
II. THE TJX INCIDENT

TJX, the holding company of many large retail chains,
including Marshalls and TJ Maxx, suffered one of the largest
credit card thefts in history that was initially estimated
to have affected 45 million credit cards, compromising
the identity information of 451,000 customers, involving
fraudulent transactions of $20 million, and to cost TJX $1
billion over 5 years, excluding lawsuits [1]. Although the
company implemented several security measures, such as
encryption and user authentication, it lacked the knowledge
to prevent the security breach.

We conducted a case study based on the TJX incident to
study how the NFR Pattern approach presented in this paper
may be used to capture and reuse knowledge from the case
and the literature in a similar situation or project.

Figure 1 illustrates a simplified likely attack scenario de-
rived from the publicly available sources [1][2][3] where an
attacker first broke into a local store’s wireless network. He
then intercepted ID’s and passwords that the store personnel
used to login to a corporate server. Using the stolen ID’s
and passwords, the attacker masqueraded as a valid user to
access the server to download and transfer to his conspirators
the files containing millions of credit card and customer
identity records. The unauthorized server access attack in
this scenario is used as a running example in this paper.

III. NFR PATTERNS

NFRs, such as security and trustworthiness, are generally
treated as (soft) goals or objectives to be achieved [4][5]. For
example, a US law on information security defines security
as confidentiality, integrity, and availability objectives to
be achieved by protecting assets from problems such as
unauthorized access, use, and disclosure [6]. Because of
the oftentimes conflicting nature of NFRs, their achievement
also requires exploring alternatives and making acceptable
trade-offs. For example, ID/password provides acceptable
security but is highly cost-effective and practical for e-
commerce applications. On the other hand, although bio-
metric authentication is generally expensive and difficult
to maintain, it is often employed in sensitive or military
applications.

Based on this general treatment of NFRs, we define
objective pattern, problem pattern, alternatives pattern, and
selection pattern to help capture the needed knowledge.

Patterns can be recorded in many forms. While literature-
based patterns are useful, but their reuse would require man-
ual re-creation of models during requirements engineering,
which can be time consuming and error prone. NFR patterns
presented in in paper also capture model refinement rules
that can be applied by a supporting tool to automatically
refine a target model.

The refinement rules capture model refinements that are
manually performed during a typical model-based require-
ments engineering session, where an engineer refines a

model by incrementally adding a new model element and
linking it to an existing one. For example, to refine an orga-
nizational resource [7], such as credit card, the engineer may
identify security as an important softgoal for the resource
(refinement 1). She may then refine security as confiden-
tiality, integrity, and availability softgoals (refinement 2).
She may also identify trustworthiness and cost as important
security related softgoals to record the stakeholders’ needs
that the security achievement should also be cost-effective
and trustworthy (refinement 3 and 4).

Such knowledge of credit card security may be captured
as a pattern as shown in Fig. 2. In this pattern, Result
captures the available knowledge about credit card security;
Initial captures a key concept that provides the context
for reuse; and Refinement rules capture individual model
refinements and their application orders. R1 refinement rule
in this example is a root rule that has no dependency. It is
to be first applied to refine Credit Card. R2, R3, and R4 can
then be applied independently, as they only depend on R1,
to refine the result produced by R1.

Figure 2. An NFR pattern and its application

In addition to the captured knowledge, each NFR pattern
also consists of a unique name, and optional supplemental
applicability and credential information, as shown in Fig.
3. The applicability information helps determine the appro-
priateness of the pattern while the credential information
provides social-based confidence when choosing patterns.

The applicability information is adapted from the quality-
based software reuse approach [8] that could help answer the
5W2H questions: who, what, why, when, where, how, and
how much. Many uses of the applicability information are
possible to answer the 5W2H questions. For example, who
attribute can be used to help identify the target application
domain of the pattern (e.g. “retail” in this example); what,
contextual information of a given “who” that refers to

180



181



182



Figure 6. An alternative requirements pattern

D. Selection Pattern

When faced with alternatives for a softgoal or soft-
problem, along with their side-effects, an engineer must
choose an alternative that not only satisfices (a term referring
to sufficient satisfaction or good enough [4]) the softgoal or
sufficiently denies the soft-problem, but also maximizes the
positive while minimizing the negative side-effects, a task
that is difficult due to large decision space [16].

