
Early Identification of Problem Interactions:
A Tool-Supported Approach

Thein Than Tun, Yijun Yu, Robin Laney, and Bashar Nuseibeh

Department of Computing
The Open University

Walton Hall, Milton Keynes
{t.t.tun, y.yu, r.c.laney, b.nuseibeh}@open.ac.uk

Abstract. The principle of “divide and conquer” suggests that com-
plex software problems should be decomposed into simpler problems,
and those problems should be solved before considering how they can
be composed. The eventual composition may fail if solutions to simpler
problems interact in unexpected ways. Given descriptions of individual
problems, early identification of situations where composition might fail
remains an outstanding issue. In this paper, we present a tool-supported
approach for early identification of all possible interactions between prob-
lems, where the composition cannot be achieved fully. Our tool, called
the OpenPF, (i) provides a simple diagramming editor for drawing prob-
lem diagrams and describing them using the Event Calculus, (ii) struc-
tures the Event Calculus formulae of individual problem diagrams for
the abduction procedure, and (iii) communicates with an off-the-shelf
abductive reasoner in the background and relates the results of the ab-
duction procedure to the problem diagrams. This tool highlights, at an
early stage, problem diagrams that will interact when composed together.
The theory and the tool framework proposed are illustrated with an in-
teraction problem from a smart home application.
Keywords. Problem Composition, Problem Interactions, Problem Frames,
Event Calculus

1 Introduction

One general approach to problem solving in requirements engineering is to de-
compose complex software problems into simpler familiar problems [1]. A soft-
ware problem refers to the challenge of specifying a software system that satisfies
an expressed user requirement [2]. In this approach to problem solving, no provi-
sion is initially made about the questions of if and how the subproblems obtained
can be composed to solve the larger complex problem. Only when subproblems
have been solved, are the concerns for composition considered and addressed as
separate problems in their own right. This deferral of the concerns for composi-
tion is seen as an effective way of managing complexity in software development.
However, when solutions to subproblems are found, several questions arise: Are
the problems free from interactions? If they interact, how do they interact? If



there are undesired interactions, what can be done to remove them? In this
paper, we are primarily concerned with the second question.

We will consider this question within the framework of the Problem Frames
(PF) approach [2], which has been recognised as providing a core ontology for
requirements engineering [3]. Following this approach, complex problems are de-
composed by fitting their subproblems into known problem patterns. Subprob-
lems, when composed together, may interact in unexpected ways. By problem
interactions, we refer to situations where the composition of solutions to sub-
problems introduces new problems. These interactions may be related to the
issues of consistency, precedence, interference and synchronisation [2].

Checking whether subproblems in an event-based system can be composed
can only give event sequences where the composed requirement is satisfied (if
it can be satisfied at all): it cannot tell us event sequences where the composed
requirement is not satisfied. One way to solve this problem is to monitor the
runtime behaviour of the system, and diagnosis failures whenever they are de-
tected [4]. However, event sequences are identified only after the occurrence and
detection of failures.

The main contribution of the paper is a tool-supported approach that uses
abductive reasoning [5] to identify all possible event sequences that may cause
the composition to fail. Given a description of system behaviour, an abductive
procedure [6] obtains all event sequences that can satisfy a requirement, if the re-
quirement is satisfiable. Otherwise, the procedure will report no event sequence.

In order to identify event sequences leading to a failure in composition, we
negate the conjunction of all requirements to be composed as the requirement
to satisfy, and attempt to abduce all possible event sequences for the negated
requirement. In other words, we assume that the problems cannot be composed
and ask an abductive reasoner to find out why. If the procedure returns no
event sequence, there is no interactions between problems. On the other hand,
any event sequence returned by the abduction is a possible interaction in the
composition, and may require further analysis. Our use of logical abduction is
reminiscent of [7]. In this paper, we will focus on the identification of possible
interactions, whilst the issue of how undesired interactions can be removed is
discussed in [8].

We have implemented a tool chain called the OpenPF to demonstrate how
event sequences leading to failures in composition can be detected using the
technique suggested. The front-end of the OpenPF helps requirements engineers
create problem diagrams and describe the elements in the diagram using the
Event Calculus, a form of temporal logic [9, 10]. The back-end of our tool encodes
the input into an executable specification for an off-the-shelf Event Calculus
abductive reasoner [11, 12] to check whether the new diagram can be composed
with the existing ones. If event sequences for possible failures are found, the tool
takes the abduction results and relates them back to relevant problem diagrams.

