2018 LTCC Course on Aperiodic Order Worksheet 1

Exercise 1: For each of the point sets in \mathbb{R} below, decide whether they are relatively dense, uniformly discrete, Delone, FLC and Meyer. Here, $\mathbb{N}=\{n \in \mathbb{Z} \mid n>0\}$ denotes the natural numbers.
(a) $\Lambda_{a}=2 \mathbb{Z}$;
(b) $\Lambda_{b}=\{n+1 / n \mid n \in \mathbb{Z} \backslash\{0\}\}$;
(c) $\Lambda_{c}=-\mathbb{N} \cup\{0\} \cup \sqrt{3} \mathbb{N}$;
(d) $\Lambda_{d}=\mathbb{Z} \backslash S$, where S is an arbitrary subset of $2 \mathbb{Z}$.

Exercise 2: Calculate the cyclotomic polynomials $Q_{\ell}(x)$ for $1 \leq \ell \leq 6$.

Exercise 3: Consider the set $\mathbb{Z}[\xi]=\left\{a_{0}+a_{1} \xi+a_{2} \xi^{2}+a_{3} \xi^{3} \mid a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{Z}\right\}$, where $\xi=\exp (2 \pi \mathrm{i} / 5)$ is a primitive fifth root of unity. Show that $\mathbb{Z}[\xi]$, when interpreted as a point set in \mathbb{R}^{2}, is invariant under rotations by $\pi / 5$.

Exercise 4: Show that $\mathbb{Z}[\tau]=\{m+n \tau \mid m, n \in \mathbb{Z}\}$, where $\tau=(1+\sqrt{5}) / 2$ is the golden ratio, satisfies $\tau \mathbb{Z}[\tau]=\mathbb{Z}[\tau]$.

Exercise 5: Consider the ring of numbers $\mathbb{Z}[\sqrt{2}]=\{m+n \sqrt{2} \mid m, n \in \mathbb{Z}\}$. Using the algebraic conjugation $\sqrt{2} \mapsto-\sqrt{2}$ in $\mathbb{Q}(\sqrt{2})$, construct the Minkowski embedding of $\mathbb{Z}[\sqrt{2}]$.

