . For each $x \in \Lambda$, there is an r > 0 such that $B_r(x)$ (open ball of radius r around x) satisfies $B_r(x) \cap \Lambda = \{x\}$.

A is *uniformly discrete* if there is an open neighbourhood U of $0 \in \mathbb{R}^d$ such that $(x + U) \cap (y + U) = \emptyset$ holds for all distinct $x, y \in A$.

Here, $x + U := \{x + u \mid u \in U\}$ and, more generally, we define the *Minkowski sum* and *difference* of two arbitrary sets $U, V \subseteq \mathbb{R}^d$ as

$$U \pm V := \{ u \pm v \mid u \in U, v \in V \}.$$

1.3 Point sets

A point set $\Lambda \subseteq \mathbb{R}^d$ is called *locally finite* if, for all compact $K \subseteq \mathbb{R}^d$, the intersection $K \cap \Lambda$ is a finite set (or empty).

A point set $\Lambda \subseteq \mathbb{R}^d$ is *relatively dense* if a compact $K \subseteq \mathbb{R}^d$ exists such that $\Lambda + K = \mathbb{R}^d$.

A point set $\Lambda \subseteq \mathbb{R}^d$ is a *Delone set* (Delaunay set), if it is both uniformly discrete and relatively dense.

A point set $\Lambda \subseteq \mathbb{R}^d$ is a *Meyer set*, if Λ is relatively dense and $\Lambda - \Lambda$ is uniformly discrete.

A *cluster* of a point set $\Lambda \subseteq \mathbb{R}^d$ is the intersection $K \cap \Lambda$ for some compact $K \subseteq \mathbb{R}^d$.

A point set $\Lambda \subseteq \mathbb{R}^d$ has *finite local complexity* (FLC) w.r.t. to translations when the collection $\{(t + K) \cap \Lambda \mid t \in \mathbb{R}^d\}$, for any given compact $K \subseteq \mathbb{R}^d$, contains only finitely many clusters up to translations.

1.3 Point sets

Relation between different properties of point sets:

 Λ Meyer $\implies \Lambda$ FLC and Delone $\implies \Lambda$ Delone

Lemma: Let $\Lambda \subseteq \mathbb{R}^d$ be a Delone set, such that $\Lambda - \Lambda \subseteq \Lambda + F$ for some finite set $F \subseteq \mathbb{R}^d$. Then Λ is a Meyer set.

Proof: Λ Delone $\implies \Lambda$ relatively dense We need to show that $\Lambda - \Lambda$ is also uniformly discrete Let $\Delta := \Lambda - \Lambda$, then

A - A uniformly discrete $\iff 0$ is isloated point in $\Delta - \Delta$ Now, $\Delta - \Delta \subseteq (A + F) - (A + F) \subseteq \Delta + (F - F) \subseteq \Delta + F'$ which is locally finite since F' is finite

 \implies 0 is isolated point in $\Delta - \Delta$

Lagarias showed that the converse is true in \mathbb{R}^d (and more generally), but the argument is more involved.

A point set $\Gamma \subseteq \mathbb{R}^d$ is called a *lattice* in \mathbb{R}^d if there exist *d* vectors b_1, \ldots, b_d such that

$$\Gamma = \mathbb{Z}b_1 \oplus \cdots \oplus \mathbb{Z}b_d := \left\{ \sum_{i=1}^d m_i b_i \mid \text{all } m_i \in \mathbb{Z} \right\},$$

together with the requirement that its \mathbb{R} -span $\langle \Gamma \rangle_{\mathbb{R}} = \mathbb{R}^d$. The set $\{b_1, \ldots, b_d\}$ is called a *basis* of the lattice Γ .

 $\Lambda \subseteq \mathbb{R}^d$ is a *crystallographic point packing* in \mathbb{R}^d if there is a lattice Γ in \mathbb{R}^d and a finite set $F \subseteq \mathbb{R}^d$ with $\Lambda = \Gamma + F$.

The factor group \mathbb{R}^d/Γ of a lattice $\Gamma \subseteq \mathbb{R}^d$ is compact. A set of representatives that is relatively compact and measurable is called a *fundamental domain* FD_{Γ} of Γ . If $\{b_1, \ldots, b_d\}$ is a basis of Γ , a natural choice is

$$\operatorname{FD}_{\Gamma} = \left\{ \sum_{i=1}^{d} \alpha_i b_i \mid 0 \leq \alpha_i < 1 \text{ for all } i \right\}.$$

Its volume $\operatorname{vol}(\operatorname{FD}_{\Gamma}) = |\det(b_1, \ldots, b_d)|$ does not depend on the choice of $\operatorname{FD}_{\Gamma}$.

Lemma: Any lattice $\Gamma \subseteq \mathbb{R}^d$ is a Meyer set. Consequently, it is also a Delone set of finite local complexity.