The rest of the paper is organised as follows. In Section 2, we present an brief
overview of the Problem Frames approach and the Event Calculus, and explain
how they are used in this paper. Our approach to identifying interacting problems



is explained in Section 3, and application of the OpenPF tool is discussed in
Section 4. Related work can be found in Section 5, whilst Section 6 provides
some concluding remarks.

2 Preliminaries

In this section, we introduce two decomposed problems related to the security
feature and climate control feature of a smart home application [13], whilst giving
an overview of our conceptual framework, Problem Frames, and the description
language, the Event Calculus. We also show how we use minimal Event Calculus
predicates to describe problem diagrams.

2.1 Problem Diagrams and Their Descriptions

An important feature of the Problem Frames approach (PF) is that it makes a
clear distinction between three descriptions: the requirements (R), the problem
world domains (W ) and the specification (S). Broadly speaking, the requirements
describe the desired property of the system, the problem world domains describe
the given structure and behaviour of the problem context, and the specifications
describe the behaviour of the software at the machine-world interface [2].

Interface Phenomena Set
TiP!a {Night, Day}
TiP!b {NightStarted,

DayStarted}
SF!c {TiltIn, TiltOut}

Win!d {Open, Shut}

Fig. 1. Problem Diagram: Security Feature

Security Feature in Smart Home The problem diagram of the security fea-
ture (SF), shown in Figure 1, emphasises the high-level relationship between the
requirement, written inside a dotted oval, the problem world domains, denoted
by plain rectangles, representing entities in the problem world that the machine
must interact with, and a machine specification, denoted by a box with a double
stripe, implementing a solution to satisfy the requirement.

The problem world domains in the context of the security feature are Window
(Win) and Time Panel (TiP). When describing their behaviour, we will use labels
such as (Win1) and (TiP1), and refer to them later in the discussion. The window
has two fluents, or binary states, Open and Shut, each a negation of the other.



At the interface SF!c, the controller domain SF may generate instances of events
(or simply events henceforth) TiltIn and TiltOut, which are only observed by
the window (Win). The behaviour of the window is such that once it observes
the event TiltIn, it will soon become shut (Win1); once it observes the event
TiltOut, the window will become open (Win2), when it starts to tilt in, it is no
longer open (Win3), and when it starts to tilt out, it is no longer shut (Win4),
and the window cannot be both open and shut at the same time (Win5).

Similarly, the Time Panel domain has two opposing fluents, Day and Night.
When the time switches from day to night, the panel generates the event NightStarted
once at the interface TiP!b, observed by the machine SF (TiP1). Likewise, when
the daytime begins, NightStarted is generated once (TiP2). Solid lines between
these domain represent some shared phenomena: for example, c is a set of the
phenomena TiltIn and TiltOut, and SF! further indicates those phenomena are
controlled by the security feature and are observed by Window. Notice that in
this event-based system, the states of the problem world domains are represented
by fluents, whilst these domains communicate by sending/receiving events. This
provides a neat mapping to the Event Calculus ontology, as well shall see later.

The requirement for the security problem (SR) can be expressed informally as
follows: “Keep the window shut during the night.” Notice that the requirement
statement references the fluent Night of the TiP at the interface TiP!a, and
constrains the fluent Shut of the window at the interface Win!d.

A possible specification for the security feature (SF) may be: “Fire TiltIn
whenever NightStarted is observed (SF1). Once TiltIn is fired, do not fire
TiltOut as long as DayStarted is not observed (SF2).” It should be noted that
the specification is written only in terms of events at the interface between the
machine and the world, while the requirement is written only in terms of the
fluent properties of the problem world domains.

Climate Control Feature in Smart Home The problem of the climate
control feature (CCF) is shown in Figure 2. The requirement of this problem is:
“Keep the window open when it is hot”. Temperature Panel (TeP) fires an event
HotStarted or ColdStarted to indicate the relationship between the preferred
and the actual temperatures.