To cope with the complexity, two general schemes –
quantitative and qualitative selections – have been used
to make the selection more systematic. Quantitatively, the
most used method has been the linear weighting approach
[17], also known as Multi-Attribute Utility Theory [18],
where a fitness function calculates a cumulative score for
each alternative based on the weight of the criteria and the
degree of how well (or bad) each alternative is towards each
criterion. The alternative that receives the highest score is
considered the most desirable, therefore selected.

However, assigning weights prior to the selection is of-
tentimes performed subjectively as is difficult to be precise
with [19]. The subjectiveness may become a concern when
the resulting fitness values are too close (e.g. 0.71 vs. 0.75)
as one alternative may not be clearly better than the other,
a problem known as the scaling problem [20]. For some
situations, a qualitative selection scheme, such as a rank-
based scheme, may be more desirable [19][20].

In this approach, we capture two application-independent
selection schemes as patterns: weight-based quantitative
selection pattern and rank-based qualitative selection pattern.

1) Weight-based Quantitative Selection Pattern: Weight-
based selection schemes have been used for one-level al-
ternatives selection in goal-oriented models [21][22]. The

weight-based selection in this paper generalizes and extends
the scheme to support multi-level alternatives selection, and
the notions of problem mitigation and side-effect.

Using Fig. 7 as an example, two alternatives, Encrypt
ID/password and Biometric authentication, are alternatives
for mitigating Transmission of ID/password in clear text
vulnerability, where the former has two positive side-effects
towards Cost and Trustworthiness softgoals, while the latter
is, in turn, a goal to be operationalized by two more specific
alternatives, Fingerprint and Retina authentications with
different side-effects towards Cost and Trustworthiness.

Figure 7. A weight-based selection example

Let us suppose that the stakeholders agree with the follow-
ing weight assignments: 1.0, 0.5, 0.2 to each of “very critical
(!!)”, “critical (!)”, and neutrally critical N respectively,
where N is a softgoal, soft-problem, or side-effect NFR;
1.0, 0.5, -1.0, -0.5 to each of Make(++), Help(+), Break(–),
and Hurt(-) contributions respectively, as shown in Fig. 7. A
different group of stakeholders may prefer different weights
based on their experience or preference.

Selecting among hierarchically structured alternatives is a
multi-step bottom-up process. In this example, Fingerprint
and Retina authentications are first evaluated and one is se-
lected to achieve the abstract Biometric authentication goal.
Then, Encrypt ID/password or Biometric authentication are
evaluated where the latter inherits the site-effect related
utility value from that of the lower level selection.

In this example, Retina authentication is first selected for
its higher fitness value of 1.3, which is obtained from:

fitness(Retina authen.)
=weight(Bio.) × weight(Make(Retina,Bio)) +

weight(Cost) × weight(Break(Retina,Cost)) +
weight(Trust.) ×weight(Make(Retina,Trust.))

= 1.0×1.0 + 0.2×(−1.0) + 0.5×1.0
= 1.0 + (-0.2) + 0.5 = 1.3

Next, Encrypt ID/password is selected for its higher
fitness value of 1.35, over Biometric authentication, which
has a fitness value of 1.3 as obtained from:





185



To ensure that the binding specifications are meaningful,
each occurrence element in the binding specification must
be either a specialized entity or an offspring goal or problem
of the corresponding meta element in the binding. The
occurrence element defines the target of the source element
defined by the meta element. The relationship between the
meta and occurrence elements are verified against a refer-
ence model, which in practice may be an enterprise model.
For example, the binding specification in Fig. 11 maps
Security asset resource to one of its specialized resource,
Credit Card info, and maps Security softgoal to one of its
offspring goal, Confidentiality.

