

An introduction to Geometric Measure Theory Part 4: Rectifiability

Toby O'Neil, 24 October 2016

Last week...

- Finished off the energy discussion.
- Ialked about covering theorems.
- Gave a classical application of covering theorems: the Lebesgue density theorem

- Define rectifiability and (pure) unrectifiability
- Oiscuss their different properties and some useful theorems
- State area and coarea formulae

Lipschitz maps

Definition

For metric spaces (X, d_X) and (Y, d_Y) , a function $f: X \to Y$ is Lipschitz if there is $L \ge 0$ such that

 $d_Y(f(a), f(b)) \leq Ld_X(a, b)$ for each $a, b \in X$.

Theorem

If $f: A \to \mathbb{R}^m$ is Lipschitz for $A \subseteq \mathbb{R}^n$, then there is a Lipschitz map $g: \mathbb{R}^n \to \mathbb{R}^m$ such that $f = g|_A$.

Estandady Lipsong f. A -> IR where A = IR? Dedm F:R→IR b $f(x) = \inf \{f(a) + \lim_{z \to 0} (f) | z - a] : a \in A \}$ If bed, then f(b) = f(b), so $f|_A = f$ $f(b) \leq f(b) - bv ion s$ and if a A then $F(b) \leq f(a) + Lip(F) | b-a |$ To see that I is Lipsching um Lips (F) = Lip (F). for x, y E R $\tilde{f}(x) \leq i_{A}f \hat{f}(a) + Lip(f)(|y-a| + |z-y|)$ = F(y) + Lip(F) >c-y) row introhomoge x and y R

Rademacher's Theorem

Theorem (Rademacher)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a Lipschitz mapping, then f is differentiable at \mathcal{H}^n -almost every point in \mathbb{R}^n .

Theorem

If $f : \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz, then for each $\epsilon > 0$, there is a continuously differentiable map $g : \mathbb{R}^n \to \mathbb{R}^m$ such that

 $\mathcal{H}^n(\{x: f(x) \neq g(x)\}) < \epsilon.$

Sard's Theorem (basic form)

Theorem

If $f : \mathbb{R}^n \to \mathbb{R}^m$ is a Lipschitz map, then

 $\mathcal{H}^n(\{f(x):\dim(Df(x)(\mathbb{R}^n))< n\})=0.$

(The set of points where the derivative is singular has an image of zero n-measure.)

Rectifiability

Definition

A set $E \subseteq \mathbb{R}^n$ is *m*-rectifiable if there are Lipschitz maps $f_i \colon \mathbb{R}^m \to \mathbb{R}^n$ for i = 1, 2, ... such that

$$\mathcal{H}^m\left(E\setminus\bigcup_{i=1}^\infty f_i(\mathbb{R}^m)\right)=0.$$

A set $F \subseteq \mathbb{R}^n$ is purely *m*-unrectifiable if $\mathcal{H}^m(E \cap F) = 0$ for every *m*-rectifiable set *E*.

Geometric characterisations

Notation

Let $V \in G(n, n - m)$ be an (n - m)-plane through the origin. Let $P_V : \mathbb{R}^n \to V$ denote orthogonal projection onto V and let $Q_V : \mathbb{R}^n \to V^{\perp}$ denote $P_{V^{\perp}}$ (so $P_V + Q_V$ is the identity map). For $a \in \mathbb{R}^n$, 0 < s < 1 and $0 < r < \infty$, we set

$$egin{aligned} X(a,V,s) &= \{x \in \mathbb{R}^n: d(x-a,V) < s | x-a | \} \ &= \{x \in \mathbb{R}^n: |Q_V(x-a)| < s | x-a | \} \end{aligned}$$

and

$$X(a, V, s, r) = X(a, V, s) \cap B(a, r).$$

A useful lemma

Lemma

Suppose $E \subseteq \mathbb{R}^n$, $V \in G(n, n - m)$, 0 < s < 1 and $0 < r < \infty$. If

 $E \cap X(a, r, V, s) = \emptyset$ for each $a \in E$,

then E is m-rectifiable.

Lemma

Let $V \in G(n, n - m)$, 0 < s < 1, $0 < \delta < \infty$ and $0 < \lambda < \infty$. If $A \subseteq \mathbb{R}^n$ is purely m-unrectifiable and

$$\mathcal{H}^m(\mathcal{A} \cap X(x, r, V, s)) \leq \lambda r^m s^m$$
 for $x \in \mathcal{A}, \ 0 < r < \delta$,

then

$$\mathcal{H}^m(\mathcal{A} \cap \mathcal{B}(\mathbf{a}, \delta/\mathbf{6})) \leq 2 \cdot 20^m \lambda \delta^m$$