Interface Phenomena Set
TeP!e {Hot, Cold}
TeP!f {HotStarted,

ColdStarted}
CCF!c {TiltIn, TiltOut}
Win!d {Open, Shut}

Fig. 2. Problem Diagram: Climate Control Feature



Correctness of Specifications In addition to the three descriptions, the Prob-
lem Frames approach also provides a way of relating these descriptions through
the entailment relationship W,S |= R, showing how the specification, within a
particularly context of the problem world, is sufficient to satisfy the requirement.
This provides a template for structuring correctness proofs, and/or arguments
for sufficiency/adequacy, of specifications [2].

An informal argument for adequacy of the specification may be provided as
a positive event sequence: When the night starts, the time panel will generate
the event NightStarted observed by the machine (TiP1). The security feature
will fire TiltIn as soon as it observes NightStarted (SF1). TiltIn makes the
window shut (Win1). Since the specification does not allow the window to tilt
out until DaytStarted is observed (SF2), the window will remain shut during
the night, thus satisfying the requirement (SR).

Although we have so far described the problem diagrams using an informal
language, the Problem Frames approach is agnostic about the particular choice
of the description language. We now give an overview of the description languge
used in remainder of the paper.

2.2 The Event Calculus

The Event Calculus (EC) is a system of logical formalism, which draws from
first-order predicate calculus. It can be used to represent actions, their determin-
istic and non-deterministic effects, concurrent actions and continuous change [9].
Therefore, it is suitable for describing and reasoning about event-based temporal
systems such as the smart home application. Several variations of EC have been
proposed, and the version we adopted here is based on the discussions in [10].
Some elementary predicates of the calculus and their respective meanings are
given below.

Predicate Meaning
Happens(a, t) Action a occurs at time t
Initiates(a, f , t) Fluent f starts to hold after action a at time t
Terminates(a, f , t) Fluent f ceases to hold after action a at time t
HoldsAt(f , t) Fluent f holds at time t
t1 < t2 Time point t1 is before time point t2

The Event Calculus also provides a set of domain-independent rules to reason
about the system behaviour. These rules define how fluent values may change as
a result of the events.

Clipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t)∧

t1 ≤ t < t2 ∧ Terminates(a, f, t)]
(EC1)

HoldsAt(f, t2)← [Happens(a, t1)∧
Initiates(a, f, t1) ∧ t1 < t2 ∧ ¬Clipped(t1, f, t2)]

(EC2)



For instance, the rule (EC1) states that Clipped(t1,f,t2) is a notational short-
hand to say that the fluent f is terminated between times t1 and t2, whilst the
rule (EC2) says that fluents that have been initiated by occurrence of an event
continue to hold until occurrence of a terminating event. There are other such
rules in the Event Calculus but we will omit them for space reasons. All vari-
ables in our formulae are universally quantified except where otherwise shown.
We also assume linear time with non-negative integer values. We follow the rules
of circumscription in formalizing commonsense knowledge [11], by assuming that
all possible causes for for a fluent are given and our reasoning tool cannot find
anything except those causes.

In the Event Calculus, given a requirement expressed using a HoldsAt for-
mula, the abduction procedure will find all Happens literals via a system de-
scription and the Event Calculus meta-rules. For example, given the requirement
HoldsAt(Open, 4), and the domain rule Initiates(TiltOut, Open, t), the
meta-rule (EC2) allows us to abduce that Happens(TiltOut, 3) is a possible
event squence to satisfy the requirement.

2.3 Relating Event Calculus to Problem Frames

As discussed in [8, 14], requirements are largely about some desired properties in
the problem world, and can be expressed using the HoldsAt predicate. Problem
world domains are about causality between events and fluents: event-to-fluent
causality can be expressed using the Initiates and Terminates predicates,
and the fluent-to-event causality is expressed using the HoldsAt and Happens
predicates. Specifications are about events generated by machines, and can be
expressed using the Happens predicate. Event and fluent names will be parame-
terised with the names of domains that control them. For instance, we will write
TiltIn(SF) to refer to the event TiltIn controlled by the domain Security Fea-
ture. The same event or fluent name with different parameters denote distinct
events or fluents respectively.

