2018 LTCC Course on Aperiodic Order Examination Worksheet

Consider the substitution rule

$$\varrho: \quad \begin{array}{l} a \mapsto abb \\ b \mapsto abbb \end{array}$$

on the two-letter alphabet $\{a, b\}$.

Question 1: Show that ρ is irreducible and primitive. Show that the iteration of ρ on a suitable legal two-letter seed leads to a bi-infinite fixed point word $w = \rho(w)$.

Question 2: Determine the substitution matrix M for ρ and compute its leading eigenvalue λ . Calculate the right and left eigenvector of M to the eigenvalue λ . What is the frequency of letters a and b in a fixed point word? What are the natural lengths of intervals in the geometric realistation of ρ as an inflation rule on intervals, when choosing the longer interval to have length 1?

Question 3: Consider the point set $\Lambda = \Lambda_a \cup \Lambda_b$ of all left interval endpoints (of type *a* and *b*) in the interval tiling corresponding to the fixed point word *w*, and calculate the average distance of points. What is the density of Λ ?

Question 4: Consider the Minkowski embedding of $\mathbb{Z}[\sqrt{3}]$ in \mathbb{R}^2 , and show that it is a rectangular lattice \mathcal{L} generated by $(1,1)^T$ and $(\sqrt{3},-\sqrt{3})^T$. Compute the density of \mathcal{L} .

Question 5: Let $\lambda(W) := \{x \in \pi(\mathcal{L}) \mid x^* \in W\}$ denote a model set with an interval as window W, where π denotes the projection on the first coordinate (the physical space) and the \star -map is given by algebraic conjugation $\sqrt{3} \mapsto -\sqrt{3}$. What volume (length) must W have to produce a model set of the same density as Λ ? Given the frequency of letters a and b in w computed in Question 2, what would the length ratio of the corresponding windows W_a and W_b for Λ_a and Λ_b have to be, assuming these were model sets?

Question 6: From the substitution rule ρ , derive scaling relations for the point sets Λ_a and Λ_b under scaling by λ . Assuming that these are model sets with windows W_a and W_b , what are the corresponding relations that the windows have to satisfy? Check that these equations are satisfied by the windows $W_a = (-1, 0]$ and $W_b = (-\lambda, -1]$.

Question 7: Using the windows of Question 6, calculate the frequency of the interval sequence corresponding to the word *bab*. Without doing any calculation, what would you expect the frequencies for *bbab*, *babb* and *bbabb* to be, and why?

Question 8: As $\Lambda = \mathcal{L}(W)$ is a model set, it is pure point diffractive, with Bragg peaks supported on the projection $\pi(\mathcal{L}^*)$ of the dual lattice \mathcal{L}^* . Calculate a lattice basis for the dual lattice, and determine the set $\pi(\mathcal{L}^*)$.