Corollary

If $V \in G(n, n - m)$, $\delta > 0$ and $A \subseteq \mathbb{R}^n$ is purely m-unrectifiable with $\mathcal{H}^m(A) < \infty$, then

$$\limsup_{s\searrow 0} \sup_{0< r<\delta} (rs)^{-m} \mathcal{H}^m(A \cap X(a, r, V, s)) > 0$$

for \mathcal{H}^m -almost every $a \in A$.

proof of harrible technial lemma WLDG $A \in B(a, \frac{1}{6}S)$ and AnX(x,V,'45) = & for all >CEA Since {x ∈ A: An X (>c, V, z, S) = Ø] has zero H measure because A is moundy unrecording 4.] For xEA, let $h(sc) = sup \{ |y-sc| : y \in A \cap X | sc, V, \frac{1}{4}s \}$ Och(n) ~ 75 and so for each Then xEA Carchove X# EAnX (se,V,Z) with $|x^{*}-x| \ge \frac{3}{4}h(x)$

 $\frac{1}{1} \frac{1}{1} \frac{1}$ Given (1), then hypotheses of lema =) $\mathcal{M}(A, C_{2i}) \leq 2 \lambda (2h(2c)))^{Sm}$ Now use baser covering theorem to find combable SEA with SQVB(2, zo sh(2c)): >ceS] drivint and QVA = UQVB(xc, +sh(n))

 S_{0} $A \subseteq \bigcup_{x \in S} C_{x}$ Hence $\mathcal{H}^{m}(A) \leq \mathcal{I}^{m}(A \cap C_{sc})$ ses $\leq 2\lambda 2^{n} \sum_{sces}^{n} (sh(sc))^{m}$ $= 2 \lambda^{2} \lambda^{2} D^{2} 2 \sum_{s \in c} \mathcal{H} \left(\sqrt{n} B(\lambda_{s})^{2}, \frac{1}{2} Sh(s) \right)$ $\leq 2.20^{n} \mathcal{H}(V^{l} \mathcal{R}(Q_{v}, \delta_{1}))$ = 2.20m Sm as damed

only remains to porce (1).

Claim: An $G_{e} \in X(x, 2h(x), V, S) \cap X(se^{*}, 2h(x), V, S)$ radnes Prove Let ZEAn Cx. Then QZE QVB/2c, 4 sh (sd) $(\Rightarrow) |Q_{1}(z-x)| \leq \frac{1}{2} \operatorname{sh}(xc).$ If h(x) < |x - z|, then $|Q_{y}(z-x)| < \frac{1}{4}S[Z-x] = \sum Z \in X(x, V, \frac{1}{4}S)$ =) 12-Z1 < h(x) \$ $5 |x-z| \leq h(x)$ and 12 1x = Z1 ≤ 2h(sc) If $\mathbb{Z} \notin X(\infty^*, 2L(nc), V, S)$, then $S|x^{-z}| \leq |Q_{v}x^{*} - Q_{v}z| \leq |Q_{v}(x^{*}-x^{*})| + |Q_{v}(x-z)|$ $< \frac{1}{2} \leq 1 \leq -\infty + \frac{1}{2} \leq \frac{1}{2$

Had work but georehnally otrong,

proof of Candan. let B be she set of points in A for whom the corollary falls. Let 20 and set $A_{i} = \begin{cases} \alpha \in A_{i}^{\prime} \\ O < r < S \end{cases} \begin{pmatrix} -m \\ rs \end{pmatrix} \begin{pmatrix} m \\ A \land X(\alpha, r, V, s) \end{pmatrix} \langle \chi \\ O < r < S \end{pmatrix} \begin{pmatrix} -m \\ rs \end{pmatrix} \begin{pmatrix} m \\ A \land X(\alpha, r, V, s) \end{pmatrix} \langle \chi \\ for \\ O < s < 'i \end{cases}$ Then $A_1 \subseteq A_2 \subseteq \cdots$ and $B \subseteq \bigcup_{k} A_k$ But (technow) lema gives for i E) $\mathcal{H}^{(A_i \cap B(a, \delta/b))} \stackrel{(a, b)}{\geq} 220^{n} \lambda S^{m} \stackrel{(b)}{\sim} \alpha \in \mathbb{R}^{n}$ \mathcal{S} $\mathcal{M}(\mathcal{B}_{n}\mathcal{B}(a, 8/b)) \leq 2.2 \mathcal{D}_{\lambda}\mathcal{S}^{n}$ But $\lambda \Pi$ arbitrary, so $\mathcal{H}^{-}(B \cap B(a, \delta/b)) = 0$ $\xrightarrow{\longrightarrow} \mathcal{H}^{-}(B) = D$ [J]