Once described in this way, the W,S |= R entailment of problem diagrams
can be instantiated in the Event Calculus, allowing us to prove the correctness of
a specification, with respect to a problem world context and a requirement [14].

3 Identifying Problem Interactions

This section describes the formal basis of our approach, while working through
the running examples introduced in Section 2.

3.1 Abducing Failure Event Sequences in Problem Composition

Let n be the total number of problem diagrams that have been initially created
in the workspace, where 1 ≤ n. Each problem diagram has the Event Calculus
descriptions of the requirement, relevant problem world domains, and the spec-
ification. Furthermore, each specification is assumed to be correct with respect



to its problem world context and the requirement: for every diagram i in the
workspace, where 1 ≤ i ≤ n, the entailment Wi, Si |= Ri holds. Since problem
diagrams are created incrementally, the nth diagram is typically the newly added
diagram.

Let W be W1 ∧ · · · ∧Wn, denoting the finite conjunction of all Initiates,
Terminates, and Happens formulae in the current workspace. It is a conjunction
because each Initiates and Terminates formula, for instance, describes a rule
by which a fluent changes its value, and if the rule can be applied in a subproblem,
it should be possible to apply the same rule in the composed system. We assume
that W is consistent, meaning for instance that there are no two rules in W that
allow a fluent to be true and false at the same time.

Let S be S1∧· · ·∧Sn, denoting the finite conjunction of the Happens formulae
in the specifications of problem diagrams in the workspace. Finally, let R be R1∧
· · ·∧Rn, denoting the finite conjunction of HoldsAt formulae of the requirements
in the problem diagrams. We consider conjunction, rather than disjunction, as
the composition operator for any composed requirement, because any disjuncted
requirement will be trivially satisfied if one of the individual requirements has
been satisfied (which is the case).

Our focus, therefore, is on requirements: in particular, on the composed re-
quirement, which is either never satisfiable, occassionally satisfiable or always
satisfiable. In the former two cases, we would like to identify the event sequences
where the composition may fail. Again, the possibility of composition failures
does not necessarilly mean the system is not useful: these failures may be tol-
erated, even desired in some cases, or prevented from arising by modifying the
problem context. The composed system should have the property W,S |= R. The
question raised then is: What are the possible failure event sequences in this sys-
tem? In other words: What are the event sequences where this entailment may
not hold?

Let ∆ be the set of all possible event sequences (ordered Happens literals)
permitted by the system, i.e. W and S. One way to check whether R can be
failed is as follows. For every σ ∈ ∆, verify whether the entailment (1) holds.

W,S, σ |= R (1)

Let us denote the set of event sequences that satisfy the entailment (1) as
∆1 and the set of event sequences that do not satisfy the entailment (1) as ∆2.
Clearly, ∆ = ∆1 ∪∆2. There are two major limitations to finding ∆2 through
deduction. In a system with a reasonable number of events and fluents, verifying
the relationship for a good length of time will require a large ∆, which is usually
difficult to obtain. Secondly, this approach can be highly inefficient because it
requires checking exhaustively [7].

In such circumstances, logical abduction is regarded as more efficient [7].
Logical abduction is a procedure that, given a description of a system, finds all
event sequences that satisfy a requirement. Since an abduction procedure will
return the event sequences ∆1 that satisfy the goal, it is not possible to obtain
∆2 using the abduction procedure on the entailment relation (1).



In order to identify failure event sequences, we take the negation of the
composed requirement ¬R as the requirement to be satisfied, whilst W and S
serve as the same description of the composed system. Given the uniqueness of
fluent and event names, completion of Initiates and Terminates predicates,
and the event calculus meta-rules, the procedure will find a complete set of event
sequences ∆2, such that the entailment (2) holds for every member ε of ∆2 [11].

W,S, ε |= ¬R (2)

Since ∆2 also is a set of event sequence permitted by the composed system,
any ε is a member of ∆. Each ε is a failure event sequence, and is a refutation
of (1). If ∆2 is empty, ∆ equals ∆1, and all valid sequences of events permitted
by the composed system will lead to the satisfaction of the requirement in (1).

Since our Event Calculus formulae are annotated with the names of problem
world domains in problem diagrams, when ∆2 is not empty, each ε will contain
references to elements in the problem diagrams. This information allows us to
relate the results of abduction procedure back to the corresponding problem
diagrams in the workspace.