V. AN EMPIRICAL STUDY: THE TJX CASE

The NFR Pattern approach has been applied in an empiri-
cal qualitative study based on the TJX case, with an objective
to study whether the approach could help capture and reuse
relevant NFR knowledge in a similar organization or project.

We studied several sources of information, including the
US Federal Information Security Management Act (FISMA)
[6], the Payment Card Industry (PCI)’s Data Security Stan-
dard (DSS) [13], an investigation report on the TJX case [3],
a federal court indictment of the hacker [2], computer secu-
rity literature, such as that related to the wireless network
used by TJX [27], and over 30 news articles, such as the Wall
Street Journal article that broke the store [1], among others.
The large amount of real-world knowledge was analyzed
and pieced together to relate relevant knowledge of NFR
objectives, problems, and alternatives.

Figure 12 and 13 illustrate a build for reuse and a build
with reuse scenarios respectively in the study. The first
scenario shows that knowledge was first modeled, then
captured as patterns via the patternize operation, organized
via the specialize, compose, and instantiate operations. The
second scenario shows that various patterns were used to
gradually refine a target model.

Figure 12. Capturing and organizing NFR patterns in the case study

We developed two tool prototypes to verify the approach
and support the case study, including the RE-Tools [28] and
the NFR Pattern Assistant [29]. The RE-Tools supports the
modeling of the NFR Framework [4], the i* Framework [7],
the Problem Independent Graph [14], Problem Frame [30],

Figure 13. Reusing NFR patterns in the case study

and UML [25] in an integrated manner. The NFR Pattern As-
sistance implemented the NFR Pattern approach, including
25 refinement rules: 2 for objective pattern, 8 for problem
pattern, 10 for alternatives pattern, and 5 for selection, as
well as 5 pattern operations: patternize, specialize, compose,
instantiate, and apply.

Figure 14 shows a manually created model to capture the
knowledge related to the unauthorized server access prob-
lem, whose small excerpts are used as examples throughout
this paper. Figure 15 shows a corresponding target model
that was refined by applying the captured patterns.

Figure 14. A model representing the real-world knowledge

The comparison of the two models found that the two
model are almost identical semantically, but visually dif-
ferent. Semantically, the target model consists of 25 of 27
model elements (93%) from the source model. Visually,
the models are different because the NFR Pattern Assistant
prototype used an automated layout feature to place the
generated model elements while the elements in the source
model were manually placed.

186



Figure 15. A model generated from pattern applications

Nevertheless, the study provides a preliminary evidence
that the NFR Pattern approach could help capture, organize,
and reuse a large percentage of knowledge of NFRs in
model- and tool-based requirements engineering.

However, there are a number of threats to validity. For
example, the accuracy of real-world knowledge represen-
tation in the patterns cannot be easily determined as the
source models were subject to human’s interpretation of real-
world information. On the other hand, even if knowledge
representation is accurate, the patterns may be used in an
unintended application.

These two concerns may be partially alleviated by the
use of the credential and applicability information in the
patterns. For example, the knowledge representation in a
pattern may be considered trustworthy if the credential
information indicates that the pattern was authored by an
expert in the field or it received many positive reviews
from experts or past users. In another example, a military
organization may exercise caution if the where attribute in
the pattern indicates that retail commerce is an intended
domain. However, the intended utility of the supplemental
information was not verified in the case study as it was
performed in a controlled setting by the authors.

Additionally, the case study did not validate whether the
captured knowledge is applicable to other security cases
because the source real-world information was obtained
from only one security incident. The case study also did
not validate whether the NFR Pattern approach is indeed
applicable to all NFRs as intended because the case dealt
with only security, cost, and trustworthiness NFRs.

VI. RELATED WORK AND DISCUSSION

Related works discussed briefly in this section are in
the areas of requirements patterns, and NFRs. For a more
detailed survey, readers are referred to [31].

