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ABSTRACT
Finding specification of pervasive systems is difficult because
it requires making certain environmental assumptions ex-
plicit at design-time, and describing the software in a way
that facilitates runtime composition. This paper describes
how a systematic refinement of specifications from descrip-
tions of the system’s environment and requirements can be
automated. Our notion of requirements allows individual
features in the system to be inconsistent with each other.
Resolution of conflicts at design-time is often over-restrictive
because it uses the strongest possible conditions for con-
junctions and rules out many possible interactions between
features. In order to support runtime resolution, our tool
examines specifications for potential conflicts and augments
them with information to enable detection at runtime. We
use a form of temporal logic, the Event Calculus, as our for-
malism, and characterize the refinement of requirements as a
kind of abductive planning. This allows us to use an existing
Event Calculus planning tool, implemented in Prolog, as a
basis to develop a reasoning tool for obtaining specifications
from potentially inconsistent requirements. We validate our
tool by applying it to find specifications of smart home soft-
ware.

1. INTRODUCTION
In order to facilitate convenient living, household appli-

ances, such as air conditioners, security alarms, doors and
windows are increasingly connected to home digital net-
works, and the functioning of these appliances is controlled
by complex pervasive “smart home” software applications
[12, 25, 17, 16]. For example, a security feature of a smart
home application may switch on and off lights when home-
owners are away to give an impression that the house is
occupied. Although there are several tools to analyze speci-
fications for certain properties, there are relatively few tools
that help find specifications. In this paper, we discuss an ap-
proach to specifying these systems, and suggest tool support
to help develop their specifications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Pervasive systems have particular characteristics which
call for specific tool support in obtaining their specifications.
First, the requirements of such systems are rooted in their
environment. As characterized by Jackson [14], the relation
between software and its environment can be described as
W,S ` R, where W represents problem world domains, S,
specifications of the software, and R, requirements for the
system. The entailment operator (`) emphasizes the fact
that specifications rely on explicit domain properties in sat-
isfying the requirements. Consider a security requirement
(R) to record, on VCR, pictures from the security camera
when movement in the house is detected while the owners are
away (W ). The security system (S) is expected to generate
appropriate events to start recording pictures from the secu-
rity camera when an intrusion is detected. However, this rea-
soning makes several assumptions about the problem world
properties. It assumes, amongst other things, that the VCR
is functioning, and is loaded with an appropriate recordable
medium, and that it has enough capacity to record for the
length of time necessary. In requirements engineering ap-
proaches, such as the Problem Frames approach [15], these
assumptions are made explicit and reflected appropriately
in the specifications.

Second, various features of the smart home software are
often implemented by disparate third-party developers [16],
and when put together, these features are expected to work
collaboratively. This means that inconsistency between re-
quirements is often difficult, or impossible, to resolve at
compile-time. For example, if the entertainment feature
is preset to record a TV programme and an intrusion is
detected while the programme is being recorded, conflicts
arise. Since such conflicts may manifest only at runtime,
the specifications need to be appropriately augmented to
enable runtime conflict detection and resolution.

In this paper, we build on our earlier work that formally
refined requirements into specifications in the presence of
inconsistencies in the requirements [20] and composed spec-
ifications to resolve conflicts at run-time [19]. We now make
the refinement rules used in [20] explicit and introduce tool
support to find specifications of pervasive systems. The rea-
soning tool we present here is based on an abductive Event
Calculus planner, implemented as a Prolog meta-interpreter,
by Shanahan [29]. We extend Shanahan’s partial-order plan-
ning tool in order to, perhaps iteratively and incrementally,
find specifications of smart home software.

The remainder of the paper is organized as follows. We
first explain and justify our choices of the requirements en-
gineering approach and logical formalism to describe the re-



quirements and software artifacts in Section 2. We explain
our refinement technique in Section 3. We review an exist-
ing Event Calculus tool that supports part of our refinement
process, and identify its limitations in Section 4. Section 5
describes how these limitations are overcome in our exten-
sion of the tool, and the extended tool is applied and eval-
uated in Section 6. We then discuss the limitations of our
extended tool in Section 7. Section 8 presents an overview
of related work, and Section 9 concludes the paper.

2. BACKGROUND
In this section, we present an overview of the Problem

Frames approach, and illustrate it with a motivating exam-
ple from smart home software. We then discuss the need
for tool support in deriving specifications, and explain what
the tool is expected to do. We also briefly discuss the Event
Calculus used in the paper.

2.1 The Problem Frames Approach
Introduced by Jackson in [15], the Problem Frames ap-

proach has some key principles, two of which are relevant to
our discussions in this paper.

One principle is concerned with the properties of software
artifacts in requirements engineering. Intuitively, it suggests
that requirements are expressed in terms of properties of its
environment (or problem world domains), and specifications,
within the context of problem world domains, are expected
to satisfy the requirements. When applied to a particular
type of software problem, this entailment is called a “frame
concern” [15].

The problem diagram for the smart home “power con-
trol” feature [16] in Fig. 1 can be used to illustrate this
characterization of artifacts. The diagram shows a high-
level relationship between (i) the requirement, written in-
side a dotted oval, that needs to be satisfied, (ii) problem
domains, denoted by plain rectangles, representing entities
in the problem world that the machine must interact with,
and (iii) a machine domain, denoted by a box with a double
stripe, implementing a solution to satisfy the requirement.
In other words, problem domains represent the properties
of the problem world that are necessarily true, and require-
ments represent the properties of the problem world that
users wish to hold true, whilst the machine domain repre-
sents the properties of a computer that will enact the re-
quired properties in that problem world context.