Proof:

 Γ lattice $\implies \Gamma - \Gamma = \Gamma$ (Γ is a group)

It is sufficient to show that Γ is relatively dense and uniformly discrete

Choose $K \subseteq \mathbb{R}^d$ to be the closed parallelotope spanned by the *d* basis vectors

 $\Gamma + K = \mathbb{R}^d \implies$ relative denseness

any open ball $\subseteq K \implies$ uniform discreteness

Let Λ be a point set in \mathbb{R}^d . An element $t \in \mathbb{R}^d$ is a *period* of Λ when $t + \Lambda = \Lambda$. The set $per(\Lambda) := \{t \in \mathbb{R}^d \mid t + \Lambda = \Lambda\}$, called the *set of periods* of Λ , is a subgroup of \mathbb{R}^d .

A point set $\Lambda \subseteq \mathbb{R}^d$ is called *periodic* (of *rank m*) when $per(\Lambda) \subseteq \mathbb{R}^d$ is non-trivial (with $1 \le m = \dim \langle per(\Lambda) \rangle_{\mathbb{R}} \le d$), and *non-periodic* when $per(\Lambda) = \{0\}$. The set Λ is called *crystallographic* when $per(\Lambda)$ is a lattice in \mathbb{R}^d , and *non-crystallographic* otherwise.

If Γ is a lattice in \mathbb{R}^d , its *dual lattice* Γ^* is defined as $\Gamma^* = \{ y \in \mathbb{R}^d \mid \langle x | y \rangle \in \mathbb{Z} \text{ for all } x \in \Gamma \},$

where $\langle x|y \rangle$ is the scalar product in \mathbb{R}^d . If $\{b_1, \ldots, b_d\}$ is a lattice basis of Γ , the vectors b_i^* satisfying $\langle b_i^*|b_j \rangle = \delta_{i,j}$ for $1 \leq i, j \leq d$ form a lattice basis of Γ^* , called the *dual basis*.

Proposition: A locally finite point set $\Lambda \subseteq \mathbb{R}^d$ is crystallographic if and only if there is a lattice $\Gamma \subseteq \mathbb{R}^d$ and a finite point set $F \subseteq \mathbb{R}^d$ such that $\Lambda = \Gamma + F$.

Proof:

If $A = \Gamma + F$, then A is locally finite Clearly, $\Gamma \subseteq per(A)$ is a discrete subgroup of \mathbb{R}^d $\implies per(A)/\Gamma$ is a finite group $\mathbb{R}^d/\mathrm{per}(A)$ compact \Longrightarrow $\mathrm{per}(A)$ lattice \Longrightarrow A crystallographic Conversely, assume that Λ is crystallographic, with lattice of periods $\Gamma := per(\Lambda)$ Choose a fundamental domain K of Γ , so $\mathbb{R}^d = \bigcup (t+K)$ $t \in \Gamma$ **Define** $F := K \cap \Gamma$ finite $\implies A = \Gamma + F$

1.5 Crystallographic restriction

Lemma: Consider a lattice $\Gamma \subseteq \mathbb{R}^d$. If $R \in O(d)$ satisfies $R\Gamma \subseteq \Gamma$, one has $R\Gamma = \Gamma$. The corresponding characteristic polynomial $P(\lambda) = \det(R - \lambda \mathbf{1})$ has integer coefficients only, so that $P(\lambda) \in \mathbb{Z}[\lambda]$.

Proof:

For any $S \subseteq \mathbb{R}^d$, define $S_r := S \cap B_r(0)$ $R\Gamma \subseteq \Gamma \implies (R\Gamma)_r \subseteq \Gamma_r$ but $\operatorname{card}(R\Gamma)_r = \operatorname{card}\Gamma_r$ $\implies (R\Gamma)_r = \Gamma_r$ for all $r > 0 \implies R\Gamma = \Gamma$ Basis $\{b_1, \ldots, b_d\}$ of $\Gamma = \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_d$ $R\Gamma = \Gamma \implies$ each b_i mapped onto linear combination of b_j $Rb_i = \sum_{i=1}^d b_i a_{ii} \implies RB = BA \implies R = BAB^{-1} (\det(B) \neq 0)$ $A \in GL(d, \mathbb{Z})$, and R and A share characteristic polynomial $\implies P(\lambda)$ has integer coefficients

1.5 Crystallographic restriction

Corollary: A lattice $\Gamma \subseteq \mathbb{R}^d$ with d = 2 or d = 3 can have n-fold rotational symmetry at most for $n \in \{1, 2, 3, 4, 6\}$. **Proof:**