The analysis and business patterns have been used to
capture functional requirements [32][33]. Darimont and van
Lamsweerde [34] have identified various patterns for the
refinement of functional goals. Similarly, Jackson has pro-
posed various classes of software problems, called Problem
Frames [30]. There are several extensions of goal-based and

Problem Frames-based patterns. Hatebur [15], for instance,
shows how Problem Frames can be used to solve problems in
the development of secure software systems. Knowledge of
NFRs has been captured as patterns in the form of informal
guidelines [35][36], architecture and design [36]. Although
similar in some aspects, the emphasis of our work lies in
the capture of knowledge of NFRs that are treated as goals
to be achieved, and it is ground in the NFR Framework
[4] and the ability of the framework to manage synergy and
conflict among NFRs. The patterns in our work are intended
for model-based and tool-assisted requirements engineering.

There are also extensive works on using and extending
the NFR Framework. For example, NFRs have been used
as criteria for selecting among tasks [8], architectural alter-
natives [37], and relating NFRs to design through patterns
[38]. Patterns proposed in this work can be used to capture
such knowledge. Knowledge of agent-specific dependencies
on NFRs have been captured by organizational and social
patterns [39][40], and patterns for mapping agents concerns
to requirements [41]. Our patterns complement such patterns
by capturing deeper NFR-specific knowledge. Our alterna-
tive requirements patterns are similar in spirit to the work on
mapping from goals, to means, then to a design [42][43], but
ours additionally allow for the capture of multiple mappings
as well as the knowledge of side-effects.

Similarly, our work is also an extension of the NFR
Framework. Although the extension could make the overall
framework more complex, NFR patterns could also make
the NFR Framework easier to use where a large number of
requirements engineers can concentrate on the application at
hand and use the NFR patterns provided by a few subject
matter and modeling experts to produce well-formed models
in a time-saving manner without having to master the NFR
modeling details.

Regarding pattern organization, Yang and Liu [44] classify
requirements patterns by layers of goals, tasks and resources,
and relate them by goal-oriented contributions, such as hurt
and help. Our approach classifies patterns by kinds of NFR
knowledge and relates them along the three knowledge
organizational dimensions.

Since the works on requirements patterns have not been
adequately extended to the large body of knowledge of
NFRs, and vice versa, we believe that this work fills a small
but important gap in the requirements engineering literature.

VII. CONCLUSION

In this paper we have presented a pattern-based approach
to dealing with knowledge of NFRs. More specifically, we
have presented four types of NFR patterns (objective pattern,
problem pattern, alternatives pattern, and selection pattern),
three ways to organize patterns (specialization, composition,
and abstraction), and pattern representation using model
refinement rules. NFR patterns are intended to capture
and reuse specific aspects of knowledge NFRs, i.e, goals,

187



problems, alternative means/solutions/requirements, and se-
lection in a structured and modular manner. Organization
of patterns are intended to capture knowledge of NFRs in
an understandable and manageable way. Finally, refinement
rule-based representation and the constraints for pattern
organizations allow for a tool implementation. Although we
have observed some threats to validity in the case study,
we felt the four kind of visually represented and organized
along the organizational concepts patterns, helped us better
understand and manage a large body of NFRs.

There are several lines of future work. Firstly, more case
studies would be needed to better understand the strengths
and weaknesses, in particular concerning the general ap-
plicability of the approach and the completeness of the
defined refinement rules. A variety of different kinds of
patterns would also need to be captured and reused, other
than security, cost, and trustworthiness. The tool that we
have implemented and used in our study was valuable in
verifying the concepts behind the approach, but it is of a
prototype quality. It needs to be enhanced for better usability
and performance.

ACKNOWLEDGMENT

The authors would like to thank Bashar Nuseibeh for
his insightful comments on an earlier draft. The authors
also thank Rutvij Mehta for his help with copyediting,
and the anonymous reviewers of RE’10 and MaRK’09
workshop, and its participants, particularly Martin Glinz
and Robyn Lutz for their valuable comments. The BR-
based author acknowledges the financial support of CNPq
(Grants: 557.128/2009-9 and 304852/2009-0) and Faperj
(Grant: Cientista do Nosso Estado and E-26/170028/2008).
The UK-based author acknowledges the financial support of
the EU project SecureChange.