The solid lines such as j in Fig. 1 represent shared events
and states between the domains involved. The description
of j, for example, indicates that the events SwitchLightsOn
and SwitchLightsOff are controlled by the machine domain
(denoted by the prefix PCF!), whilst the states LightSwitch-
sTurnedOn and LightSwitchesTurnedOff are controlled by the
Switches domain (denoted by the prefix S!). (Events have
verb sounding names and states have noun sounding names).
It means that, at the interface j, the machine domain may
fire these two events, but can only observe the two states;
the Switches domain, on the other hand, may manipulate
the values of the two states, but can only observe the events
being fired.

The requirement for the power control feature (PC)
can be expressed informally as follows: “When the house
is empty, switch off the lights.”

The problem world domains in Fig. 1 have the fol-
lowing properties. When the system switches the lights on
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Figure 1: Problem diagram for the power control
feature
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Figure 2: Problem diagram for the away-from-home
feature

(SwitchLightsOn), the switches are turned on (LightSwitches-
TurnedOn is true and LightSwitchesTurnedOff is false), and
when the system switches the lights off (SwitchLightsOff),
the switches are turned off (LightSwitchesTurnedOff is true
and LightSwitchesTurnedOn is false). When the switches
are turned on (LightSwitchesTurnedOn is true), the lights in
Light Units are on, provided that the light units are working
well and the power source is OK. The system detects occu-
pancy of Home Environment through Occupancy Sensor; for
instance, if the house is occupied (HouseOccupied is true),
the sensor will detect it (OccupiedDetected is true).

The specification for the machine PC Feature should de-
scribe what the machine must do to enact the required prop-
erties of the problem world. Typically in requirements en-
gineering, descriptions of requirements and problem world
properties are provided by various stake-holders of the sys-
tem, and specifications are obtained from these two descrip-
tions [15]. There are several systematic approaches to find-



ing specifications [33, 20, 26, 28, 31, 32]. We adopted the
Event Calculus-based refinement approach suggested in [20]
because its formalism appears to be well suited to describing
event-based temporal systems.

The other principle of the Problem Frames approach is
related to separation of concerns. When dealing with com-
plex problems, the Problem Frames approach suggests, that
individual subproblems should be solved before considering
how they may be recomposed to satisfy the requirements of
(larger) composed problem.

Consider another feature of the smart home software called
“away-from-home”. The diagram in Fig. 2 describes the
problem and its context, which is similar to the context
of the power control feature. The requirement (AfH) in
this case, however, is concerned with house security and is
informally expressed as follows: “When the house owners
are away, give an impression that the house is occupied by
switching the lights on and off periodically”.

Clearly there is an inconsistency between the two features:
a conflict will arise when the house is empty, and the power
control feature wants to switch off the lights to save energy
usage, and the away-from-home feature wants to switch on
the lights to give an impression of occupancy.

Given these two features, the Problem Frames approach
suggests that these two individual problems should be solved
before we consider their composition.

The justification for applying the Problem Frames ap-
proach to the smart home problem is two fold. Firstly, the
principle of distinguishing requirements, problem world do-
mains and the machine domains elegantly characterizes the
nature of smart home systems. Secondly, the separation
of concerns principle captures the fact that, since disparate
vendors develops features of smart home systems indepen-
dently, certain conflicts between features may be resolved
only at runtime.

2.2 Tool Support
The need for tool support reflects the two principles dis-

cussed. In essence, we want to automate the following two
respective tasks.

Task #1: From appropriate descriptions of a re-
quirement and relevant domain(s), obtain a cor-
rect specification.

Task #2: In order to help resolve run-time con-
flicts, augment the specifications with necessary
information to enable conflict detection at run-
time. For example, if an occurrence of a partic-
ular event at a particular time can cause a con-
flict, this event should be described appropriately
in the specifications. This information is used by
composition operators to resolve conflicts at run-
time [20].

Before we discuss how to obtain specifications and aug-
ment them with information to detect conflicts, we give an
overview of our chosen formalism, the Event Calculus.

2.3 The Event Calculus
The Event Calculus (EC), first introduced by Kowalski

and Sergot [18], is a system of logical formalism, which draws
from first-order predicate calculus, and can be used to rep-
resent actions, their deterministic and non-deterministic ef-
fects, concurrent actions and continuous change [30]. Since

Table 1: Elementary Predicates of the Event Calcu-
lus

Formula Meaning
Initiates(α, β, τ) Fluent β starts to hold after

action α at time τ
Terminates(α, β, τ) Fluent β ceases to hold after

action α at time τ
Initially(β) Fluent β holds from time 0
τ1 < τ2 Time point τ1 is before time

point τ2
Happens(α, τ) Action α occurs at time τ
HoldsAt(β, τ) Fluent β holds at time τ
Trajectory(β1, τ , β2, δ) If Fluent β1 is initiated at

time τ then fluent β2 be-
comes true at time τ + δ

Clipped(τ1, β, τ2) Fluent β is terminated be-
tween times τ1 and τ2

HoldsAt(β, τ1)← Initially(β)∧
¬Clipped(0, β, τ1)

(EC1)

HoldsAt(β, τ2)← Happens(α, τ1)∧
Initiates(α, β, τ1)∧

τ1 < τ2∧
¬Clipped(τ1, β, τ2)

(EC2)

HoldsAt(β, τ3)← Happens(α, τ1)∧
Initiates(α, β1, τ1)∧

Trajectory(β1, τ1, β, δ)∧
τ2 = τ1 + δ ∧ τ1 < τ2 ≤ τ3∧

¬Clipped(τ1, β1, τ2)∧
¬Clipped(τ2, β, τ3)

(EC3)

Clipped(τ1, β, τ2)↔ ∃α, τ [Happens(α, τ)∧
τ1 < τ < τ2 ∧ Terminates(α, β, τ)]

(DEF1)

Figure 3: Event Calculus Meta-rules

it is suitable for describing and reasoning about event-based
temporal systems, and our smart home system is one such
system, we chose EC as our formalism. Since its introduc-
tion in [18], several variations of EC have been proposed
[24], and we adopt the version suggested by Shanahan [30].

