
Composing Features by Managing Inconsistent
Requirements

Robin Laney, Thein T. Tun, Michael Jackson, and Bashar Nuseibeh

Centre for Research in Computing
The Open University

Walton Hall, Milton Keynes MK7 6AA, UK
{r.c.laney, t.t.tun, m.jackson, b.nuseibeh}@open.ac.uk

Abstract. One approach to system development is to decompose the re-
quirements into features and specify the individual features before com-
posing them. A major limitation of deferring feature composition is that
inconsistency between the solutions to individual features may not be
uncovered early in the development, leading to unwanted feature inter-
actions. Syntactic inconsistencies arising from the way software artefacts
are described can be addressed by the use of explicit, shared, domain
knowledge. However, behavioural inconsistencies are more challenging:
they may occur within the requirements associated with two or more fea-
tures as well as at the level of individual features. Whilst approaches exist
that address behavioural inconsistencies at design time, these are over-
restrictive in ruling out all possible conflicts and may weaken the require-
ments further than is desirable. In this paper, we present a lightweight
approach to dealing with behavioural inconsistencies at run-time. Re-
quirement Composition operators are introduced that specify a run-time
prioritisation to be used on occurrence of a feature interaction. This
prioritisation can be static or dynamic. Dynamic prioritisation favours
some requirement according to some run-time criterion, for example, the
extent to which it is already generating behaviour.

Key words: Feature Interaction, Pervasive Software, Event Calculus,
Problem Frames

1 Introduction

Given a good description of requirements for a feature-rich system, there are
advantages, including scalability and traceability [3,14,27,28,19], in solving the
feature sub-problems in isolation before composing the partial solutions to give
a complete system. Deferring the composition problem supports a better sepa-
ration of concerns between requirements analysis and the design phase, and is
in line with an iterative approach to development [22,12].

The composition problem also raises a number of questions: Are the require-
ments to be composed consistent with each other? Do the specifications to be
composed share assumptions about their environment? Do they embody consis-
tent models? How do we deal with interference between the effects of features

ttt23
Note
Ninth International Conference on 
Feature Interactions in Software and Communication Systems
ICFI 2007. pp. 141-156
Edited by Lydie du Bousquet and Jean-Luc Richier



2 Laney, Tun, Jackson and Nuseibeh

on the system’s environment? We focus on the first and last of these questions,
but in doing so address the others to varying degrees.

The contribution of this paper is an approach to resolve, at runtime, un-
desirable feature interactions arising from inconsistent requirements. Runtime
resolution techniques have many advantages over compile time techniques, in-
cluding minimal weakening of the requirements, and allowing features developed
by disparate developers to plug and play [17,4].

Our approach synthesises two complementary techniques: (i) a form of tem-
poral logic called the Event Calculus [18,26], and (ii) a way to compose problems
and solutions called Composition Frames [19]. We use a version of the Event
Calculus [18,26] to express requirements and domain properties, and system-
atically derive feature specifications in a way that makes inconsistencies more
explicit. We add a Prohibit(...) predicate to the Event Calculus, and use it in
feature specifications to prohibit events over specific periods of time, facilitating
non-intrusive composition of features. Composition Frames, introduced in [19],
are used to mediate between the features at runtime, and provide an argument
showing that they satisfy a family of weakened conjunction requirements.

The paper is organised as follows. In Section 2, we present a motivating ex-
ample whilst giving a brief introduction to the Problem Frames approach and
also the Event Calculus. In Section 3, we begin by showing how to express
requirements and domain properties in the Event Calculus before deriving ma-
chine specifications. We then consider the semantics of requirements composition
and discuss Composition Frames as a way of reasoning about the relationship
between composed requirements and composed specifications in Section 4. In
Section 5, we compare our work with other approaches. In Section 6, we dis-
cuss some lessons about the composition of requirements, of solutions, and their
relationship. We conclude in Section 7 and present future work.

2 Background

In this section we introduce the problem frames notation and philosophy, and
present an example system that will be used in Sections 3 and 4 to illustrate our
technique. We then give an introduction to the Event Calculus and motivate its
choice as a tool for addressing some composition concerns.

2.1 Introductory Example

Throughout this paper we will use an example that involves developing the
specification for a simple “smart home” application [17]. In order to facilitate
convenient living, household appliances, such as air conditioners, security alarms
and windows are increasingly connected to home digital networks. The function-
ing of these appliances is controlled by complex software systems known as smart
home applications. For example, a security feature may switch on and off lights
of the home when the homeowners are away, to give an impression that the house
is occupied. The specific example discussed in this paper has two features, and



Composing Features by Managing Inconsistent Requirements 3

is mainly concerned with the control of a motorized awning window, illustrated
below.

 

Window 
frame 

Window 
sash 

Requirements for features. The requirement for one feature is concerned
with the house security (SR), whilst the requirement for the other feature is
concerned with the climate control and energy efficiency of the house (TR).
Informal descriptions of these requirements are given below.

SR: “Keep the awning window shut at night.”
TR: “If it is hot indoors (i.e. hotter than the required temperature) and
cold outside (i.e. colder than the temperature indoors), open the awning
window.”