REFERENCES

[1] J. Pereira, “Breaking the code: How credit-card data went out wireless door,”
The Wall Street Journal, May 4 2007.

[2] United States District Court of Massachusetts, “United States of America v.
Albert Gonzalez,” 18 U.S.C. §371, Aug. 5 2008.

[3] Office Of The Privacy Commissioner Of Canada And Office Of The Informa-
tion And Privacy Commissioner Of Alberta, “Report of an Investigation into the
Security, Collection and Retention of Personal Information of TJX Companies
Inc. and Winners Merchant International L.P.” Sep. 2007.

[4] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Require-
ments in Software Engineering. Kluwer Academic Publishers, 2000.

[5] L. Chung and J. do Prado Leite, “On Non-Functional requirements in software
engineering,” in Conceptual Modeling: Foundations and Applications, A. T.
Borgida, V. K. Chaudhri, P. Giorgini, and E. S.Yu, Eds., 2009, pp. 363–379.

[6] “The federal information security management act of 2002,” 44 U.S.C. §3541,
2002.

[7] E. Yu and J. Mylopoulos, “Understanding why in software process modelling,
analysis, and design,” in Proc. 16th Intl. Conf. on Soft. Eng., May 16-21, 1994,
pp. 159–168.

[8] J. Leite, Y. Yu, L. Liu, E. Yu, and J. Mylopoulos, “Quality-based software
reuse,” Advanced Information Systems Engineering, pp. 535–550, 2005.

[9] C. Gunter, E. Gunter, M. Jackson, and P. Zave, “A Reference Model for
Requirements and Specifications,” IEEE Software, pp. 37–43, 2000.

[10] T. Tun and J. Hall, “Developer requirements in the PF approach,” in Pro-
ceedings of the 2006 Intl. workshop on advances and applications of problem
frames, 2006, p. 90.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, 1994.

[12] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman, “Reputation
systems,” Communications of the ACM, vol. 43, no. 12, pp. 45–48, 2000.

[13] Payment Card Industry, “Data security standard v1.1,” Sep. 2006.
[14] S. Supakkul and L. Chung, “Extending problem frames to deal with stakeholder

problems: An agent- and goal-oriented approach,” in SAC ’09: Proceedings of
the 2009 ACM symposium on Applied Computing, 2009, pp. 389–394.

[15] D. Hatebur, M. Heisel, and H. Schmidt, “Security engineering using problem
frames,” Lecture Notes in Computer Science, vol. 3995, p. 238, 2006.

[16] J. Horn, “Multicriterion decision making,” Handbook of Evolutionary Compu-
tation, chap. F1.9, 1997.

[17] C. Weber, J. Current, and W. Benton, “Vendor selection criteria and methods.”
European Journal of Operational Research, vol. 50, no. 1, pp. 2–18, 1991.

[18] R. Keeney and H. Raiffa, Decisions with multiple objectives: Preferences and
value tradeoffs. Cambridge Univ Pr, 1993.

[19] J. Grefenstette, “Rank-based selection,” Handbook of Evolutionary Computa-
tion, chap. C2.4, 1997.

[20] D. Whitley et al., “The GENITOR algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best,” in Proceedings of the third
international conference on Genetic algorithms, vol. 1. Sanfrancisco: Morgam
Kaufm Publish, 1989, pp. 116–121.

[21] A. van Lamsweerde, “Reasoning about alternative requirements options,” in
Conceptual Modeling: Foundations and Applications, A. T. Borgida, V. K.
Chaudhri, P. Giorgini, and E. S.Yu, Eds., 2009, pp. 380–397.

[22] H. Xie, L. Liu, and J. Yang, “i*-prefer: optimizing requirements elicitation
process based on actor preferences,” in SAC ’09: Proceedings of the 2009
ACM symposium on Applied Computing. New York, NY, USA: ACM, 2009,
pp. 347–354.