The calculus relates events and event sequences to ‘flu-
ents’, which denote states of a system. In our approach to
this smart home problem we use event sequences to describe
feature machine behaviours; fluents to describe problem do-
main states; and we use the rules by which events cause
state changes to describe the given properties of the prob-
lem domains. Requirements are described as combinations
of fluents capturing the required states of the problem world.
We also assume linear time with non-negative integer values.
Table 1, based on Shanahan [30], gives the meanings of the

elementary predicates of the calculus we use in this paper.
The EC rules in Fig. 3, taken from Shanahan [30], are a
way of stating that the fluent β holds if: it held initially and



HoldsAt(HouseEmpty, t5)∧
¬Clipped(t5, HouseEmpty, t6)∧

t5 + 4 < t < t6→
HoldsAt(LightsOff, t)

(PC)

(HoldsAt(HouseEmpty, t5)∧
¬Clipped(t5, HouseEmpty, t6)∧

t5 + 119 < t4 < t6 ∧ 0 ≤ t4 mod 60 ≤ 29→
HoldsAt(LightsOn, t4))

∧
(HoldsAt(HouseEmpty, t5)∧

¬Clipped(t5, HouseEmpty, t6)∧
t5 + 119 < t3 < t6 ∧ 30 ≤ t3 mod 60 ≤ 59→

HoldsAt(LightsOff, t3))

(AfH)

Figure 4: Formalized requirements

nothing has happened since to stop it holding (EC1); the
event α has happened to make the fluent hold and nothing
has happened since to stop it holding (EC2); or, the event α
happened that caused some fluent β1 to hold, that in turn,
after a period of time δ caused this fluent β to hold, and
again nothing has happened since to stop the second fluent
holding (EC3). Finally, the rule (DEF1) says that the flu-
ent β is clipped between τ1 and τ2 if and only if there is an
event α that happens between τ1 and τ2 and the event ter-
minates the fluent β. Following Shanahan, we assume that
all variables are universally quantified except where other-
wise shown.

The logical machinery of the Event Calculus works with
three components, informally described as (i) “what actions
do”, (ii) “what happens when”, and (iii) “what is true when”
[30]. For example, (i) could be“switching on the lights makes
them on”, (ii), “switching on happened at 12:00 today”, and
(iii), “the lights were on at 12:01 today”. The logical ma-
chinery of EC supports three types of reasoning.

If (i) and (ii) are given, through deduction, we can con-
clude that “the lights were on at 12:01 today”. Essentially,
we are reasoning here from cause to effect. The assump-
tion that nothing else happened between 12:00 and 12:01 is
implicit.

If (i) and (iii) are given, through abduction, we can hy-
pothesize that“switching on happened at 12:00 today”. This
effect-to-cause inference may be unsound if we cannot rule
out that there are no other possible causes for this effect. In
EC, we follow the rules of circumscription [22], in assuming
that all possible causes for a fluent are given in the database
and our reasoning tool cannot find anything except those
causes. This is in line with the Closed World Assumption
of Prolog [8], and therefore, ensures the soundness and com-
pleteness of the inferences.

If facts such as (ii) and (iii) are given, through induction,
we can generalize that “switching on the lights turn them
on” [30]. As we shall see, our refinement of requirements
into specifications is mostly concerned with the abductive
reasoning.

We again follow Shanahan in adopting the common sense
law of inertia, meaning that fluents do not change value
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Figure 5: Abstracting the Lights domain

Initiates(SwitchLightsOn,LightsOn, τ) (L1)
Terminates(SwitchLightsOn,LightsOff, τ) (L2)
Initiates(SwitchLightsOff, LightsOff, τ) (L3)
Terminates(SwitchLightsOff, LightsOn, τ) (L4)
Initiates(DetectEmpty,EmptyDetected, τ)←

HoldsAt(HouseEmpty, τ) (OSHE1)
Terminates(DetectEmpty,OccupiedDetected, τ) (OSHE2)
Initiates(DetectOccupied,OccupiedDetected, τ)

← HoldsAt(HouseOccupied, t) (OSHE3)
Terminates(DetectOccupied,EmptyDetected, τ) (OSHE4)

Figure 6: Minimal Domain Descriptions

unless something happens to cause this. That is, fluents
change only in accordance with the meta-rules (EC1), (EC2)
and (EC3).

3. FINDING SPECIFICATIONS
In order to formally derive the specifications, we first for-

malize the natural language descriptions of the requirements
and the problem world domain discussed in Section 2.1.

3.1 Formalizing the requirements
The natural language descriptions of the requirements for

the power control and away-from-home features can be for-
malized using EC as shown in Fig 4.

Assuming each time unit represents a minute, the first
definition (PC) says that if the house has been empty for at
least 5 minutes, the lights should be turned off, and remain
so until it is no longer empty. The second definition (AfH)
says that if the house has been empty for at least two hours,
the lights should be on for the first 30 minutes and off for
next 30 minutes of every hour, as long as the house is empty.

