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1.1 What is Aperiodic Order?
What is order?

Symmetry
Group theory
Dynamical systems
Harmonic analysis
Spectral theory

Crystals as paradigm of order in nature

What is a crystal?
Diffraction
Crystallographic restriction
Complete classification of periodic crystal structures

Aperiodic crystals
Incommensurate crystals
Quasicrystals
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1.2 A few historical remarks

Geometric patterns in medieval Islamic art

Johannes Kepler (1571–1630)

Hao Wang (1961)

Undecidability of the domino problem: Robert Berger
(1966)

Model sets: Yves Meyer (1970)

Roger Penrose (1974)

Ammann, deBruijn, Kramer, . . .

Discovery of quasicrystals by Dan Shechtman (1982)

Shechtman receives Nobel prize in Chemistry (2011)
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1.2 A few historical remarks

An example of Islamic art from Bukhara, Uzbekistan
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1.2 A few historical remarks

Kelper’s sketches in Harmonices Mundi Libri V (1619)
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1.2 A few historical remarks

Roger Penrose and his rhombus tiling in the foyer
of the Mitchell Institute for Fundamental Physics

and Astronomy at Texas A&M University
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1.2 A few historical remarks

Dan Shechtman, Nobel Prize in Chemistry 2011
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1.3 Point sets
A set consisting of one point is called a singleton set, and
countable unions of singleton sets are called point sets.

A point set Λ ⊆ Rd is discrete if each element x ∈ Λ has an
open neighbourhood U = U(x) ⊆ Rd that does not contain
any other point of Λ. For each x ∈ Λ, there is an r > 0 such
that Br(x) (open ball of radius r around x) satisfies
Br(x) ∩ Λ = {x}.
Λ is uniformly discrete if there is an open neighbourhood U

of 0 ∈ Rd such that (x + U)∩ (y + U) = ∅ holds for all distinct
x, y ∈ Λ.
Here, x + U := {x + u | u ∈ U} and, more generally, we
define the Minkowski sum and difference of two arbitrary
sets U, V ⊆ Rd as

U ± V := {u ± v | u ∈ U, v ∈ V }.
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1.3 Point sets
A point set Λ ⊆ Rd is called locally finite if, for all compact
K ⊆ Rd, the intersection K ∩ Λ is a finite set (or empty).

A point set Λ ⊆ Rd is relatively dense if a compact K ⊆ Rd

exists such that Λ + K = Rd.
A point set Λ ⊆ Rd is a Delone set (Delaunay set), if it is
both uniformly discrete and relatively dense.

A point set Λ ⊆ Rd is a Meyer set, if Λ is relatively dense
and Λ − Λ is uniformly discrete.

A cluster of a point set Λ ⊆ Rd is the intersection K ∩ Λ for
some compact K ⊆ Rd.

A point set Λ ⊆ Rd has finite local complexity (FLC) w.r.t. to
translations when the collection {(t + K) ∩ Λ | t ∈ Rd}, for
any given compact K ⊆ Rd, contains only finitely many
clusters up to translations.
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1.3 Point sets
Relation between different properties of point sets:

Λ Meyer =⇒ Λ FLC and Delone =⇒ Λ Delone

Lemma: Let Λ ⊆ Rd be a Delone set, such that
Λ − Λ ⊆ Λ + F for some finite set F ⊆ Rd.
Then Λ is a Meyer set.

Proof: Λ Delone =⇒ Λ relatively dense
We need to show that Λ − Λ is also uniformly discrete
Let ∆ := Λ − Λ, then

Λ − Λ uniformly discrete ⇐⇒ 0 is isloated point in ∆ − ∆
Now, ∆ − ∆ ⊆ (Λ + F ) − (Λ + F ) ⊆ ∆ + (F − F ) ⊆ ∆ + F ′

which is locally finite since F ′ is finite
=⇒ 0 is isolated point in ∆ − ∆ �

Lagarias showed that the converse is true in Rd (and more
generally), but the argument is more involved.
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1.4 Lattices
A point set Γ ⊆ Rd is called a lattice in Rd if there exist d
vectors b1, . . . , bd such that

Γ = Zb1 ⊕ · · · ⊕ Zbd :=
{
∑d

i=1mibi

∣

∣ all mi ∈ Z
}

,

together with the requirement that its R-span 〈Γ 〉R = Rd.
The set {b1, . . . , bd} is called a basis of the lattice Γ .