21 control Fisc VEG(n, n-m) and ULS< 1 Suppose AER is movely wrechnes and $\mathcal{H}^{m}(A) < \infty . \text{ Then for } \mathcal{H}^{m} - ae \quad a \in A \\ -m - 1 \\ \overline{D}^{m}(A \cap X(a, V, s), a) \ge (240) \quad 6^{m}(\mathscr{K})$ proof st where (*) fails is contained in UA; where $A_{i} = SaeA : \mathcal{H}^{(A_n \times A_n, V, S)} \times \lambda S^m r^m$ $(\lambda = \frac{1}{3}(120)^{-n})$ for O < r < 1/i $f \in (0, 1i)$, then (terminal) lemma gives $\mathcal{H}^{(A_i, B(a, \frac{1}{6}))} \leq 2.20^{m} \lambda S^{m} h a \in \mathbb{R}^{n}$ So $\overline{D}^{(A_i, \alpha)} \leq 2 60^m \chi < 2^{-m}$ =) $\mathcal{H}((A_i) = 0$ by rows on upper density]

s-densities

Definition

Suppose that *A* is an \mathcal{H}^s -measurable set with finite \mathcal{H}^s -measure. We define the upper and lower *s*-densities of *A* at a point *x* by

$$\overline{\textit{D}}^{s}(\textit{A},x) = \limsup_{r\searrow 0} rac{\mathcal{H}^{s}(\textit{A}\cap\textit{B}(x,r))}{(2r)^{s}}$$

and

$$\underline{D}^{s}(A,x) = \liminf_{r\searrow 0} \frac{\mathcal{H}^{s}(A\cap B(x,r))}{(2r)^{s}}.$$

Theorem

If A is an \mathcal{H}^s -measurable set with finite \mathcal{H}^s -measure, then

$$2^{-s} \leq \overline{D}^s(A, x) \leq 1$$

for \mathcal{H}^s -almost every x in A. (In fact, if $s = m \in \mathbb{N}$, such a set A is m-rectifiable if, and only if, $\overline{D}^m(A, x) = \underline{D}^m(A, x) = 1$ for \mathcal{H}^m -almost every x.)

 $\frac{7}{5xeA}$: $\overline{D}(A, 5c) < 2^{-5} = \bigcup_{k=1}^{0} B_k$ where Br = {retA: H(AnBING, r)) < k + r for ocr < 1/2} flence it is enough to those of ? Bk)= 0 for all k Fix REN and let t= 1/k+1 < 1 Let ED Can cover Bu by sets E1, E2, 1, Such that o $O < dram(E_i) < 'I_k$ 3-for $a \land i$ o $B_{1k} \cap E_i \neq \emptyset$ v Z dram(E) < H^s(Bk)+ € For end, choose DC, E Bien E; and let (=dram (E))

Then BIENE: E ANBIDG, (;) for an , Hence $\mathcal{H}^{s}(B_{k}) \leq \sum_{i} \mathcal{H}^{s}(B_{k} \cap E_{i})$ $\xi \Sigma' \mathcal{H}^{s}(A \cap B(oc_{i}, c_{i}))$ $\xi t \sum_{i=1}^{j} r_i^s = t \sum_{i=1}^{j} dram [E_i]^s$ $\xi \pm (\mathcal{H}'(\mathcal{B}_{k}) + \varepsilon)$ But Ero was arbitrary, $\mathcal{H}^{s}(\mathcal{B}_{k}) \leq t \mathcal{H}^{s}(\mathcal{B}_{k})$ دک and Ble EA SU HS (BR) LOU $\rightarrow \mathcal{M}^{s}(\mathcal{B}_{k}) = 0$ 4

prove & right hand E W206 con assume A is Bord and so, sine, ANX Los, HLA is Radon. Lot +70 and define B= {>c EA: D(A, c)>t} It is enough to man that Il'(B)=0 Fre ETU and STO We can find an open set U worm BCU and $\mathcal{H}^{S}(Anu) \land \mathcal{H}^{S}(B) + \varepsilon$ For inn sce B can find O < r < 812 st B(x,r) ch and $\mathcal{H}^{S}(A \cap \mathcal{B}(x, n)) \rightarrow t(zn)^{S}$ So Vitali Coverny The => 3 drypour Lans B1, B, , ...-

 $\mathcal{H}^{S}(\mathcal{B} \setminus \mathcal{U}\mathcal{B}_{i}) = 0$ Home $\mathcal{H}^{S}(B) + E 7 \mathcal{H}^{S}(AnU)$ > ZiH (AnBi) Since HS IJ >t Z dram(B;) subaddine. $\geq t \mathcal{H}_{s}^{s}(\mathbb{B}_{n} \cup \mathbb{B}_{i})$ $= t \mathcal{H}_{s}^{s}(B)$ But ED une artonny and can let SJO $\Rightarrow \mathcal{H}^{s}(\mathcal{B}) > \mathcal{H}^{s}(\mathcal{B})$ =) H(B)=0 550 22(A) <0 3

Besicovitch ¹/₂-conjecture

Theorem

For $m \le n$, there is a constant 0 < c(n, m) < 1 such that if $A \subseteq \mathbb{R}^n$ is an \mathcal{H}^m -measurable set with finite \mathcal{H}^m -measure and for which for \mathcal{H}^m -almost every $x \in A$,

$$\underline{D}^m(A,x) \leq c(n,m),$$

then A is purely m-unrectifiable.