3.2 Formalizing domain descriptions
In formalizing the descriptions of the problem world do-

mains in Fig. 1, we first obtain minimal description of these
domains by projecting [15] the Switches, Light Units and
Power Source, as a single domain called Lights, as shown in
Fig. 5. It means that we will initially assume, for instance,
that the lights can be switched on and off instantaneously,
and that they are always reliable. This abstraction is useful
for two reasons: first, it reflects the fact the formal descrip-
tions are often developed iteratively and incrementally (and
our extended tool supports such development), and second,
it allows us to focus on the essential concern. We shall, of
course, enhance the descriptions in Section 5.3.

Fig. 6 shows minimal descriptions of the problem do-
mains. The definitions (L1-L4) say that the lights can be



switched on and off instantaneous, and that the on and
off states oscillate. If the house is empty, the event De-
tectEmpty, generated by the sensor, makes the fluent Empty-
Detected true (OSHE1), and OccupiedDetected false (OSHE2).
When occupancy is detected, the event DetectOccupied, also
generated by the sensor, makes the fluent OccupiedDetected
true (OSHE3), and EmptyDetected false (OSHE4).

3.3 Deriving Specifications
We now examine the refinement of the requirement for

the power control feature using the technique suggested in
[20], and annotate the refinement with the refinement rule
used in each step. The aim of this refinement is to find what
the feature machine, PCF, needs to do (in terms of Happen,
Initially and Prohibit predicates) to achieve a requirement
(HoldsAt clause).

We begin by stating the PC requirement as follows.

HoldsAt(HouseEmpty, t5)∧
¬Clipped(t5, HouseEmpty, t6)∧

t5 + 4 < t < t6→
HoldsAt(LightsOff, t)

We refine the conclusion of the statement by applying
EC1. This is an abduction. Disjoined cases for EC2 and
EC3 are considered separately.

Initially(LightsOff)∧
¬Clipped(0, LightsOff, t)

We now have an Initially clause and a ¬Clipped clause.
Initially clauses are treated as a sort of precondition to the
event sequences, and therefore Initially(LightsOff) is not re-
fined further.

We apply (DEF1) to the sub-clause Clipped (0, LightsOff,
t). This is an equivalence rewrite.

Initially(LightsOff)∧
¬∃a1, t1 ·Happens(a1, t1)∧
Terminates(a1, LightsOff, t1)∧
0 < t1 < t

We unify the Terminate sub-clause with the domain prop-
erty (L2) in Fig. 6. This is a simple database lookup for a1.
Apart from SwitchLightsOn, there are no other cases of a1
to consider in this case.

Initially(LightsOff)∧
¬∃t1 ·Happens(SwitchLightsOn, t1)∧
Terminates(SwitchLightsOn,LightsOff, t1)∧
0 < t1 < t

As a result of this unification, we remove the Terminate
sub-clause because it is a domain axiom, (L2) in Fig. 6.

Initially(LightsOff)∧
¬∃t1 ·Happens(SwitchLightsOn, t1)∧
0 < t1 < t

At this point in refinement, in order to simplify the expres-
sion, in [20] we introduce a new predicate, Prohibit, which
has the following meaning:

Prohibit(α, τ1, τ2) ≡ ¬∃α, τ• Happens (α, τ)
∧ τ1 < τ < τ2

This predicate indicatively describes events whose occur-
rences terminate the fluent that needs to hold. Whether or

not these events do occur needs to be evaluated at runtime.
As we shall see in Section 6.1, such information is needed to
help identify and resolve run-time conflicts [20].

Continuing with the refinement, the next step is to rewrite
the last predicate using Prohibit. This is also an equivalence
rewrite.

Initially(LightsOff)∧
Prohibit(SwitchLightsOn, 0, t)

We have now completed derivation of the following partial
specification (PCFa), and the specification says that if the
lights are initially off (at time 0), the system should prohibit
the SwitchLightsOn event from time 0 until time t in order
to satisfy PC the requirement.

HoldsAt(HouseEmpty, t5)∧
¬Clipped(t5, HouseEmpty, t6)∧

t5 + 4 < t < t6→
Initially(LightsOff)∧

Prohibit(SwitchLightsOn, 0, t)

(PCFa)

This refinement is repeated using the (EC2) rule to give
the following second partial specification (PCFb) for the PC
requirement. The specification says that if the event Switch-
LightsOff happens at a time t1 before t and the event Switch-
LightsOn is prohibited between t1 and t, then the lights will
be off at time t.

HoldsAt(HouseEmpty, t5)∧
¬Clipped(t5, HouseEmpty, t6)∧

t5 + 4 < t < t6→
Happens(SwitchLightsOff, t1) ∧ t1 < t∧

Prohibit(SwitchLightsOn, t1, t)

(PCFb)

The (EC3) rule does not apply in this domains description
because the lights are assumed to come on and off instan-
taneously at all times. Therefore, from these two partial
specifications, we obtain the full specification (PCF) for the
PC requirement (using minimal domain descriptions) as fol-
lows.

HoldsAt(HouseEmpty, t5)∧
¬Clipped(t5, HouseEmpty, t6)∧

t5 + 4 < t < t6→
((Initially(LightsOff)∧

Prohibit(SwitchLightsOn, 0, t))∨
(Happens(SwitchLightsOff, t1) ∧ t1 < t∧

Prohibit(SwitchLightsOn, t1, t)))

(PCF)

Manual derivation of such specifications is time-consuming,
and error-prone. An automated tool can improve the quality
of refinement process and specifications.