3.2 Smart Home Example

In order to illustrate a simple application of the approach, we will first formalise
the requirements, specifications and the descriptions of the problem world do-
mains discussed in Section 2. Natural language descriptions of all formulae given
below are provided in Section 2.

Security Feature The requirement for the security feature (SR), described in
Section 2, can be formalised as follows.

HoldsAt(Night(TiP ), t)→ HoldsAt(Shut(Win), t+ 1) (SR)

This formula is, in fact, stronger than the natural language statement. The
formula says that at every moment that is night, the window should be shut at
the next moment, requiring the window to be shut until one time unit after the
night has passed. This formulation is chosen for its simplicity. The behaviour of
the window domain in the security problem is given below.

Initiates(TiltIn(SF ), Shut(Win), time) (Win1)

Initiates(TiltOut(SF ), Open(Win), time) (Win2)

Terminates(TiltIn(SF ), Open(Win), time) (Win3)

Terminates(TiltOut(SF ), Shut(Win), time) (Win4)

HoldsAt(Open(Win), time)↔ ¬HoldsAt(Shut(Win), time) (Win5)



Parameterisation of the event and fluent names is important because (Win1),
for instance, allows only the TiltOut event generated by the security feature to
affect the fluent Shut. The behaviour of the time panel domain is described
below.

[HoldsAt(Day(TiP ), time− 1) ∧HoldsAt(Night(TiP ), time)]↔
Happens(NightStarted(TiP ), time)

(TiP1)

[HoldsAt(Night(TiP ), time− 1) ∧HoldsAt(Day(TiP ), time)]↔
Happens(DayStarted(TiP ), time)

(TiP2)

Finally, the specification of the security feature can be formalised as follows.

Happens(NightStarted(TiP ), time)→ Happens(TiltIn(SF ), time) (SF1)

[Happens(NightStarted(TiP ), time)∧
¬Happens(DayStarted(TiP ), time1) ∧ time ≤ time1]

→ ¬Happens(TiltOut(SF ), time1)
(SF2)

Climate Control Feature Formalisation of the requirements, problem world
domains and the specification of the climate control feature is given below. Since
the behaviour of the window is the same in both problems, we will omit their
formulae in this feature, but note that the TiltIn and TiltOut events will be
parameterised with CCF, instead of SF.

HoldsAt(Hot(TeP ), t)→ HoldsAt(Open(Win), t+ 1) (TR)

[HoldsAt(Cold(TeP ), time− 1) ∧HoldsAt(Hot(TeP ), time)]↔
Happens(HotStarted(TeP ), time)

(TeP1)

[HoldsAt(Hot(TeP ), time− 1) ∧HoldsAt(Cold(TeP ), time)]↔
Happens(ColdStarted(TeP ), time)

(TeP2)

Happens(HotStarted(TeP ), time)→ Happens(TiltOut(CCF ), time) (TF1)

Happens(HotStarted(TeP ), time)∧
[¬Happens(ColdStarted(TeP ), time1) ∧ time ≤ time1]

→ ¬Happens(TiltIn(CCF ), time1)
(TF2)

Detecting Interactions R in this case is TR ∧ SR; W is the conjunction of
(Win1–Win5), similar formulae for the window in the climate control problem,
(TiP1), (TiP2), (TeP1) and (TeP2); and S is the conjunction of (SF1), (SF2),
(TF1) and (TF2). In order to detect posssible failure event sequences in the
composition of the two problems, we will first take the negation of the composed
requirement, which can be stated as:

(HoldsAt(Night(TeP ), t) ∧HoldsAt(Open(Win), t+ 1))∨
(HoldsAt(Hot(TeP ), t) ∧HoldsAt(Shut(Win), t+ 1))

(¬R)



The abduction procedure, in this case, will work as follows. It may be either
day or night, and hot or cold, and the window may be open or shut at the
beginning, and the procedure will condsider every valid combination. Suppose
the window is initially open during a hot day at a symbolic time t1. In order to
abduce event sequence for HoldsAt(Hot(TeP ), t1) ∧HoldsAt(Shut(Win), t1 +
1), for instance, the procedure will look for events that can make the fluents
hold.