Λ ⊆ Rd is a crystallographic point packing in Rd if there is a
lattice Γ in Rd and a finite set F ⊆ Rd with Λ = Γ + F .
The factor group Rd/Γ of a lattice Γ ⊆ Rd is compact. A set
of representatives that is relatively compact and
measurable is called a fundamental domain FDΓ of Γ . If
{b1, . . . , bd} is a basis of Γ , a natural choice is

FDΓ =
{
∑d

i=1 αibi

∣

∣ 0 ≤ αi < 1 for all i
}

.

Its volume vol(FDΓ ) = |det(b1, . . . , bd)| does not depend on
the choice of FDΓ .
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1.4 Lattices
Lemma: Any lattice Γ ⊆ Rd is a Meyer set. Consequently, it
is also a Delone set of finite local complexity.

Proof:
Γ lattice =⇒ Γ − Γ = Γ (Γ is a group)
It is sufficient to show that Γ is relatively dense and
uniformly discrete
Choose K ⊆ Rd to be the closed parallelotope spanned by
the d basis vectors
Γ + K = Rd =⇒ relative denseness
any open ball ⊆ K =⇒ uniform discreteness �
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1.4 Lattices
Let Λ be a point set in Rd. An element t ∈ Rd is a period of
Λ when t + Λ = Λ. The set per(Λ) := {t ∈ Rd | t + Λ = Λ},
called the set of periods of Λ, is a subgroup of Rd.

A point set Λ ⊆ Rd is called periodic (of rank m) when
per(Λ) ⊆ Rd is non-trivial (with 1 ≤ m = dim〈per(Λ)〉R ≤ d),
and non-periodic when per(Λ) = {0}. The set Λ is called
crystallographic when per(Λ) is a lattice in Rd, and
non-crystallographic otherwise.

If Γ is a lattice in Rd, its dual lattice Γ ∗ is defined as
Γ ∗ = {y ∈ Rd | 〈x|y〉 ∈ Z for all x ∈ Γ},

where 〈x|y〉 is the scalar product in Rd. If {b1, . . . , bd} is a
lattice basis of Γ , the vectors b∗i satisfying 〈b∗i |bj〉 = δi,j for
1 ≤ i, j ≤ d form a lattice basis of Γ ∗, called the dual basis.
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1.4 Lattices
Proposition: A locally finite point set Λ ⊆ Rd is
crystallographic if and only if there is a lattice Γ ⊆ Rd and a
finite point set F ⊆ Rd such that Λ = Γ + F .

Proof:
If Λ = Γ + F , then Λ is locally finite
Clearly, Γ ⊆ per(Λ) is a discrete subgroup of Rd

=⇒ per(Λ)/Γ is a finite group

Rd/per(Λ) compact =⇒ per(Λ) lattice =⇒ Λ crystallographic

Conversely, assume that Λ is crystallographic,
with lattice of periods Γ := per(Λ)

Choose a fundamental domain K of Γ , so Rd =
⋃

t∈Γ

(t + K)

Define F := K ∩ Γ finite =⇒ Λ = Γ + F �
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1.5 Crystallographic restriction

Lemma: Consider a lattice Γ ⊆ Rd. If R ∈ O(d) satisfies
RΓ ⊆ Γ , one has RΓ = Γ . The corresponding characteristic
polynomial P (λ) = det(R − λ1) has integer coefficients only,
so that P (λ) ∈ Z[λ].
Proof:
For any S ⊆ Rd, define Sr := S ∩ Br(0)

RΓ ⊆ Γ =⇒ (RΓ )r ⊆ Γr but card(RΓ )r = cardΓr

=⇒ (RΓ )r = Γr for all r > 0 =⇒ RΓ = Γ

Basis {b1, . . . , bd} of Γ = Zb1 + · · · + Zbd

RΓ =Γ =⇒ each bi mapped onto linear combination of bj

Rbi =
∑d

j=1 bjaji =⇒ RB=BA =⇒ R=BAB−1 (det(B) 6= 0)

A ∈ GL(d, Z), and R and A share characteristic polynomial
=⇒ P (λ) has integer coefficients �
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1.5 Crystallographic restriction