It is known that c(n, 1) < 3/4 and it is conjectured that c(n, 1) = 1/2 for all *n*.

Besicovitch-Federer projection theorem

Theorem

Let A be an \mathcal{H}^m -measureable subset of \mathbb{R}^n with $\mathcal{H}^m(A) < \infty$.

- A is m-rectifiable if, and only if, $\mathcal{H}^m(P_{\mathbb{B}}(B)) > 0$ for $\gamma_{n,m}$ -almost every $V \in G(n,m)$ whenever B is an \mathcal{H}^m -measurable subset of B with $\mathcal{H}^m(B) > 0$.
- 2 A is purely m-unrectifiable if, and only if, $\mathcal{H}^m(\mathcal{P}_V(\mathcal{A})) = 0$ for $\gamma_{n,m}$ -almost every $V \in G(n, m)$.

Jacobians

Definition

Suppose that $L: \mathbb{R}^m \to \mathbb{R}^n$ is linear.

• If $m \le n$, define $||L|| = \sqrt{\det(L^* \circ L)}$.

2 If
$$n \le m$$
, define $||L|| = \sqrt{\det(L \circ L^*)}$.

(Here L* denotes the adjoint of L.)

Definition (Jacobian)

If $f : \mathbb{R}^m \to \mathbb{R}^n$ is Lipschitz, then we define the Jacobian of f by

 $Jf(x) = \|Df(x)\|$

for \mathcal{H}^m -almost every *x*, where Df(x) denotes the derivative of *f* at *x*.

TCON (Open University)

An introduction to GMT, part 4

Basic area formula

Theorem

- If $f : \mathbb{R}^m \to \mathbb{R}^n$ is Lipschitz and $m \le n$, then
 - if $A \subseteq \mathbb{R}^m$ is an \mathcal{H}^m -measurable set, then

$$\int_{\mathcal{A}} Jf(x) \, d\mathcal{H}^m(x) = \int_{\mathbb{R}^n} \mathcal{H}^0(\mathcal{A} \cap f^{-1}(y)) \, d\mathcal{H}^m(y),$$

2 if u is an \mathcal{H}^m -integrable function, then

$$\int_{\mathbb{R}^m} u(x) Jf(x) \, d\mathcal{H}^m(x) = \int_{\mathbb{R}^n} \sum_{x \in f^{-1}(y)} u(x) \, d\mathcal{H}^m(y).$$

Full area formula

Theorem

If $f : \mathbb{R}^m \to \mathbb{R}^n$ is Lipschitz and $m \le n$, then

$$\int_{A} (g \circ f)(x) Jf(x) d\mathcal{H}^{m}(x)$$

= $\int_{\mathbb{R}^{n}} g(y) \mathcal{H}^{0}(A \cap f^{-1}(y)) d\mathcal{H}^{m}(y),$

whenever A is an \mathcal{H}^m -measurable set, $g \colon \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, \infty\}$ and either

- g is \mathcal{H}^m -measurable, or
- **2** $\mathcal{H}^0(A \cap f^{-1}(y)) < \infty$ for \mathcal{H}^m -almost every y, or
- **3** $\mathbf{1}_{A}(g \circ f)J_{m}f$ is \mathcal{H}^{m} -measurable.

Applications

Length of a curve

Suppose that $f: \mathbb{R} \to \mathbb{R}^n$ is Lipschitz and one-one. Then for C = f([a, b])

$$\mathcal{H}^1(\mathcal{C}) = \int_a^b |\nabla f| \, dt.$$

Surface area of a graph

Assume that $g \colon \mathbb{R}^m \to \mathbb{R}$ is Lipschitz and for an open set $U \subseteq \mathbb{R}^m$, let $G = \{(u, g(u)) : u \in U\} \subseteq \mathbb{R}^{m+1}$. Then

$$\mathcal{H}^m(G) = \int_U \sqrt{1+ |(Dg)(u)|^2} \, d\mathcal{H}^m(u).$$

Basic co-area formula

Theorem

If $f : \mathbb{R}^m \to \mathbb{R}^n$ is Lipschitz and m > n, then

$$\int_{\mathcal{A}} Jf(x) \, d\mathcal{H}^m(x) = lpha_{m,n} \int_{\mathbb{R}^n} \mathcal{H}^{m-n}(\mathcal{A} \cap f^{-1}(y)) \, d\mathcal{H}^n(y)$$

for every \mathcal{H}^m -measurable set A.