Since it is already hot, HoldsAt(Hot(TeP ), t1) is true. In order to satisfy
HoldsAt(Shut(Win), t1+1), the procedure will look for event that can turn the
current state HoldsAt(Open(Win), t1) into HoldsAt(Shut(Win), t1 + 1).

According to the domain rule (Win1), its counterpart for the climate control
problem, and the Event Calculus meta-rule (EC2), if the event TiltIn(SF) or
TiltIn(CCF) happens, the window will be shut at the next time point, provided
the event TiltOut(SF) or TiltOut(CCF) does not happen at the same time.
The event TiltIn(SF) will be fired when NightStarted(TeP) is fired, according
to (SF1), and NightStarted(TeP) is triggered when the day turns into night,
according to (TeP1). The event TiltOut(SF) will not happen at the same time
because of (SF2). TiltOut(CCF) in (TF1) will not happen at the same time
because it has been hot for a while.

In other words, in one possible failure event sequence, the window is open
during a hot day, and the night soon begins. In that case, the window will be
shut according to the specification of the security feature, because the climate
control feature cannot prevent the window from being shut, thus resulting in a
failure situation where the smart home is hot but the window is shut. This, of
course, is a single event sequence and there may be other such event sequences,
and the abduction procedure will find all of them in one pass. From the event
sequence obtained, we know how the security problem and the climate control
problem can interact.

The failure event sequence in this composition is due to the fact that no
precendence between the security and the climate control requirements has been
defined. It is, of course, possible that the smart home is situated in a world where
it is never too hot at night. The interaction only arises under certain conditions,
and the abduction procedure can find those conditions. (Strictly speaking, the
abduction procedure cannot reason about the changes from day to night unless
the events for these changes are given. That is due to the frame axiom in the
Event Calculus. The examples we implemented in the next section include these
events, but for space reasons we have ommitted them.)

A similar failure may arise if the specifications of individual problems are too
strong. For example, another way to satisfy the security requirement is to have
a specification that fires the TiltIn event at every time point, thus ensuring that
the window is shut at all times. Similarly, the climate control requirement can be
satisfied by another specification that fires the TiltOut event at every time point.
They both satisfy the individual requirements, but any chance of composition is
prevented because the specifications are too strong. Again, the same procedure



can be used to identify those conditions in descriptions of problem diagrams. A
detailed discussion, however, is beyond the scope of the paper.

Performing this abduction procedure manually is both labourious and error-
prone. Fortunately, there are several implementation of this procedure for the
Event Calculus. In the next section, we describe an end-to-end tool for detecting
interacting problems that automates much of what has been discussed.

4 Detecting Interacting Problems Using the OpenPF

This section gives a brief overview of the OpenPF tool, with a particular emphasis
on how interacting problems can be discovered early in the development.

4.1 Creating Problem Diagrams

An easy way to create problem diagrams using the OpenPF is through an input
file that defines the names of the requirement, problem world domains and the
machine, together with the Event Calculus formulae as their descriptions. Fig-
ure 3 shows an extract from the input file to create the climate control problem
diagram and its descriptions.

Fig. 3. An input file to create a problem diagram

Our OpenPF tool will check the above Problem Frames syntax and the con-
formance of the Event Calculus formulae to the problem diagram. For instance,
the tool will not allow two problem world domains to have the same names as



otherwise there may be ambiguity in the produced EC formalae. Furthermore,
it can check whether the requirement description refers to event names: since
the requirements should be written in terms of fluents, such descriptions are
not allowed. The tool will also annotate the event calculus formulae with the
appropriate domain names: for instance, the fluent term Open will be written as
Open(W) as its controller domain is the window. It will also generate a problem
diagram from the input.

Fig. 4. Generated problem diagram with the Event Calculus descriptions

4.2 Detecting Interactions in the Running Example

Once a problem diagram is created, the OpenPF tool can generate a composition
diagram such as the one shown in Figure 4 for the running example. When the
diagram is created, the tool automatically generates the Event Calculus script to
abduce failure event sequences for the composition. The script will include the
conjunction of all formulae for problem world domains in all individual problem
diagrams, the conjunction of all formulae for the specifications, and the nega-
tion of the conjunction of the requirements formulae (as shown in the property
window in Figure 4).