Corollary: A lattice Γ ⊆ Rd with d = 2 or d = 3 can have
n-fold rotational symmetry at most for n ∈ {1, 2, 3, 4, 6}.
Proof:
For d = 2, rotation matrix Rϕ =

(

cos ϕ − sin ϕ
sin ϕ cos ϕ

)

P (λ) = λ2 − tr(Rϕ)λ + det(Rϕ)

tr(Rϕ) = 2 cos ϕ ∈ Z =⇒ |cos ϕ| ∈ {0, 1
2 , 1}

=⇒ ϕ ∈ π
3 Z ∪ π

2 Z =⇒ n ∈ {1, 2, 3, 4, 6}
For d = 3, R ∈ SO(3) can be written (by Euler’s theorem)

as R =

(

cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

)

Characteristic polynomial of R is (1 − λ)P (λ)

=⇒ same restriction �
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1.6 Cyclotomic fields
Let ξn ∈ C be a primitive nth root of unity (with n > 2), so
ξm
n = 1 precisely when n|m.

The cyclotomic field Q(ξn) is a field extension of Q of
degree φ(n), where φ is Euler’s totient function

φ(n) := card{1 ≤ k ≤ n | gcd(k, n) = 1}.

Z[ξn] is the ring of integers Q(ξn), it is a Z-module of rank
φ(n).

Z[ξn] is a Principal Ideal Domain for several important
values of n (including all n < 23), though this is not true in
general.

The maximal real subfield of Q(ξn) is Q(ξn + ξ̄n), with
relative degree 2 (for n > 2). Its ring of integers is Z[ξn+ ξ̄n].
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1.6 Cyclotomic fields
The polynomial xn − 1 (with n ≥ 1) has a unique
factorisation (in Q[x]) into integer polynomials that are
irreducible over Q,

xn − 1 =
∏

ℓ|n

Qℓ(x),

where Qℓ(x) ∈ Z[x] has degree φ(ℓ) and is called the ℓ-th
cyclotomic polynomial. The polynomials are recursively
defined this way, via the Euclidean algorithm. Explicitly, they
are given by

Qℓ(x) =
∏

ξ

(x − ξ) =
∏

k|ℓ

(xk − 1)µ(ℓ/k),

where ξ runs over the φ(ℓ) distinct primitive ℓ-th roots of
unity, and µ denotes the Möbius function.
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1.7 Algebraic numbers
A real algebraic integer α > 1 is called a
Pisot–Vijayaraghavan number, or PV number for short, if all
its algebraic conjugates (apart from α itself) lie inside the
open unit disk.

Example: The golden ratio τ = (1 +
√

5)/2 ≈ 1.618 is an
algebraic unit of degree 2, as a root of x2 − x − 1 = 0. Its
algebraic conjugate is τ ′ = (1 −

√
5)/2 = 1 − τ ≈ −0.618, so

τ is a PV number.
A real algebraic integer α > 1 is called a Salem number, if
all its algebraic conjugates (apart from α itself) lie inside the
closed unit disk, with at least one conjugate on the unit
circle.
Theorem (Lagarias): If Λ ⊆ Rd is a Meyer set with αΛ ⊆ Λ
for some α > 1, then α is a PV or a Salem number.

12 November 2018 – p.15



1.8 Minkowski embedding
We consider the example of Z[τ ] = {m + nτ | m,n ∈ Z}.

Algebraic conjugation x 7→ x′ in Q(
√

5 ) is defined by√
5 7→ −

√
5 and its extension to a field automorphism.

The diagonal embedding L =
{

(x, x′) | x ∈ Z[τ ]
}

defines a
lattice in R2, generated by the vectors (1, 1) and (τ, τ ′).

(1,1)

(τ,τ ′)

(x,x′)
x′

x

The Minkowski embedding of real algebraic integers of rank
m into Rm is defined analogously in terms of algebraic
conjugates. 12 November 2018 – p.16



1.9 Lattice projections
Lemma: Let Γ be a lattice with a point symmetry group that
contains an element of order pr, with p a prime and r ≥ 1.
Then, the minimal dimension of Γ is
d = φ(pr) = pr−1 · (p − 1).

Theorem: Consider a locally finite planar point set with
n-fold symmetry that is constructed from a lattice in Rd by a
symmetry-preserving (partial) projection. Then, d ≥ φ(n),
with the lower bound being sharp.
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