Analyzing a requirement, such as SR or TR, using the Problem Frames approach
involves identifying the problem context and matching it to one of several well-
known diagram forms. Starting with the SR requirement, Fig. 1 shows the prob-
lem diagram for the security feature. A problem diagram such as this shows the
relationship between descriptions of (i) a machine domain denoted by a rectangle
with two vertical stripes, (ii) problem world domains, denoted by plain rectan-
gles and (iii) a requirement denoted by a dotted oval. The machine domain
implements a solution in order to satisfy the SR requirement. In our discussions,
we may refer to a machine as a feature specification or just specification. The
problem domains are entities in the world that the machine must interact with,
such as Time Panel and Window in Fig. 1, in satisfying the requirement, in this
case, SR. The thick lines are called phenomena (a and b) representing shared
states and events between the domains involved. Dotted lines are requirement
phenomena (a and c). Broadly speaking, SR in Fig. 1 says that if the time panel
indicates night time, we expect the window to be shut.

The problem diagram for the climate control and energy efficiency feature
in Fig. 2 is similar. Again, broadly speaking, the requirement is that if the

Security
Feature

Window

SR

b

a
a

c

Time
Panel a:TiP! {NBegin, NEnd}

b:SF! {tiltIn, tiltOut}
c:W! {WindowShut,

WindowOpen}

Fig. 1. Problem Diagram for the security feature



4 Laney, Tun, Jackson and Nuseibeh

Climate
Control
Feature

Window

TR
g

e e

c

In Temp
Sensor

f Out Temp
Sensor

b

f

g

Temperature
Panel

e:TeP! {NiceTemp}
f:OTS! {OutTemp}
g:ITS! {InTemp}

b:CCF! {tiltIn, tiltOut}
c:W! {WindowShut,

WindowOpen}

Fig. 2. Problem Diagram for the climate control and energy efficiency feature

desired temperature and the indoors and outdoors temperatures are in a certain
relationship, we expect the window to be opened.

Having informally described the requirements, we now examine the properties
of the problem and machine domains.

Problem Domains. In Fig. 1, when the time falls between NBegin and NEnd
of the Time Panel (TiP) domain, it is night. The prefix TiP! specifies that values
of NBegin and NEnd are controlled by Time Panel. The awning window (W), in
both Fig. 1 and Fig. 2, has the following properties. When the window sash has
a zero degree angle on the window frame, the window is fully shut (WindowShut
is true). When the window sash has a twenty degree angle on the window frame,
the window is fully open (WindowOpen is true). When the event tiltOut is fired,
the window sash starts to tilt out until either the window is fully open, or tiltIn is
fired. Similarly, when the event tiltIn is fired, the window sash starts to tilt in until
either the window is fully shut, or tiltOut is fired. OutTemp is the temperature
outdoors and InTemp is the temperature indoors. NiceTemp of the Temperature
Panel (TeP) domain indicates the temperature level desired by the house owner.

Machine Domains. When describing the machines individually, it is neces-
sary to ensure that the specification for each feature’s machine, along with the
descriptions of the appropriate domains, is sufficient to establish that each re-
quirement is satisfied. The obligation to demonstrate this is known as the frame
concern, and the case that it holds must be made either formally or informally
depending on context. In Section 3.2, we discuss a way to do this based on deriv-
ing the feature specifications from formal descriptions of the requirements and
the window domain.

Each of these individual features in isolation can satisfy its own requirement.
However, they will conflict whenever the TR machine needs to open the window
at night time to adjust the indoors temperature by admitting cooler air, and the
SR machine needs to keep the window closed. This conflict is dynamic, in the
sense that it will only occur in certain circumstances. Our refinement of require-



Composing Features by Managing Inconsistent Requirements 5

Table 1. Some Event Calculus Predicates

Formula Meaning

Initiates(α, β, τ) Fluent β starts to hold after action α at time τ

Terminates(α, β, τ) Fluent β ceases to hold after action α at time τ

Initially(β) Fluent β holds from time 0

τ1 < τ2 Time point τ1 is before time point τ2

Happens(α, τ) Action α occurs at time τ

HoldsAt(β, τ) Fluent β holds at time τ

Clipped(τ1, β, τ2) Fluent β is terminated between times τ1 and τ2

Trajectory(β1, τ , β2, δ) If Fluent β1 is initiated at time τ then fluent β2 becomes
true at time τ + δ

ments into specifications in Section 3.2 highlights this conflict by identifying the
events, occurrence of which at certain times may lead to a failure to satisfy some
requirement. Therefore, a significant strength of this approach is that it identifies
the ways in which a feature could interact with other feature(s) in terms of event
occurrences without necessarily knowing what those other features are. Having
derived the specification for each feature we must compose the specifications in
a way that resolves this conflict at run time. We propose such a technique in
Section 4.

2.2 The Event Calculus

The Event Calculus [26], first introduced in [18], is a logic system grounded in
the predicate calculus. The calculus relates events and event sequences to ‘flu-
ents’, which denote states of a system. It has been used as a way of permitting
inconsistency in reasoning about requirements [25]. In our approach to this ex-
ample problem we use event sequences to describe feature machine behaviours;
fluents to describe problem domain states; and we use the rules by which events
cause state changes to describe the given properties of the problem domains.
Requirements are described as combinations of fluents capturing the required
states of the problem world.