The Event Calculus script is then fed to the off-the-shelf abductive rea-
soner, Decreasoner [11, 12], in order to abduce the event sequences satisfying
the negated requirement. Decreasoner will translate the abduction problem in



the Event Calculus into a SAT problem and solve it using the solver Relsat [15,
16]. SAT results are then translated back into the Event Calculus literals by
Decreasoner. From the output of Decreasoner, the OpenPF tool will capture
the abduction output, and relate it to the elements in the problem diagrams. In
one view, the tool can show the event sequences of the interactions, and in an-
other view, it will pinpoint the list of problem world domains, events and fluents
involved in a the interaction (as shown in the panel to the left of the diagram
in Figure 4). Once an input file as shown in Figure 3 is provided, the rest of the
tasks of finding interacting problem diagrams, or even individual elements with
a diagram, is done automatically.

Our initial evaluation criterion is to implement the idea that identifying
possible failure event sequences in problem composition can be done efficiently
through logical abduction. Our implementation of the OpenPF using Problem
Frames, Event Calculus, decreasoner, and Model-driven Eclipse plugins, and the
smart home examples have demonstrated the viability of our idea. An abduc-
tion example involving 140 variables and 440 Event Calculus clauses has been
computed in less than one second on a standard personal laptop. Since the ab-
duction procedure and modern SAT solvers such as Relsat are efficient, it gives
us confidence that a framework such as the OpenPF will scale when applied to
larger examples.

5 Related Work

Russo et al. [7, 17] provide theoretical insights on the use of abductive reasoning
in the analysis of requirements. Given a system description and an invariant,
Russo et al. propose using of an abduction procedure to generate a complete
set of counterexamples, if there is any, to the invariant. Rather than analyse ex-
plicit safety properties, we use logical abduction to identify possible interactions
between problems, with the assumption that conjunction will be the eventual
composition operator. Failure event sequences suggested by our approach may
not be sound (if the interactions can be tolerated), but they provide an early
indication of possible failures in composition.

Wang et al. [4] propose a SAT-based framework for monitoring run-time
satisfaction of requirements and diagnosing the problems when errors happens.
In order to diagnose the components where errors originate, the framework logs
the system execution and when goals are not satisfied, the traces are preprocessed
and transformed into a SAT problem using propositional logic. Although their
aim and ours are similar, we work with early requirements models where there is
no running system to monitor. Moreover, our approach generates possible failure
event sequences by abduction procedure.

van Lamsweerde et al [18] presente a framework for generating obstacles
and resolutions in the goals-oriented approach. Although similar to our negated
requirement in abduction procedure, obstacles are generated using heuristics
and patterns, as goals are decomposed in a top-down fashion. Once behaviour
of individual solutions are specified, generation of the failure event sequences in



our approach is automatic. A way of resolving the composition problem such as
precedence are discussed in [8].

Nentwich et al [19] describe a tool-supported approach for describing consis-
tency constraints and checking them across various resources. Similarly, Egyed [20]
presented a tool for instantly checking consistency of UML diagrams. Although
inconsistency checking also plays an important role in our approach, we are
detecting run-time interactions rather than static inconsistency in the represen-
tation of artefacts.

Seater and Jackson [21] propose a systematic way to derive specifications
using the Problem Frames approach, and they use the Alloy language and Alloy
Analyzer to check the validity of the derivation. Our work is complementary in
the sense that they are concerned with decomposing and specifying individual
problems, but we are concerned with the composition of the individual problems.

6 Conclusions and Future Work

In this paper, we examined the issue of problem interactions: these are situations
where the conjunction of solutions to smaller problems introduce new, often un-
expected, problems in the composed solution. Although checking whether some
given problems can be composed is relatively easy, identifying situations where
the composition may fail can be difficult. In this paper, we proposed that identi-
fication of problem interactions where composition cannot be achieved fully can
be done through logical abduction. We have used the OpenPF tool to demon-
strate our idea using examples taken from a smart home application.

The issue of identifying possible failure event sequences is closely related
to the question of suggesting viable corrective actions to resolve undesired in-
teractions. We are currently investigating how requirements engineers can use
the early feedback obtained through logical deduction in order to come up with
proposals for corrective actions.