Implementing the refinement in Prolog is relatively eas-
ier because Prolog supports some of the refinement rules
well. Implementation of the EC abductive reasoning, how-
ever, requires two things. First, since occurrence of several
events over a period of time may contribute to achieving a
certain goal, performing effect to cause reasoning requires
finding a correct temporal ordering of these events. Second,
when the tool attempts to prove a goal, we not only want
to know whether the goal is provable or not, but how it can
be proved. This record of how a goal can be proved, or a
residue, is also needed.



4. USING AN ABDUCTIVE PLANNER
In this section we briefly review Shanahan’s planner [29,

4]. Implemented in Prolog, this partial order planning tool
was designed as an abductive theorem prover, based on reso-
lution. The key idea was to deploy a vanilla meta-interpreter
so that the EC axioms could be expressed as object-level
clauses.

holds_at(F1,T3) :-

happens(A,T1,T2), T2 < T3, initiates(A,F,T1),

not clipped(T1,F,T2).

For example the above (EC2) rule was compiled into the
following Prolog code in [29].

026 abdemo([holds_at(F1,T3)|Gs1],R1,R5,N1,N4) :-

027a F1 \= neg(F2),

027b abresolve(initiates(A,F1,T1),R1,Gs2,R1),

028 abresolve(happens(A,T1,T2),R1,[],R2),

029 abresolve(before(T2,T3),R2,[],R3),

030 append(Gs2,Gs1,Gs3),

031 add_neg([clipped(T1,F1,T3)],N1,N2),

032 abdemo_nafs(N2,R3,R4,N2,N3),

033 abdemo(Gs3,R4,R5,N3,N4).

Execution of the program mimics the (EC2) rule quite closely.
In Line 026, holds at (F1,T3) is part of the possible com-
posite goal we want to prove. R1 and R5 are the input and
output residues of Happens literals the tool is maintaining.
N1 and N4 are the negated sub-goals that need to be proved
as a result of adding Happens literal(s) into the residue (we
shall revisit this point shortly). In Line 27a, F1 \= neg(F2)
ensures that the goal is not a negated goal in the form of
¬(F2), which is dealt with separately.

First, the program tries to prove the sub-goal initiates
(A,F1,T1) by looking up the object-level clauses. initiates(A,
F1,T1) may have its own sub-goals, and they are retrieved
by Gs2 in Line 27b and added to the list of goals to prove
in Line 030. The program attempts to resolve another sub-
goal happens(A,T1,T2) in Line 028 by adding happen literal
to the residue R2?, and temporally order the happens literal
in Line 029. In Line 031 and Line 032 the tool attempts
to prove that the event that has just been added to the hap-
pen literal does not clip a fluent that has been proved to
hold. The tool then continues to prove other sub-goals in a
similar fashion in Line 033.

Although the program generally follows the EC rules closely,
the order in which the certain sub-goals are resolved in the
program is different. For example, resolving the initiates
literals before happens prevents looping and minimizes the
search space [29, 9].

Two simple queries shall illustrate the tool’s functionality.
For example, using the domain description in Fig. 6, if we
query what needs to happen to satisfy the power control
requirement at time t by issuing the following query.

?- abdemo([holds_at(lights_off(lights),t)],H).

Shanahan’s planner returns the following plan.

H = [[happens(switch_lights_off(lights), t1, t1)],

[before(t1, t)]] ;

No

The planner finds only one model in the plan, and the model
says that if the event switch lights off happens at a time t1

before t, then the lights will be on at time t. This is correct
according to our refinement using the (EC2) rule in Section
3.3, (PCFb).

If now we add a predicate to our domain description to say
that lights are off initially (axiom(initially(lights off(L)),[])),
and query for the same goal, the planner returns the follow-
ing plan.

H = [[], []] ;

H = [[happens(switch_lights_off(lights), t1, t1)],

[before(t1, t)]] ;

No

This time, the planner correctly finds two (disjoined) mod-
els. The first model says that if the lights are initially off
(at time 0), (and nothing has happened since then), then
they remain off (at time t). This model is coded in H =
[[], []], and notice that it is not clear from the plan what
that initial state might be. The second model involving the
happens clause is same as the one in the previous query.

In essence, the planner of Shanahan abductively finds the
temporally-ordered Happens literals for a given goal.

4.1 Refinement of requirements as planning
Conceptually, the relationship between a planner and the

artifacts in our refinement is as follows:

• the domain descriptions and EC meta-rules in the plan-
ner are part of the problem world domains in our re-
finement,

• a goal the planner tries to prove is a requirement, and

• a plan the planner finds for a goal is part of our speci-
fication.

There is a close parallel between planning and our refine-
ment. In our refinement, largely through effect to cause
reasoning, we want to develop proofs that requirements can
be satisfied, which is essentially what classic planners do.
Therefore our refinement can be cast as a kind of abduc-
tive planning, so we use Shanahan’s tool [29] as the basis to
implement our extension of the tool.

However, there are some important differences between
the two approaches. We note four points in particular:

1. In addition to Happens literals, our specifications also
include Initially and Prohibit literals where appropriate.

2. In the planner, the initial state of the lights needs to
be stated explicitly. However, in our refinement, the
initial state is generated as a kind of precondition to
the plan.

3. The fact that “nothing else happened since” some flu-
ent started to hold is implicit in the tool, as it is in
the EC reasoning. In our refinement, we derive in the
Prohibit clause all the events that could potentially ter-
minate a fluent that needs to hold.

4. The tool does not support the (EC3) rule involving the
trajectory clause. This rule is required in our refine-
ment (as we shall discuss in Section 5.3).

