2018 LTCC Course on Aperiodic Order Worksheet 4

Consider the square lattice $\mathbb{Z}^{2}=\{(m, n) \mid m, n \in \mathbb{Z}\}$, and define a family of linear functions by $f_{s}(x)=\frac{x}{\tau}+s$, where $\tau=(1+\sqrt{5}) / 2$ is the golden ratio.

Exercise 1: Which lattice points of \mathbb{Z}^{2} do the graphs of f_{0}, f_{1} and $f_{-\frac{1}{\tau}}$ meet? In other words, which pairs $(m, n) \in \mathbb{Z}^{2}$ satisfy $n=f_{s}(m)$ for $s \in\left\{0,1,-\frac{1}{\tau}\right\}$?

Exercise 2: For an arbitrary lattice point $(m, n) \in \mathbb{Z}^{2}$, calculate its orthogonal projection onto the line $y=f_{0}(x)$. Compute the distance of the projected point from the origin, and show that this distance is an element of $\mathbb{Z}[\tau] / \sqrt{\tau+2}$.

Exercise 3: Consider the strip

$$
S:=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, f_{-\frac{1}{\tau}}(x) \leq y<f_{1}(x)\right.\right\} .
$$

Argue that, for any given $p \in \mathbb{Z}$, there are at least one and at most two lattice points $(m, n) \in S \cap \mathbb{Z}^{2}$ with $m=p$. Find all lattice points $(m, n) \in S \cap \mathbb{Z}^{2}$ with $0 \leq m \leq 6$.

Exercise 4: Consider the 'staircase' obtained by connecting the lattice points in the list from Exercise 3 that differ by $(1,0)$ (horizontal step) or $(0,1)$ (vertical step). Encode each horizontal step by a letter a and each vertical step by a letter b. Show that the resulting word is a legal word for the Fibonacci substitution $a \mapsto a b, b \mapsto a$.

Exercise 5: Argue that the projection of the set $\mathbb{Z}^{2} \cap S$ onto the line $y=f_{0}(x)$ is a model set. What is the corresponding window?