We will work with a version of the calculus based on Shanahan [26] that
is intended to be simple whilst fully supporting the contribution of Section 3.
Since the machines for individual features are executed sequentially, the Event
Calculus does not have to deal with concurrent events. Concurrency that arises
due to composition of multiple features are handled by the composition controller
introduced in Section 4. Table 1, also based on Shanahan [26], gives the meanings
of the elementary predicates of the calculus.

The EC rules in Fig. 3, taken from Shanahan [26], are a way of stating that
the fluent β holds if: it held initially and nothing has happened since to stop it
holding (EC1); the event α has happened to make the fluent hold and nothing
has happened since to stop it holding (EC2); or, the event α happened that
caused some fluent β1 to hold, that in turn, after a period of time δ caused this
fluent β to hold, and again nothing has happened since to stop the second fluent



6 Laney, Tun, Jackson and Nuseibeh

HoldsAt(β, τ1)← Initially(β) ∧ ¬Clipped(0, β, τ1) (EC1)

HoldsAt(β, τ2)← Happens(α, τ1) ∧ Initiates(α, β, τ1)∧
τ1 < τ2 ∧ ¬Clipped(τ1, β, τ2)

(EC2)

HoldsAt(β, τ3)← Happens(α, τ1) ∧ Initiates(α, β1, τ1)∧
Trajectory(β1, τ1, β, δ) ∧ τ2 = τ1 + δ ∧ τ1 < τ2 ≤ τ3∧

¬Clipped(τ1, β1, τ2) ∧ ¬Clipped(τ2, β, τ3)

(EC3)

Clipped(τ1, β, τ2)↔ ∃α, τ [Happens(α, τ) ∧ τ1 < τ < τ2∧
Terminates(α, β, τ)]

(DEF1)

Fig. 3. Event Calculus Meta-rules

holding (EC3). Finally, the rule DEF1 says that the fluent β is clipped between
τ1 and τ2 if and only if there is an event α that happens between τ1 and τ2
and the event terminates the fluent β. Following Shanahan, we assume that all
variables are universally quantified except where otherwise shown.

We again follow Shanahan in adopting the common sense law of inertia,
meaning that fluents do not change value unless something happens to cause
this. That is, fluents change only in accordance with the meta-rules EC1, EC2
and EC3.

3 Formalising Feature Specifications

We now address the derivation of feature specifications to meet the requirements
in Fig. 1 and Fig. 2. In Section 3.1, we formalize our requirements and the de-
scription of the window domain by translating them into the language of the
Event Calculus described in the previous section. We then derive feature spec-
ifications in Section 3.2 by refining our requirements using the window domain
semantics. In this way, we are establishing the argument for the frame concern.

3.1 Formalizing Requirements and Domains

The natural language specifications of SR and TR, described in Section 2.1, can
be formalized as follow:

HoldsAt(IsIn(t, NBegin,NEnd), t) → HoldsAt(WindowShut, t) (SR)

HoldsAt(InTemp > NiceTemp + 1, t)∧
HoldsAt(InTemp > OutTemp + 1, t) → HoldsAt(WindowOpen, t)

(TR)

The definition of SR says that if the current time is in the range of NBegin and
NEnd, the machine should make sure that the window is shut. The definition of
TR says that if the required temperature is lower than the temperature indoors



Composing Features by Managing Inconsistent Requirements 7

Initiates(tiltOut, T iltingOut, τ) (D1)

Trajectory(TiltingOut, τ, WindowOpen, suffopentime) (D2)

Initiates(tiltIn, T iltingIn, τ) (D3)

Trajectory(TiltingIn, τ, WindowShut, suffshuttime) (D4)

Terminates(tiltOut, T iltingIn, τ) (D5)

Terminates(tiltOut, WindowShut, τ) (D6)

Terminates(tiltIn, T iltingOut, τ) (D7)

Terminates(tiltIn, WindowOpen, τ) (D8)

Fig. 4. Domain Descriptions in EC

by more than one unit, and the outside temperature is lower than the tempera-
ture indoors by more than one unit, the machine should make the window fully
open.

The natural language specification of the window, described in Section 2.1,
can be formalized as shown in Fig. 4. In other words, if the window is tilted out,
it starts tilting out (D1) until the window is fully open (D2) or the window is
tilted in (D7). Similarly, if the window is tilted in, it starts tilting in (D3) until
the window is fully shut (D4) or the window is tilted out (D5). When the window
is tilted out, it is no longer shut (D6) and when it is tilted in, it is no longer
open (D8).

3.2 Deriving Feature Specifications

The Event Calculus provides three options for dealing with a fluent expressed
using HoldsAt – namely, EC1, EC2 and EC3. Since no window events shuts or
opens the window instantaneously, the feature specification based on EC2 does
not apply. We, therefore, focus on EC1 and EC3 only.

