2/5

This is an example of working with Legendre polynomials.

It also introduces the idea of a generating function.

You don't need to know much about Legendre Polynomials, just that for each integer $n \ge 0$, there is a function called $P_n(x)$.

David Griffel

Generating function for P_n (1)

Problem: Let $g(u, x) = \sum_{n=0}^{\infty} u^n P_n(x)$ for $|x| \le 1$ and |u| < 1

where P_n are the Legendre polynomials. (The series converges ...)

Calculate $\frac{\partial g}{\partial u}$ and $\frac{\partial g}{\partial x}$, and show that $u\frac{\partial g}{\partial u} = (x - u)\frac{\partial g}{\partial x}$, given that

$$(x^2-1)P'_n(x) = n[xP_n(x)-P_{n-1}(x)]$$

$$nP_n - (2n-1)xP_{n-1} + (n-1)P_{n-2} = 0.$$

Solution: $\frac{\partial g}{\partial u} = \sum_{1}^{\infty} n u^{n-1} P_n(x)$, and $\frac{\partial g}{\partial x} = \sum_{1}^{\infty} u^n P'_n(x) = \sum_{1}^{\infty} u^n P'_n(x)$

Using the given formula for P_n' , we get $\frac{\partial g}{\partial x} = \sum_{1}^{\infty} \frac{nu^n \left[x P_n(x) - P_{n-1}(x) \right]}{x^2 - 1}$,

So
$$(x-u)\frac{\partial g}{\partial x} = \sum_{n=1}^{\infty} \frac{nu^n x^2 P_n - nu^{n+1} x P_n - nu^n x P_{n-1} + nu^{n+1} P_{n-1}}{x^2 - 1}$$

We calculated

$$u\frac{\partial g}{\partial u} = \sum_{1}^{\infty} n u^{n} P_{n}(x) \tag{1}$$

and

$$(x-u)\frac{\partial g}{\partial x} = \sum_{n=1}^{\infty} \frac{nu^n x^2 P_n - nu^{n+1} x P_n - nu^n x P_{n-1} + nu^{n+1} P_{n-1}}{x^2 - 1}$$
(2)

We want ...

The coeff. of
$$u^n$$
 in (2) is $\left[nx^2P_n - (n-1)xP_{n-1} - nxP_{n-1} + (n-1)P_{n-2}\right]/(x^2-1)$
= $\left[nx^2P_n - (2n-1)xP_{n-1} + (n-1)P_{n-2}\right]/(x^2-1)$.

Now use the given recurrence relation $nP_n - (2n-1)xP_{n-1} + (n-1)P_{n-2} = 0$.

Then the coefficient of u^n in (2) becomes

$$\left\lceil nx^2P_n - nP_n\right\rceil/(x^2 - 1) = nP_n.$$

This is the coefficient of u^n in (1), which proves that $u\frac{\partial g}{\partial u} = (x-u)\frac{\partial g}{\partial x}$.

Generating function for P_n (3)

4/5

Problem, part 2: Show that $g(u, x) = (1 - 2xu + u^2)^{-1/2}$ for $-1 \le x \le 1$

given that: if a solution of

$$u\frac{\partial g}{\partial u} = (x - u)\frac{\partial g}{\partial x} \tag{3}$$

is zero when x = 1 then it is zero when |x| < 1.

You're also given that $P_n(1) = 1$ for all n.

Solution: Let $\gamma(u, x) = (1 - 2xu + u^2)^{-1/2}$. Easy calculus shows γ satisfies (3).

Also $\gamma(u, 1) = (1 - 2u + u^2)^{-1/2} = (1 - u)^{-1}$ for all u,

and
$$g(u, 1) = \sum u^n P_n(1) = \sum u^n = (1 - u)^{-1}$$
.

Since the PDE is linear, $g-\gamma$ is a solution, and $g-\gamma=0$ when x=1. Therefore $g-\gamma=0$ everywhere, as required. We have shown that

$$(1 - 2xu + u^2)^{-1/2} = \sum_{n=0}^{\infty} u^n P_n(x)$$

 $(1-2xu+u^2)^{-1/2}$ is a called a **generating function** for the Legendre polynomials.

The eqn
$$(1 - 2xu + u^2)^{-1/2} = \sum_{n=0}^{\infty} u^n P_n(x)$$
 (4)

can be derived in other ways. Legendre defined the P_n in 1782 essentially by (4).

The generating fn is useful in various ways. For example, it can be used to obtain recurrence relations for the Legendre pols – assuming the gen. fn. wasn't derived using those relations.

Another application: (4) implies a nice integral formula for P_n

$$P_n(x) = \frac{1}{2\pi i} \oint \frac{u^{-n-1}}{\sqrt{1 - 2xu + u^2}} du$$
 (5)

integrated round any anticlockwise oriented closed path round the origin.

Note: (5) suggests extending $P_n(x)$ to non-integer n (cf Rodrigues)

There are generating functions for Bessel fns and many other families of functions.