Although, we focused on problem solving approaches that defer the concerns
of composition, other problem solving approaches in requirements engineering
may have a similar issue. For instance, when there is a need to modify a goal tree,
or to merge smaller goal trees, the question of finding event sequences leading to
possible failures may be raised. Therefore, we conjecture that our approach can
be applied, with little or no modification, in those cases. We are also investigating
in this direction.

7 Acknowledgements

We would like to thank our colleagues at the Open University, in particular,
Michael Jackson. This research is funded by the EPSRC, UK.

References

1. Parnas, D.L., Lawford, M.: The role of inspection in software quality assurance.
IEEE Trans. Softw. Eng. 29(8) (2003) 674–676



2. Jackson, M.: Problem Frames: Analyzing and structuring software development
problems. ACM Press & Addison Wesley (2001)

3. Jureta, I., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem in
requirements engineering. International Conference on Requirements Engineering
(2008) 71–80

4. Wang, Y., McIlraith, S.A., Yu, Y., Mylopoulos, J.: An automated approach to
monitoring and diagnosing requirements. In: Proceedings of the International Con-
ference on Automated Software Engineering, New York, NY, USA, ACM (2007)
293–302

5. Shanahan, M.: Prediction is deduction but explanation is abduction. In: Pro-
ceedings of the International Joint Conference on Artificial Intelligence, Morgan
Kaufmann (1989) 1055–1060

6. Denecker, M., Schreye, D.D.: Sldnfa: an abductive procedure for normal abductive
programs. In: Proc. of the International Joint Conference and Symposium on Logic
Programming, MIT Press (1992) 686–700

7. Russo, A., Miller, R., Nuseibeh, B., Kramer, J.: An abductive approach for
analysing event-based requirements specifications. In Stuckey, P.J., ed.: ICLP.
Volume 2401 of Lecture Notes in Computer Science., Springer (2002) 22–37

8. Laney, R., Tun, T.T., Jackson, M., Nuseibeh, B.: Composing features by manag-
ing inconsistent requirements. In: Proceedings of 9th International Conference on
Feature Interactions in Software and Communication Systems (ICFI 2007). (2007)
141–156

9. Shanahan, M.P.: The event calculus explained. In Woolridge, M.J., Veloso, M.,
eds.: Artificial Intelligence Today, Lecture Notes in AI no. 1600. Springer (1999)
409–430

10. Miller, R., Shanahan, M.: The event calculus in classical logic - alternative ax-
iomatisations. Journal of Electronic Transactions on Artificial Intelligence (1999)

11. Mueller, E.T.: Commonsense Reasoning. Morgan Kaufmann (2006)
12. : http://decreasoner.sourceforge.net/.
13. Kolberg, M., Magill, E., Marples, D., Tsang, S.: Feature interactions in services for

internet personal appliances. In: In Proceedings of IEEE International Conference
on Communications (ICC-2002). Volume 4., New York (2001) 2613–2618

14. Classen, A., Laney, R., Tun, T.T., Heymans, P., Hubaux, A.: Using the event calcu-
lus to reason about problem diagrams. In: Proceedings of International Workshop
on Applications and Advances of Problem Frames, NY, USA, ACM (2008) 74–77

15. Bayardo, R.J.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: AAAI/IAAI. (1997) 203–208

16. : http://code.google.com/p/relsat/.
17. Russo, A., Nuseibeh, B.: On the use of logical abduction in software engineering.

In Chang, S.K., ed.: Software Engineering and Knowledge Engineering. World
Scientific Publishing Corporation (2000)

18. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. IEEE Transactions on Software Engineering 26(10) (2000) 978–1005

19. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: a consistency
checking and smart link generation service. ACM Trans. Interet Technol. 2(2)
(2002) 151–185

20. Egyed, A.: Instant consistency checking for the uml. In: Proceedings of the Inter-
national Conference on Software Engineering, NY, USA, ACM (2006) 381–390

21. Seater, R., Jackson, D.: Requirement progression in problem frames applied to a
proton therapy system. In: Proceedings of International Conference on Require-
ments Engineering, Washington, USA, IEEE Computer Society (2006) 166–175