We begin with a refinement based on EC1 which deals with the case where the
window was initially shut and nothing has changed. In our refinement, ‘initially’
or time point 0 means the time at which the system containing all composed
features is turned on.

(State the requirement)

HoldsAt(IsIn(t,NBegin,NEnd), t) → HoldsAt(WindowShut, t)

(Refine the conclusion by applying EC1)

Initially(WindowShut) ∧ ¬Clipped(0,WindowShut, t)

(Apply DEF1 to the second sub-clause)

Initially(WindowShut) ∧ ¬∃a1, t1 ·Happens(a1, t1)∧
Terminates(a1,WindowShut, t1) ∧ 0 < t1 < t



8 Laney, Tun, Jackson and Nuseibeh

(Unify the Terminate sub-clause with D6)

Initially(WindowShut) ∧ ¬∃t1 ·Happens(tiltOut, t1)∧
Terminates(tiltOut,WindowShut, t1) ∧ 0 < t1 < t

(Remove the Terminate sub-clause because it is an axiom)

Initially(WindowShut) ∧ ¬∃t1 ·Happens(tiltOut, t1) ∧ 0 < t1 < t

At this stage, we have a sub-clause whose role is to prevent a certain event
happening over a given time period. In order to simplify our feature specifica-
tions, we introduce into our Event Calculus the new predicate, Prohibit(α, τ1, τ2),
with the meaning that the event α should not occur between times τ1 and τ2.
More formally,

Prohibit(α, τ1, τ2) ≡ ¬∃α, τ• Happens (α, τ) ∧τ1 < τ < τ2

The refinement can then be completed to give the following partial specifi-
cation for SR.

HoldsAt(IsIn(t, NBegin,NEnd), t) →
Initially(WindowShut) ∧ Prohibit(tiltOut, 0, t) (SFa)

This partial specification (SFa) says that if the window is shut initially (time
0), the system should prohibit the tiltOut event from time 0 until time t in order
to keep the window shut at time t.

The second refinement based on EC3 deals with the significant case where
the machine needs to tilt in the window sufficiently before the night falls (SFb).
For space reasons, we only show the refinement results.

HoldsAt(IsIn(t, NBegin,NEnd), t) →
Happens(tiltIn, t1) ∧ t2 = t1 + suffshuttime∧
t1 < t2 ≤ t ∧ Prohibit(tiltOut, t1, t)

(SFb)

The specification ensures that the window is shut when the night falls and
remains shut during the night. Since the window is robust in its response to, for
instance, the tiltIn event when it is already shut (it remains shut), or when it is
already tilting in (it keeps tilting in), these cases are covered by SFb. Therefore,
we obtain the full specification for the security feature from a disjunction of the
conclusions in SFa and SFb as shown below:

HoldsAt(IsIn(t, NBegin,NEnd), t) →
((Initially(WindowShut) ∧ Prohibit(tiltOut, 0, t))
∨(Happens(tiltIn, t1) ∧ t2 = t1 + suffshuttime∧
t1 < t2 ≤ t ∧ Prohibit(tiltOut, t1, t)))

(SF)

Applying the same refinement technique, two partial specifications for TR are
derived. The first partial specification deals with the case where the window was
initially open and nothing has changed, whilst the second partial specification



Composing Features by Managing Inconsistent Requirements 9

deals with the significant case where the machine needs to tilt out the window
sufficiently before the temperature difference becomes large.

Again from these two partial specifications, we obtain the following full spec-
ification for the climate control and energy efficiency feature.

HoldsAt(InTemp > NiceTemp + 1, t)∧
HoldsAt(InTemp > OutTemp + 1, t) →
((Initially(WindowOpen) ∧ Prohibit(tiltIn, 0, t))∨
(Happens(tiltOut, t1) ∧ t2 = t1 + suffopentime∧
t1 < t2 ≤ t ∧ Prohibit(tiltIn, t1, t)))

(CCF)

4 Composing Features

Having derived the specifications for individual features, we now turn to the
question of how to compose requirements and feature specifications, using Com-
position Frames. Since, as Section 2.1 argued, the requirements of the features
are not fully consistent, it is not possible to meet the conjunction of SR and TR
requirements completely. We will see that the use of Event Calculus in deriving
feature specifications in Section 3 and the introduction of the Prohibit(α, τ1, τ2)
predicate in particular, now give us a more succinct approach to reasoning about
the composition controller semantics that we require. Using a family of weak-
ened conjunction operators adapted from [19], we formulate the following ways
of combining two general requirements R1 and R2, expressed in terms of control
on domains. For the window example, R1 and R2 can be regarded as SR and TR
respectively.

– Option 1: No Control. Let R1 ∧{any} R2 be the requirement that R1 and
R2 should each be met at times when they are not in conflict; but there is
no requirement that any conflicts should be resolved and if there are times
when conflicts occur, any emergent behaviour is acceptable. For example,
the window might sometimes oscillate in a partly open position.

– Option 2: Exclusion. Let R1 ∧{control} R2 be the requirement that both
R1 and R2 should hold at all times except when the system is actively
attempting to satisfy R1, R2 may not be satisfied during that time; and
vice versa. The exclusion here is symmetrical. For example, SR might not be
satisfied while TR is keeping the window open, and TR might not be satisfied
while SR is keeping the window shut.

