2018 LTCC Course on Aperiodic Order Examination Worksheet

Consider the substitution rule

$$
\varrho: \begin{gathered}
a \mapsto a b b \\
b \mapsto a b b b
\end{gathered}
$$

on the two-letter alphabet $\{a, b\}$.
Question 1: Show that ϱ is irreducible and primitive. Show that the iteration of ϱ on a suitable legal two-letter seed leads to a bi-infinite fixed point word $w=\varrho(w)$.

Question 2: Determine the substitution matrix M for ϱ and compute its leading eigenvalue λ. Calculate the right and left eigenvector of M to the eigenvalue λ. What is the frequency of letters a and b in a fixed point word? What are the natural lengths of intervals in the geometric realislation of ϱ as an inflation rule on intervals, when choosing the longer interval to have length 1 ?

Question 3: Consider the point set $\Lambda=\Lambda_{a} \dot{\cup} \Lambda_{b}$ of all left interval endpoints (of type a and b) in the interval tiling corresponding to the fixed point word w, and calculate the average distance of points. What is the density of Λ ?

Question 4: Consider the Minkowski embedding of $\mathbb{Z}[\sqrt{3}]$ in \mathbb{R}^{2}, and show that it is a rectangular lattice \mathcal{L} generated by $(1,1)^{T}$ and $(\sqrt{3},-\sqrt{3})^{T}$. Compute the density of \mathcal{L}.

Question 5: Let $\mathcal{\lambda}(W):=\left\{x \in \pi(\mathcal{L}) \mid x^{\star} \in W\right\}$ denote a model set with an interval as window W, where π denotes the projection on the first coordinate (the physical space) and the \star-map is given by algebraic conjugation $\sqrt{3} \mapsto-\sqrt{3}$. What volume (length) must W have to produce a model set of the same density as Λ ? Given the frequency of letters a and b in w computed in Question 2, what would the length ratio of the corresponding windows W_{a} and W_{b} for Λ_{a} and Λ_{b} have to be, assuming these were model sets?

Question 6: From the substitution rule ϱ, derive scaling relations for the point sets Λ_{a} and Λ_{b} under scaling by λ. Assuming that these are model sets with windows W_{a} and W_{b}, what are the corresponding relations that the windows have to satisfy? Check that these equations are satisfied by the windows $W_{a}=(-1,0]$ and $W_{b}=(-\lambda,-1]$.

Question 7: Using the windows of Question 6, calculate the frequency of the interval sequence corresponding to the word bab. Without doing any calculation, what would you expect the frequencies for $b b a b, b a b b$ and $b b a b b$ to be, and why?

Question 8: As $\Lambda=\lambda(W)$ is a model set, it is pure point diffractive, with Bragg peaks supported on the projection $\pi\left(\mathcal{L}^{*}\right)$ of the dual lattice \mathcal{L}^{*}. Calculate a lattice basis for the dual lattice, and determine the set $\pi\left(\mathcal{L}^{*}\right)$.