The EC meta-rules Shanahan adopted in [29] are a more
general formulation of the rules suggested in [30], on which
our rules are based. The rules (EC1) and (EC2) we used



here are equivalent to the rules (EC1) and (EC2) in [29],
but other rules in [29] are not needed for our derivations.
However, our rule (EC3) is not used in [29], and therefore
part of the refinement involving the trajectory literal is not
supported by Shanahan’s tool.

5. EXTENDING THE TOOL
When implementing the tasks specific to our refinement,

we first split the residue of literals into three parts: a residue
of Initially literals (I), a residue of Happens literals (H), and
a residue of Prohibit literals (P). The residue I describes the
preconditions of the event sequence, the residue H describes
the event sequence and the residue P describe guards for the
fluents. In extending the tool, we will eventually include two
further variables in the query command, representing the I
and P residues.

?- abdemo([holds_at(lights_off(lights),t)],I,H,P).

This separation of residues allows us to preserve the in-
tegrity of original implementation and carefully control the
changes we make. We will now discuss our implementa-
tion step by step, and in order to avoid confusion with
Shanahan’s original tool, our extended tool will be called
SpecPlanner [1].

5.1 Implementing the Initially residue
Since the tool of Shanahan [29] requires the domain de-

scription to be explicit about the initial state of the system,
and since our refinement generates the assumption about
the initial state of the system, the tool needs to maintain
a residue for Initially literals. To do that, we declare that
the system may already be in whatever state it should be
in by including the statement axiom(initially(X),[]) in
our domain descriptions. We then add a new variable for
the initially literals, I, in our query.

Since the domain description says that the system may be
initially in the required state, when the goal is proved ac-
cording to (EC1), the Initially literal can be resolved imme-
diately (Line A21b). The tool then simply adds the residue
for Initially literals to I in (Line A22). Other sub-goals of
(EC1) are proved in a way similar to those of (EC2) are
proved in Section 4. Since Prolog proves the sub-goals se-
quentially, this ordering of sub-goals in (Line A23a-A24) is
necessary.

A20 abdemo([holds_at(F1,T)|Gs1],I1,I3,

R1,R3,N1,N4) :-

A21a F1 \= neg(F2),

A21b abresolve(initially(F1),R1,Gs2,R1),

A22 append([initially(F1)],I1,I2),

A23a append(Gs2,Gs1,Gs3),

A23b add_neg([clipped(0,F1,T)],N1,N2),

A24 abdemo_naf([clipped(0,F1,T)],R1,R2,N2,N3),

A25 abdemo(Gs3,I2,I3,R2,R3,N3,N4).

If we now issue a query for the power control requirement,
SpecPlanner generates the possible initial state of the sys-
tem and describe it as a precondition in the residue I.

I = [initially(lights_off(lights))],

H = [[], []],

I = [],

H = [[happens(switch_lights_off(lights), t1, t1)],

[before(t1, t)]],

No

In this specification, from the residue I, it becomes clear
what the initial states of the system must be for each model.
In the first model, the tools says that, the lights are initially
off, nothing happened since then; therefore, the lights will be
off at time t. In the second model, the initial state does not
matter; occurrence of the event switch lights off at a time t1
before t will keep the lights off at t.

Implementation of other EC rules does not need to main-
tain the Initially residue, and therefore they are not affected
by this implementation in a significant way.

5.2 Implementing the Prohibit residue
Our notation of prohibited events is a further elaboration

of a not clipped clause. Therefore, after having resolved the
not clipped sub-goal, we need to identify events that could
potentially terminate the fluent. First, we add a further
variable P to our query for the Prohibit literals.

When the goal is proved using (EC1) for example, having
proved the not clipped sub-goal (Line B23b and Line B24),
the program attempts to maintain a residue of Prohibit lit-
erals in Line B25.

B20 abdemo([holds_at(F1,T)|Gs1],I1,I3,R1,R3,

P1,P3,N1,N4) :-

B21a F1 \= neg(F2),

B21b abresolve(initially(F1),R1,Gs2,R1),

B22 append([initially(F1)],I1,I2),

B23a append(Gs2,Gs1,Gs3),

B23b add_neg([clipped(0,F1,T)],N1,N2),

B24 abdemo_naf([clipped(0,F1,T)],R1,R2,N2,N3),

B25 abprohibit(0,F1,T,P1,P2),

B26 abdemo(Gs3,I2,I3,R2,R3,P2,P3,N3,N4).

The residue of Prohibit literals is maintained by querying
all events that terminate the fluent that needs to hold. It
uses the built-in Prolog function findall.

133a abprohibit(T1,F1,T,P1,P7) :-

133b findall(A2, axiom(terminates(A2,F1,T),[]),P6),

134 append([prohibit(P6,T1,T)],P1,P7).

Continuing with the implementation of (EC1), when we
now issue a query for the requirement of the power control
feature, the tool finds the following specification.

I = [initially(lights_off(lights))],

H = [[], []],

P = [prohibit([switch_lights_on(lights)], 0, t)] ;

I = [],

H = [[happens(switch_lights_off(lights), t1, t1)],

[before(t1, t)]],

P = [prohibit([switch_lights_on(lights)], t1, t)] ;

No

Now SpecPlanner returns specifications complete with de-
scription of the possible initial states, event sequence for the
machine domain, and events that should be prohibited in
order to satisfy the requirement fully.



Similar changes are made to the implementation of (EC2)
and our (EC3) to maintain the residue of Prohibit literals.
Having implemented these changes, we finally need to im-
plement our (EC3) rule involving the Trajectory predicate.