– Option 3: Exclusion with Priority. Let R1 ∧{R1} R2 be the requirement
that both R1 and R2 should hold at all times except when the system is
attempting to satisfy R1, R2 may not be satisfied during that time. The
exclusion here is asymmetrical in favor of R1.

– Option 4: Exclusion & Fine Grain Priority. Let R1 ∧{important,R1} R2
be the requirement that R1 ∧{R1} R2 holds, except that any sub-requirement
associated with the phenomenon important should be given top priority.

Fig. 5 shows how SR and TR may be recomposed with the Composition
Frame. This diagram is a product of a simple syntactic transformation involving



10 Laney, Tun, Jackson and Nuseibeh

Composition
Controller

Window

RC

f

e

c

In Temp
Sensor

g

Out Temp
Sensor

b

e

f

g

Security
Service

Climate
Control
Servicee’

b’

a
a

a’

f’

g’

b’’

a’ b’

e’ f’ g’ b’’

Time
Panel

Temperature
Panel

a:TiP! {NBegin, NEnd}
a’:CC! {NBegin, NEnd}
e:TeP! {NiceTemp}
e’:CC! {NiceTemp}
f:OTS! {OutTemp}
f’:CC! {OutTemp}
g:ITS! {InTemp}
g’:CC! {InTemp}
b:CC! {tiltIn, tiltOut}
b’:SF! {tiltIn, tiltOut,

Prohibit(...)}
b”:CCF! {tiltIn, tiltOut,

Prohibit(...)}
c:W! {WindowShut,

WindowOpen}

Fig. 5. SR and TR fitted to the Composition Frame

two steps. First, we introduced a new machine, the Composition Controller,
between the machine domain Security Feature (SF) and the world domains (Time
Panel and Window) in Fig. 1. The original machine domain (SF) became a world
domain in the new diagram, and the phenomena a and b were split by insertion
of the new machine. Now, Time Panel, for example, reports to the new machine
(phenomena a prefixed by the Time Panel domain TiP) and the new machine may
pass it on to the SF domain (phenomena a’ prefixed by the composition controller
CC). The same transformation was also applied to the problem diagram in Fig. 2.
Second, the resulting two diagrams were merged to give the diagram in Fig. 5.

We also added the Prohibit(α, τ1, τ2) events to the phenomena b’ and b”.
These prohibit events will be generated on the basis of the Prohibit(α, τ1, τ2)
predicates in our feature specification. The composition controller will interpret
them, possibly acting on them and possibly ignoring them, in order to resolve
conflicts.

We will now specify four versions of the composition controller in Fig. 5
that meet the composition requirement RC as described by each of the conjunc-
tion operators (Options 1-4). To choose a resolution of the requirement conflict
between SR and TR is to choose the appropriate composition controller.

Composition Controller for SR ∧{any} TR. The semantics of the first
type of composition operator is straightforward. We use a simple formalism to
describe the semantics of the controller in which → should be read as stating
that the composition controller generates the event on the right when the event
on the left happens.

Definitions (1 to 4) in Fig. 6 say that the events from Time Panel, Temper-
ature Panel, Out Tempt Sensor and In Tempt Sensor are passed to the SF and



Composing Features by Managing Inconsistent Requirements 11

a:e → a’:e (1) g:e → g’:e (4)
e:e → e’:e (2) b’:e → b:e (5)
f:e → f’:e (3) b”:e → b:e (6)

Fig. 6. The semantics of SR ∧{any} TR

CCF domains respectively without prohibition. Similarly in (5 and 6) the events
from SF and CCF are propagated to the window without prohibition. That is,
all of the prohibit events transmitted in the interfaces b’ and b” to the composi-
tion controller are ignored. Since the controller applies no prohibition on events
generated by the domains, in particular by SF and CCF domains, any emergent
behaviour of the window is possible. For example, if SF has generated tiltIn to
shut the window, and as a result the window is closing, and in the mean time the
CCF domain generates the tiltOut event to open the window, the composition
controller will allow CCF to open the window.

In order to address the other composition operators, it is necessary for the
composition controller to remember and act on some of the prohibit events it
has received. For this purpose, an additional, but quite minimal, machinery is
required. Let P be a set that hold tuples of form (e,t1,t2,m) which will represent
an assertion that event e is prohibited by the specification of machine m between
times t1 and t2. We now allow the → to be guarded by an optional predicate
(enclosed in square brackets following the first operand). In the following spec-
ifications for composition controller, we assume that no machine can prohibit
another machine issuing a prohibit event.

Composition Controller for SR ∧{control} TR. The controller semantics
for dealing with events generated by world domains (1 to 4) applies to this con-
troller. Definitions (5.a to 5.d) and (6.a to 6.d) replace (5) and (6) respectively.
Note that t in the expression t1 ≤ t ≤ t2 in Fig. 7 denotes current time.