For d = 2, rotation matrix $R_{\varphi} = \begin{pmatrix} \cos \varphi - \sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ $P(\lambda) = \lambda^2 - \operatorname{tr}(R_{\varphi})\lambda + \det(R_{\varphi})$ $\operatorname{tr}(R_{\varphi}) = 2\cos \varphi \in \mathbb{Z} \implies |\cos \varphi| \in \{0, \frac{1}{2}, 1\}$ $\implies \varphi \in \frac{\pi}{3}\mathbb{Z} \cup \frac{\pi}{2}\mathbb{Z} \implies n \in \{1, 2, 3, 4, 6\}$ For $d = 3, R \in \operatorname{SO}(3)$ can be written (by Euler's theorem)

For d = 3, $R \in SO(3)$ can be written (by Euler's theorem) as $R = \begin{pmatrix} \cos \varphi - \sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Characteristic polynomial of R is $(1 - \lambda)P(\lambda)$

 \implies same restriction

1.6 Cyclotomic fields

Let $\xi_n \in \mathbb{C}$ be a primitive *n*th root of unity (with n > 2), so $\xi_n^m = 1$ precisely when n|m.

The *cyclotomic field* $\mathbb{Q}(\xi_n)$ is a field extension of \mathbb{Q} of degree $\phi(n)$, where ϕ is Euler's totient function

 $\phi(n) := \operatorname{card}\{1 \le k \le n \mid \gcd(k, n) = 1\}.$

 $\mathbb{Z}[\xi_n]$ is the ring of integers $\mathbb{Q}(\xi_n)$, it is a \mathbb{Z} -module of rank $\phi(n)$.

 $\mathbb{Z}[\xi_n]$ is a Principal Ideal Domain for several important values of n (including all n < 23), though this is not true in general.

The maximal real subfield of $\mathbb{Q}(\xi_n)$ is $\mathbb{Q}(\xi_n + \overline{\xi}_n)$, with relative degree 2 (for n > 2). Its ring of integers is $\mathbb{Z}[\xi_n + \overline{\xi}_n]$.

1.6 Cyclotomic fields

The polynomial $x^n - 1$ (with $n \ge 1$) has a unique factorisation (in $\mathbb{Q}[x]$) into integer polynomials that are irreducible over \mathbb{Q} ,

$$x^n - 1 = \prod_{\ell \mid n} Q_\ell(x),$$

where $Q_{\ell}(x) \in \mathbb{Z}[x]$ has degree $\phi(\ell)$ and is called the ℓ -th *cyclotomic polynomial*. The polynomials are recursively defined this way, via the Euclidean algorithm. Explicitly, they are given by

$$Q_{\ell}(x) = \prod_{\xi} (x - \xi) = \prod_{k|\ell} (x^k - 1)^{\mu(\ell/k)},$$

where ξ runs over the $\phi(\ell)$ distinct primitive ℓ -th roots of unity, and μ denotes the Möbius function.

1.7 Algebraic numbers

A real algebraic integer $\alpha > 1$ is called a *Pisot–Vijayaraghavan number*, or *PV number* for short, if all its algebraic conjugates (apart from α itself) lie inside the open unit disk.

Example: The golden ratio $\tau = (1 + \sqrt{5})/2 \approx 1.618$ is an algebraic unit of degree 2, as a root of $x^2 - x - 1 = 0$. Its algebraic conjugate is $\tau' = (1 - \sqrt{5})/2 = 1 - \tau \approx -0.618$, so τ is a PV number.

A real algebraic integer $\alpha > 1$ is called a *Salem number*, if all its algebraic conjugates (apart from α itself) lie inside the closed unit disk, with at least one conjugate on the unit circle.

Theorem (Lagarias): If $\Lambda \subseteq \mathbb{R}^d$ is a Meyer set with $\alpha \Lambda \subseteq \Lambda$ for some $\alpha > 1$, then α is a PV or a Salem number.

1.8 Minkowski embedding

We consider the example of $\mathbb{Z}[\tau] = \{m + n\tau \mid m, n \in \mathbb{Z}\}$. Algebraic conjugation $x \mapsto x'$ in $\mathbb{Q}(\sqrt{5})$ is defined by $\sqrt{5} \mapsto -\sqrt{5}$ and its extension to a field automorphism. The *diagonal embedding* $\mathcal{L} = \{(x, x') \mid x \in \mathbb{Z}[\tau]\}$ defines a lattice in \mathbb{R}^2 , generated by the vectors (1, 1) and (τ, τ') .

The Minkowski embedding of real algebraic integers of rank m into \mathbb{R}^m is defined analogously in terms of algebraic conjugates.

1.9 Lattice projections

Lemma: Let Γ be a lattice with a point symmetry group that contains an element of order p^r , with p a prime and $r \ge 1$. Then, the minimal dimension of Γ is $d = \phi(p^r) = p^{r-1} \cdot (p-1)$.

Theorem: Consider a locally finite planar point set with n-fold symmetry that is constructed from a lattice in \mathbb{R}^d by a symmetry-preserving (partial) projection. Then, $d \ge \phi(n)$, with the lower bound being sharp.