2018 LTCC Course on Aperiodic Order Worksheet 2

Consider the inflation rule

$$
\varrho: \begin{gathered}
a \mapsto a b b \\
b \mapsto a
\end{gathered}
$$

on the two-letter alphabet $\{a, b\}$.

Exercise 1: Show that ϱ is irreducible and primitive.

Exercise 2: Consider the four possible two-letter seeds $a|a, a| b, b \mid a$ and $b \mid b$. Which of these are legal? Iterate ϱ on the legal seeds. Are there any fixed points under ϱ ? Find all fixed points under ϱ^{2}.

Exercise 3: Calculate the corresponding substitution matrix M and its leading eigenvalue λ. If you start from the initial word $w^{(0)}=a$ and define $w^{(n+1)}=\varrho\left(w^{(n)}\right)$, show that $w^{(n+1)}=w^{(n)} w^{(n-1)} w^{(n-1)}$. How many letters of each type does the word $w^{(8)}$ have?

Exercise 4: Calculate the right and left eigenvector of M to the eigenvalue λ. What is the frequency of letters a and b in a fixed point word? Compare this with the result for $w^{(10)}$ obtained above.

Exercise 5: If the short interval is chosen to have length 1, what is the length of the long interval in the corresponding geometric inflation rule? Consider the point set Λ of all left interval endpoints, and calculate the average distance of points. What is the density of the point set Λ ?