Definitions 1 to 4 and the following:
b’:prohibit (e, t1, t2) → insert((e, t1, t2, ‘SF’), P) (5.a)
b’:e [∀ t1, t2, m · t1 ≤ t ≤ t2 ∧ m 6= ‘SF’ ∧ (e, t1, t2, m) /∈ P] → b:e (5.b)
b’:e [∃ t1, t2, m · t1 ≤ t ≤ t2 ∧ m 6= ‘SF’ ∧ (e, t1, t2, m) ∈ P ] → ignore (5.c)
b’:e [∀ t1, t2, m · t1 ≤ t ≤ t2 ∧ m = ‘SF’ ∧ (e, t1, t2, m) ∈ P] → error (5.d)
b”:prohibit(e, t1, t2) → insert((e, t1, t2, ‘CCF’), P) (6.a)
b”:e [∀ t1, t2, m · t1 ≤ t ≤ t2 ∧ m 6= ‘CCF’ ∧ (e, t1, t2, m) /∈ P] → b:e (6.b)
b”:e [∃ t1, t2, m · t1 ≤ t ≤ t2 ∧ m 6= ‘CCF’ ∧ (e, t1, t2, m) ∈ P] → ignore (6.c)
b”:e [∀ t1, t2, m · t1 ≤ t ≤ t2 ∧ m = ‘CCF’ ∧ (e, t1, t2, m) ∈ P] → error (6.d)

Fig. 7. The semantics of SR ∧{control} TR



12 Laney, Tun, Jackson and Nuseibeh

Controller semantics (5.a) says that when the domain SF issues a prohibition
on the event e between t1 and t2, the composition controller records the assertion
by adding a tuple into P. When SF issues any other event, the controller passes
on the event to the window domain, only if the event has not been prohibited
by another machine for that time (5.b); otherwise the event is ignored (5.c). If
self-prohibitions happen, an error is generated, (5.d). (6.a to 6.d) describes the
controller dealing with the events from CCF in a similar fashion. In effect, this
controller gives to the SF and CCF domains mutually exclusive control of the
window domain over a period of time.

Composition Controller for SR ∧{SR} TR. The semantics of this controller
differs from the previous one in one respect: since events from the prioritized
machine SF should not be prohibited, (5.b to 5.d) are not necessary. (5.a) is
needed in order that SF can prohibit events and (5) is added in order that SF
events are passed on to the window domain unprohibited, thus giving SF events
precedence over events from CCF. CCF events are handled in the same way as
before (6.a to 6.d).

Composition Controller for SR ∧{emgOpenW indow,SR} TR. Assume that
SF and CCF can open the window in emergency situations (for example, if a fire is
detected in the house) by firing the emgOpenWindow event. Again, the semantics
of this controller differs from the previous in one respect: since the prioritized
event, emgOpenWindow, from the CCF machine should not be prohibited, (6.e)
is added. (5) already allows the emgOpenWindow event from the SF machine to
pass unprohibited.

b”:emgOpenWindow → b:e (6.e)

It is easy to see that there is nothing in the above composition controller
semantics that refers directly to the machine specifications or requirements of
the sub-problems. If we treat Fig. 5 as a composition pattern, then the controller
we have specified is actually generic, and can be applied to any requirements R1
and R2 that can be specified using the Event Calculus of Section 2.2.

5 Related Work

Our work is related, first and foremost, to the feature interaction problem, com-
mon in the field of telecommunications [16,27], as well as other domains such as
email [13]. In particular it is found in application domains where feature interac-
tions are manifest in the environment rather than inside the software [17]. While
less ambitious about the extent to which requirements can be composed, our
work is also less domain-specific. In [28], work is presented on the conjunction
of specifications as composition in a way that addresses multiple specification
languages, but the emphasis is less on the relationship between requirements
and specifications. Nakamura et al [21] propose an object-oriented approach to



Composing Features by Managing Inconsistent Requirements 13

detecting feature interactions in services of home appliances. However, their ap-
proach uses a design-time, rather than run-time, technique.

The whole area of inconsistency management offers a variety of contributions
to dealing with inconsistencies in specifications [9,10,11]. Robinson [24], in par-
ticular, reviews a variety of techniques for requirements interaction management
and Nuseibeh et al [23] discuss a range of ways of acting in the presence of incon-
sistency. None of these approaches address the decomposition and recomposition
of requirements to facilitate problem solving.

A number of formal approaches exist where emergent behaviours due to com-
position can be identified and controlled [1,7]. Our approach differs from these
in that we identify how requirements interact and remove non-deterministic be-
haviour by imposing priorities over the requirements set.

In [8], a run-time technique for monitoring requirements satisfaction is pre-
sented. This approach is taken further in [6], where requirements are monitored
for violations and system behaviour dynamically adapted, whilst making accept-
able changes to the requirements to meet higher-level goals. This requires that
alternative system designs be represented at run-time. One view of our approach
is that it involves the monitoring of when a requirement leads to a machine tak-
ing control (including event prohibition) and the taking of appropriate action.
Our approach differs further, in that it is more lightweight: we do not need to
maintain alternative system designs at run-time.

In [15] we sketched some options in composing a sluice gate control machine
with a safety machine in order to address safety concerns. That was in the
context of a more philosophical discussion of composition and decomposition.
The work presented in this paper differs in that we embody the composition as
a separate extra machine. This gives us the potential to deal with a wider range
of compositions.