5.3 Implementing EC3
In our discussions so far, we have simplified parts of the

problem domains, for instance, in stating that the event
SwitchLightsOff causes LightsOff to be true instantaneously.
As described in Fig. 1, realistic descriptions will have to
consider more complex assumptions, such as the chain of
causality and time delay from the point the event Switch-
LightsOff is fired to the point the lights actually go off. Sim-
ilarly, we also have to make explicit the assumptions that
the light switches and light unit works properly. It involves
revising parts of our domain descriptions as shown in Fig.
1 and Fig. 2, and obtaining revised specifications with the
tool again.

Therefore, we can revise statements such as (L3) in Fig.
6, by saying that (i) the event SwitchLightsOff only sets the
LightSwitchesTurnedOff provided that the light switches are
working properly, (ii) when the light switches are turned off,
the lights go off after a delay, if the lights are working well.
Formally, we can replace the statement (L3) with (L3a-L3b)
as follows.

Initiates(SwitchLightsOff,

LightSwitchesTurnedOff, τ)←
HoldsAt(SwitchesWorkingOK, τ)

(L3a)

Trajectory(LightSwitchesTurnedOff,

τ, LightsOff, 2)←
HoldsAt(LightUnitsWorkingOK, τ)

(L3b)

The statement (L3a) says that the event SwitchLight-
sOff, causes the fluent LightSwitchesTurnedOff to hold, if
the switches are working properly. Similarly, the statement
(L3b) says that when the fluent the fluent LightSwitches-
TurnedOff starts to hold at time τ , the lights will be off at
time τ + 2, provided that the light units are working prop-
erly. The derivation now needs to apply our (EC3) rule.

When implementing our (EC3) rule, we adopted a strat-
egy similar to Shananan’s to minimize the search space: the
program first attempts to resolve initiates and trajectory
immediately (Line 044), and their sub-goals are not resolved
until after happens and before are resolved (Line 049 - Line
051).

041 abdemo([holds_at(F1,T3)|Gs1],I9,I11,

R1,R7,P9,P12,N1,N4) :-

042 F1 \ = neg(F2),

043 append([],I9,I10),

044 abresolve(init_and_traj(A,F3,F1,T1,T9),

R1,Gs2,R1),

045 abresolve(happens(A,T1,T2),R1,[],R2),

056 abresolve(before(T2,T3),R2,[],R3),

047 abresolve(before(T9,T3),R3,[],R4),

048 abresolve(before(T2,T9),R4,[],R5),

049 append(Gs2,Gs1,Gs3),

050 add_neg([clipped(T1,F1,T3)],N1,N2),

051 abdemo_nafs(N2,R5,R6,N2,N3),

052 abprohibit(T1,F3,T9,P9,P10),

053 abprohibit(T9,F3,T3,P10,P11),

054 abdemo(Gs3,I10,I11,R6,R7,P11,P12,N3,N4).

We then introduced the rule to resolve the initiate and
trajectory goal in pairs by looking up an event whose ef-
fect, when initiated, will eventually lead to the fluent that
needs to hold. For example, given the description Initi-
ates(a1,f1,t1), Trajectory(f1,t1,f2,d), if a1 happens at time
t1, we know that f2 will hold at time t1 + d (provided noth-
ing else happens in the mean time to clip these fluents).
Given a target goal f2, the tool attempts to prove that first,
there is an appropriate Trajectory clause which leads to F2
holding (Line 059), and second there is an Initiate clause
which causes the initial fluent f1 to hold (Line 060). The
time delta in the trajectory clause is represented by D, for
example in (Line 058).

058 abresolve(init_and_traj(A,F1,F2,T,D),

R,Gs,R) :-

059 axiom(trajectory(F1,T,F2,D1),Gs2),

060 axiom(initiates(A,F1,T),Gs1),

061 append([],Gs2,Gs3),

062 append(Gs3,Gs1,Gs4),

063 append([],D1,D),

064 append([],Gs4,Gs).

Since our (EC3) allows refinement involving the trajectory
predicate, this extension is important for our application of
the tool to the smart home software.

6. EVALUATION OF SPECPLANNER
Having developed the tool, we applied it to obtain speci-

fications for the requirements in smart home software. For
example, the tool found the following specification for the
power control feature. The specification says that the lights
will be off at time t if either (i) the lights were off at time
0 and nothing (including wear and tear of the devices) has
happened since, or (ii) light switches and light units are all
in order and nothing has happened to cause them otherwise,
and lights were switched off at a time sufficiently before t,
and switching on is prohibited between the time lights are
switched off and time t.

I = [initially(lights_off(lights))],

H = [[], []],

P = [prohibit([switch_lights_on(lights)], 0, t)] ;

I = [initially(switches_working_ok(lights)),

initially(light_units_working_ok(lights))],

H = [[happens(switch_lights_off(lights), t1, t1)],

[before(t1, zero_plus(t1)),

before(zero_plus(t1), t),

before(t1, t)]],

P = [prohibit([], 0, t1),

prohibit([], 0, t1),

prohibit([switch_lights_on(lights)],

zero_plus(t1), t),

prohibit([switch_lights_on(lights)],

t1, zero_plus(t1))] ;

No

Notice that the first part of the specification (the first set
of I, H, P clauses above) are same as the first partial spec-
ification (PCFa) we obtained in Section 3.3. In our elab-
oration of the domain descriptions in Section 5.3, we have
introduced the trajectory predicates into the descriptions,



for example, in replacing (L3) with (L3a-L3b). Therefore,
the tool also found a second model (the second set of I, H,
P clauses above) according to our implementation of our
(EC3) rule.