[23] G. Elahi and E. Yu, “Trust Trade-off Analysis for Security Requirements
Engineering,” in Proc. of the 2009 17th IEEE Intl. Requirements Engineering
Conf., 2009, pp. 243–248.

[24] R. Hull and R. King, “Semantic database modeling: Survey, application and
research issues,” ACM Comp. Survey, vol. 19, no. 3, pp. 201–260, 1987.

[25] Object Management Group, “UML Superstructure, V2.1.2,” http://www.omg.
org/docs/formal/07-11-02.pdf.

[26] G. Meszaros and J. Doble, “A pattern language for pattern writing,” Pattern
languages of program design, vol. 3, pp. 529–574, 1998.

[27] A. Bittau, M. Handley, and J. Lackey, “The final nail in WEP’s coffin,” in
IEEE Symposium on Security and Privacy. Citeseer, 2006.

[28] “The RE-Tools,” www.utdallas.edu/∼supakkul/tools/RE-Tools.
[29] “The NFR Pattern Assistant,” www.utdallas.edu/∼supakkul/tools/NFRPassist.
[30] M. Jackson, Problem frames: analyzing and structuring software development

problems. Addison-Wesley, 2000.
[31] S. Supakkul, “Capturing, Organizing, and Reusing Knowledge of NFRs: An

NFR Pattern Approach,” Ph.D. dissertation, University of Texas at Dallas, 2010.
[32] M. Fowler, Analysis Patterns: reusable object models. Addison-Wesley, 2000.
[33] H. Kilov, Business Specifications: The Key to Successful Software Engineering.

Upper Saddle River, NJ, USA: Prentice Hall PTR, 1998.
[34] R. Darimont and A. Van Lamsweerde, “Formal refinement patterns for goal-

driven requirements elaboration,” ACM SIGSOFT Software Engineering Notes,
vol. 21, no. 6, p. 190, 1996.

[35] S. Withall, Software requirement patterns. Microsoft Press Redmond, WA,
USA, 2007.

[36] M. Markus, E. Fernandez, D. Hybertson, F. Buschmann, and P. Sommerlad,
Security Patterns: Integrating Security and System Engineering. John Wiley
& Sons, 2006.

[37] L. Chung, B. Nixon, and E. Yu, “Using non-functional requirements to
systematically select among alternatives in architectural design,” in Proc. 1st
Int. Workshop on Architectures for Software Systems, Seattle, Washington.
Citeseer, 1995, pp. 31–43.

[38] D. Gross and E. Yu, “From non-functional requirements to design through
patterns,” Requirements Engineering Journal, vol. 6, no. 1, pp. 18–36, 2001.

[39] M. Kolp, P. Giorgini, and J. Mylopoulos, “Organizational patterns for early
requirements analysis,” Lecture Notes in Computer Science, pp. 617–632, 2003.

[40] T. Do, Kolp, M., and A. Pirotte, “Social patterns for designing multi-agent
systems,” in Proceedings of the 15th intl. conf. on software engineering and
knowledge engineering (SEKE-2003), 2003.

[41] N. Maiden, S. Manning, S. Jones, and J. Greenwood, “Generating requirements
from systems models using patterns: a case study,” Requirements Engineering,
vol. 10, no. 4, pp. 276–288, 2005.

[42] S. Konrad and B. Cheng, “Requirements patterns for embedded systems,” in
Proc. of the IEEE Joint Intl. Conf. on Requirements Engineering (RE02), pp.
127–136.

[43] J. Fletcher and J. Cleland-Huang, “Softgoal traceability patterns,” in Software
Reliability Engineering, 2006. ISSRE’06. 17th Intl . Symposium on, 2006, pp.
363–374.

[44] J. Yang and L. Liu, “Modelling requirements patterns with a goal and PF
integrated analysis approach,” in Proc. of 32nd Annual IEEE Intl . Computer
Software and Applications Conference COMPSAC’08, 2008, pp. 239–246.

188