The Event Calculus has previously been used in software development for
reasoning about evolving specifications [5,25] and distributed systems policy
specifications [2]. Our work should be seen as complementary to such approaches
in that it will allow inconsistencies to be resolved at run-time.

Finally, our approach is strongly related to the mutual exclusion problem
of concurrent resource usage, but with an explicit emphasis on requirements
satisfaction.

6 Discussion

In solution space terms composition controllers correspond to the notion of an
architectural connector [1]. This allows us to move backwards and forwards be-
tween architectural and requirements perspectives using the Composition Frame
as a reasoning tool.

We now consider how our work can be generalized, alternative composition
semantics and the significance of the work.

It is well understood that in producing a machine to solve a real-world prob-
lem there is often a need to implement an analogic model [14] of at least part of



14 Laney, Tun, Jackson and Nuseibeh

the problem domain. Arriving at a conceptual model that can subsequently be
implemented is often difficult in itself. In the case of the SF and CCF machines,
the models are very simple. This is partly because of the domain assumption that
the window is robust. If the window is less robust, it is necessary to explicitly
model the position of the window. Composing machines containing such models
can be complex because the model in one machine may become inconsistent with
the world, due to the world being changed by another machine.

It is not difficult to see how the Composition Frame can be generalized to any
two machines with a common domain under their control. In the specification
we used the notion of a particular machine being in control of the window,
including passive partial control specified using the Prohibit(α, τ1, τ2) predicate.
The same technique should be usable with any two machines.

Although our Composition Frame in this example deals with two problems
fitting a type of problems called the Required Behaviour Frame, it is easy to see
that it would generalize to composing two problems fitting other basic Problem
Frames [14] in a similar fashion. For example, in [20] we demonstrate how to com-
pose two problems fitting the Required Behaviour and Commanded Behaviour
frames.

Whilst much work has been done on protocols for controlling mutual access
to resources in program code, less attention seems to have been paid to the
problem of systematically gaining control over domains in the real world [14].
Working explicitly with the notion of a machine being in control at certain times,
and the use of a temporal semantics, allows us to express the concerns at the
requirements stage. In particular, our requirements composition operators make
the issue of control explicit.

7 Conclusions and Future Work

We have shown how by expressing requirements and domain properties in a tem-
poral logic we can formally derive feature specifications. In itself this refinement
style approach is not new. However, we have placed it in the context of a develop-
ment process based on Problem Frames. The value of this is that in making the
properties of the application domain explicit, we increase our confidence that the
specified machine will meet the system requirements. Furthermore, by adding
the Prohibit(α, τ1, τ2) predicate to the Event Calculus and making use of it in
machine specifications we have obtained an important new element in our tool-
box for composing solutions to feature subproblems. The composition controller
needs only to be parameterized and the composition is done non-intrusively in
the sense that we have made no changes to the specifications of the machines be-
ing composed. We have illustrated this through the application of our approach
to an awning window control system in a smart home application.

We have also shown how to combine two inconsistent requirements in terms of
the operators given in Section 4. The Composition Frame allowed us to reason
about the relationship between sub-solutions and sub-requirements. We were



Composing Features by Managing Inconsistent Requirements 15

able to specify composition at a requirements level rather than solely in design
or implementation terms.

We believe that our approach is scalable, as composition controllers have
a simple semantics. Although the specification is in terms of set operations, it
would be simple to bound the size of these sets in practice and to implement
them efficiently.

Future work is planned to formalize the relationship between our require-
ments composition operators, the Problem Frames for sub-problems, and the
composition requirements. We also need to address a wider range of composi-
tions, both in terms of the options in Section 4 and across a larger set of basic
Problem Frames. In a large Problem Frames development, sub-parts of domains
and amalgamations of domains can appear in different frames. Related to this
is the need to apply the approach to more significant case studies. It might be
possible to develop patterns for particular domain areas. Given the use of for-
mal derivations of machine specifications, we are developing a reasoning tool to
automate our approach in order to support its use in larger systems.

8 Acknowledgements

We are grateful for the support of our colleagues at The Open University, in
particular, Arosha Bandara, Leonor Barroca, Charles Haley, Jon Hall, Lucia
Rapanotti and Michel Wermelinger, and Alexandra Russo of Imperial College.
We also acknowledge the financial support of EPSRC for this research.

References

1. R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans-
actions on Software Engineering and Methodology, 6(3):213–249, 1997.

2. A. K. Bandara, E. Lupu, and A. Russo. Using event calculus to formalise policy
specification and analysis. In POLICY, pages 26–39. IEEE Computer Society,
2003.

3. D. Bjørner. Towards posit & prove calculi for requirements engineering and soft-
ware design: In honour of the memory of professor Ole-Johan Dahl. In O. Owe,
S. Krogdahl, and T. Lyche, editors, Essays in Memory of Ole-Johan Dahl, volume
2635 of LNCS, pages 58–82. Springer, 2004.

4. M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature interaction: A
critical review and considered forecast. Computer Networks, 41(1):115–141, 2003.