Since the new fluents switches working ok and light units
working ok are not initiated or terminated by events, our
tool SpecPlanner makes explicit the assumptions that these
fluents hold. Explicating and documenting such domain as-
sumptions are an important part of formally obtaining spec-
ifications from requirements [28].

As well as deriving the specifications for requirements ex-
pressed in terms of individual fluents, we can also use the
tool to find specifications for more complex, conjunctive
goals. It is one of the significant strengths of Shanahan’s tool
that we maintained in SpecPlanner. For example, for the re-
quirement for the away-from-home feature, we can find spec-
ification for HoldsAt(LightsOn,t4) and HoldsAt(LightsOff,t3)
together.

We applied SpecPlanner to obtain specifications of smart
home application involving requirements for six features and
several problem world domains (there are various ways to
count them). In all cases, SpecPlanner found correct speci-
fications.

6.1 Runtime resolution of conflicts
Having obtained specifications for individual requirements

using the tool, we now briefly discuss how a runtime mecha-
nism we proposed in [20] makes use of these specifications in
resolving conflicts dynamically. It involves the use of a medi-
ator called Composition Controller, which listens to system
events and act on them according to a scheme expressed by
a weakened conjunction operator. For example, given two
conflicting requirements such as AfH and PC, there are four
different ways in their conflict is handled.

1. AfH ∧{any} PC – when conflicts happen, the system
need not apply any control because any emergent be-
haviour is acceptable

2. AfH ∧{control} PC – AfH and PC may prohibit each
other’s events to gain mutually exclusive control of a
domain, where exclusion is symmetrical

3. AfH ∧{AfH} PC – similar to exclusion, except that
AfH’s control of the domain has a higher priority over
PC

4. AfH ∧{important,AfH} PC – similar to AfH ∧{AfH} PC,
except that the event important, regardless of the spec-
ification that generates it, has the highest priority

The mediator then listens out for the events generated
by the machines of AfH and PC, as well as other problem
world domains, to monitor their states. When events are
generated, the mediator filters those events to domains ac-
cording to the conjunction operator chosen. For example,
if AfH ∧{AfH} PC is chosen, and when PC wants to keep
the lights off whilst AfH has them on, the mediator will not
pass on the switch lights off event from the PC machine to
the switch domain during that time.

6.2 Performance Issues
Shanahan wrote the original tool in LPA MacProlog 32.

We wrote our extensions using SWI-Prolog version 5.6.27
[6]. Our program runs on a laptop, Sony Vaio VGN-TX1XP

(CPU 1.20GHz) running Windows XP. Table 2 shows the
average runtime statistics, in CPU seconds, for the tests
we carried out on the tool. These statistics are not meant
to claim efficiency over other implementations similar tools,
but rather to demonstrate the scalability of SpecPlanner.
The results show the time does not increase exponentially
when domain predicates are added and more complex deriva-
tions are performed.

Table 2: Runtime Statistics
Domain Predicates 8 8 8 12 12 12
Requirements 1 2 3 1 2 3
Time 5 8 9 9 10 14

7. LIMITATIONS AND FURTHER WORK
SpecPlanner has some limitations; in particular:

1. We have implemented only the EC rules necessary
to derive specifications for the smart home software.
There are several other EC rules [24], implementation
of which will make the tool more widely applicable.
We believe that such extensions may be implemented
in the same way we have implemented our (EC3).

2. Our extension of Shanahan’s tool work only with pos-
itive goals, again, because our application does not re-
quire using negative goals. However, such an exten-
sion will be relatively straightforward to implement,
as Shanahan’s tool already supports it.

Requirements engineering often work with requirements
expressed in an informal language. A more intuitive inter-
face for the tool, supported by a semi-formal language to
communicate with the users, may facilitate application of
the tool. For example, an editor to create syntactically cor-
rect descriptions would be useful.

8. RELATED WORK
There are few tools to support systematic derivation of

specifications from requirements using abductive temporal
logic. Seater and Jackson [28] use first-order relational logic
and the Alloy Analyzer to analyze transformation of require-
ments into specifications. However, our choice of temporal
predicate logic in our refinement allows explicit reasoning
about time.

The Event Calculus has previously been used in software
development for reasoning about evolving specifications [11,
27], and distributed systems policy specifications [7]. Our
work should be seen as complementary to such approaches
in that it will allow inconsistencies to be resolved at run-
time.

Various specification analysis tools exist; Lespérance et
al [21] and Heitmeyer et al [13], for example, propose tool
suites to perform specific analyses tasks, such as consistency
checks. However, they are less concerned with automated
derivation of specifications. Tools such as Specware [5] also
focus on refinement of programs from specifications, rather
than specifications from requirements.

There are several tools to support goal-oriented approaches
to requirements engineering [31, 32, 33] which are supported
by tools such as [10, 3, 2]. However, these tools perform user-
assisted goal decompositions and constraint-satisfaction checks



rather than automatic derivation of specifications from given
descriptions of requirements and the system’s environment.

9. CONCLUSIONS AND CONTRIBUTIONS
We believe that the use of a planner in a systematic dis-

covery of specifications, particularly within the context of
pervasive software, is novel. The specifications, in this con-
text, need to be augmented with information necessary for
runtime conflict detection. Shanahan laid the groundwork
with the planner [29], but we have introduced significant
changes to make the tool relevant to our application. Our
contributions, in terms of implementation and integration,
are (i) the residues of Initially, (ii) Prohibit literals, and (iii)
our (EC3) rule.
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