5. A. S. d’Avila Garcez, A. Russo, B. Nuseibeh, and J. Kramer. Combining abduc-
tive reasoning and inductive learning to evolve requirements specifications. IEE
Proceedings - Software, 150(1):25–38, 2003.

6. M. S. Feather, S. Fickas, A. V. Lamsweerde, and C. Ponsard. Reconciling system
requirements and runtime behavior. In Proceedings of IWSSD’98: 9th International
Workshop on Software Specification and Design, Ise-Shima, Japan, 1998. IEEE
Computer Society Press.

7. J. L. Fiadeiro, A. Lopes, and M. Wermelinger. A mathematical semantics for
architectural connectors. In R. C. Backhouse and J. Gibbons, editors, Generic
Programming, volume 2793 of LNCS, pages 178–221. Springer, 2003.



16 Laney, Tun, Jackson and Nuseibeh

8. S. Fickas and M. Feather. Requirements monitoring in dynamic environments. In
Proceedings of the Second IEEE International Symposium on Requirements Engi-
neering, pages 140 – 147, 1995.

9. A. Finkelstein and I. Sommerville, editors. Special Issue of the BCS/IEE Software
Engineering Journal on “Multiple Perspectives”. 1996.

10. C. Ghezzi and B. Nuseibeh, editors. Special Issues on Inconsistency Management
in IEEE Transactions on Software Engineering. 1998.

11. C. Ghezzi and B. Nuseibeh, editors. Special Issues on Inconsistency Management
in IEEE Transactions on Software Engineering. 1999.

12. J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Rapanotti. Relating
software requirements and architectures using problem frames. In Proceedings
of the 10th Anniversary IEEE Joint International Conference on Requirements
Engineering, pages 137–144. IEEE Computer Society, 2002.

13. R. J. Hall. Fundamental nonmodularity in electronic mail. Automated Software
Engineering, 12(1):41–79, 2005.

14. M. Jackson. Problem Frames. ACM Press & Addison Wesley, 2001.
15. M. Jackson. Why software writing is difficult and will remain so. Inf. Process.

Lett., 88(1-2):13–25, 2003.
16. M. Jackson and P. Zave. Distributed feature composition: A virtual architecture

for telecommunications services. IEEE Trans. Softw. Eng., 24(10):831–847, 1998.
http://dx.doi.org/10.1109/32.729683.

17. M. Kolberg, E. H. Magill, and M. Wilson. Compatibility issues between services
supporting networked appliances. IEEE Communications Magazine, 41(11):136–
147, 2003.

18. R. Kowalski and M. Sergot. A logic-based calculus of events. New Gen. Comput.,
4(1):67–95, 1986.

19. R. Laney, L. Barroca, M. Jackson, and B. Nuseibeh. Composing requirements
using problem frames. In Proceedings of 12th IEEE International Conference Re-
quirements Engineering (RE’04), pages 122–131. IEEE Computer Society, 2004.

20. R. Laney, M. Jackson, and B. Nuseibeh. Composing problems: Deriving speci-
fications from inconsistent requirements. Technical Report 2005/08, The Open
University, 2005.

21. M. Nakamura, H. Igaki, and K.-I. Matsumoto. Feature interactions in integrated
services of networked home appliances: An object-oriented approach. In S. Reiff-
Marganiec and M. Ryan, editors, FIW, pages 236–251. IOS Press, 2005.

22. B. Nuseibeh. Weaving together requirements and architectures. Computer,
34(3):115–117, 2001.

23. B. Nuseibeh, S. Easterbrook, and A. Russo. Making inconsistency respectable in
software development. Journal of Systems and Software, 58(2):171–180, 2001.

24. W. N. Robinson, S. D. Pawlowski, and V. Volkov. Requirements interaction man-
agement. ACM Computing Surveys, 35(2):132–190, 2003.

25. A. Russo, R. Miller, B. Nuseibeh, and J. Kramer. An abductive approach for
analysing event-based requirements specifications. In P. J. Stuckey, editor, ICLP,
volume 2401 of LNCS, pages 22–37. Springer, 2002.

26. M. Shanahan. The event calculus explained. LNCS, 1600:409–430, 1999.
27. P. Zave. Feature interactions and formal specifications in telecommunications.

IEEE Computer, 26(8):20–30, 1993.
28. P. Zave and M. Jackson. Conjunction as composition. ACM Trans. Softw. Eng.

Methodol., 2(4):379–411, 1993.


	Composing Features: Managing Inconsistent Requirements
	Laney, Tun, Jackson and Nuseibeh
	Introduction
	Background
	Introductory Example
	Requirements for features.
	Problem Domains.
	Machine Domains.

	The Event Calculus

	Formalising Feature Specifications
	Formalizing Requirements and Domains
	Deriving Feature Specifications

	Composing Features
	Composition Controller for SR {any} TR.
	Composition Controller for SR {control} TR.
	Composition Controller for SR {SR} TR.
	Composition Controller for SR {emgOpenWindow, SR} TR.


	Related Work
	Discussion
	Conclusions and Future Work
	Acknowledgements



