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Last week. .. -

@ Finished off the energy discussion.
©Q Talked about covering theorems.

©Q Gave a classical application of covering theorems: the
Lebesgue density theorem
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This week -

@ Define rectifiability and (pure) unrectifiability
©Q Discuss their different properties and some useful theorems
©Q State area and coarea formulae
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Lipschitz maps -

Definition
For metric spaces (X, dx) and (Y, dy), a function f: X — Y'is
Lipschitz if there is L > 0 such that

dy(f(a), f(b)) < Ldx(a, b) for each a,b € X.

Theorem
Iff: A— R™ s Lipschitz for A C R", then there is a Lipschitz
map g: R" — R™ such that f = g|a.
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Rademacher’s Theorem -

Theorem (Rademacher)

Letf: R" — R™ be a Lipschitz mapping, then f is differentiable
at H"-almost every point in R".

Theorem

Iff: R" — R™ is Lipschitz, then for each ¢ > 0, there is a
continuously differentiable map g: R" — R™ such that

H'({x : f(x) # g(x)}) <e.
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Sard’s Theorem (basic form) -

Theorem
Iff: R" — R™ is a Lipschitz map, then

H"({f(x) : dim(Df(x)(R")) < n}) = 0.

(The set of points where the derivative is singular has an image
of zero n-measure.)
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Rectifiability -

Definition
A set E C R" is m-rectifiable if there are Lipschitz maps
fi: R™m— R"forji=1,2,... such that

Ty <E\ G f,-(Rm)> ~0.

A set F C R" is purely m-unrectifiable if H™(E N F) = 0 for every
m-rectifiable set E. |
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Let V € G(n,n— m) be an (n — m)-plane through the origin. Let
Py: R" — V denote orthogonal projection onto V and let

Qv: R" — V* denote Py. (so Py + Qy is the identity map).
ForaeR",0<s<1and0 < r < oo, we set

X(@V,s)={xeR":d(x—a,V)<s|x—a|}
={xeR":|Qu(x — a)| < s|x — a|}

and

X(af[\/,?@ = X(a,V,s)n B(a,r).
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A useful lemma -

Lemma
Suppose ECR", Ve G(n,n—m),0<s<1and0<r<oo.lf

EnX(a,r,V,s)=0foreachac E,

then E is m-rectifiable.
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LetVeG(n;n—m),O<s<1,0<5<ooand0<)\<oo.
If A C R" js purely m-unrectifiable and

HT(ANX(x,r,V,8)) < Ar™s™forx e A, 0 <r <,

then
H™(AN B(a,§/6)) <2-20M\5".

IfV e G(n,n—m),§ >0 and A C R" is purely m-unrectifiable
with H™(A) < oo, then

limsup sup (rs)""H™(An X(a,r,V,s)) >0
sS\O0 0<r<d

for H™-almost every a € A.
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Suppose that A is an H*-measurable set with finite H5-measure.
We define the upper and lower s-densities of A at a point x by

—s o H3(AN B(x,r))
D (A x) = Ilrrr1\soup @)
and
HS(AN B(x,r))
2

D°(A, x) = liminf
rN\0
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If A is an H5-measurable set with finite H*-measure, then
25 <D°(Ax)<1

for H*-almost every x in A.
(In fact, if s = m € N, such a set A is m-rectifiable if, and only if,
D" (A, x) = D™(A,x) = 1 for H™-almost every x.)
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For m < n, there is a constant 0 < c¢(n, m) < 1 such that if
A C R" js an H™-measurable set with finite H™-measure and for
which for H™-almost every x € A,

D™(A,x) < ¢(n.m),

then A is purely m-unrectifiable.

It is known that ¢(n, 1) < 3/4 and it is conjectured that
c(n,1) =1/2forall n.
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o
Besicovitch-Federer projection theorem ‘«

Theorem /
Let A be an H™-measureable subset of R" with H™(A) < co.

@ A is m-rectifiable if, and only if, Hm(PdB)) > 0 for
vnm-almost every V € G(n, m) whenever B is an
‘H™-measurable subset of B with H™(B) > 0.

Q A is purely m-unrectifiable if, and only if, H™(Py(A)) = 0 for
Ynm-almost every V € G(n, m).
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Jacobians

Definition

Suppose that L: R™ — R” is linear.

@ If m < n, define ||L|| = \/det(L* o L).
Q If n < m, define ||L|| = y/det(Lo L¥).

(Here L* denotes the adjoint of L.)

Definition (Jacobian)
If f: R™ — R" is Lipschitz, then we define the Jacobian of f by (

Ji(x) = || DI (x|

for H™-almost every x, where Df(x) denotes the derivative of f )
at x.

v
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Basic area formula -

Theorem
Iff: R™ — R" is Lipschitz and m < n, then
Q ifACR™ s anH™-measurable set, then

/A HO)dHT(x) = | HOAN (1)) dHT().

Q ifu is an H™-integrable function, then

/R u(x)JH(x) dH(x / S u(x) dH(y

xef=1(y)
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Iff: R™ — R" is Lipschitz and m < n, then
/(g o f)(x)Jf(x) dH™(x)
A

= | gWHU(ANF(y)) dH"(y),

RA
whenever A is an H™-measurable set, g: R" — R U {—o0, 0o}
and either

@ g is H™-measurable, or

Q HY(Anf(y)) < oo for H™-almost every y, or

Q 14(g o f)Jnf is H™-measurable.
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O]
Applications | -

Length of a curve

Suppose that f: R — R” is Lipschitz and one-one. Then for
C =f([a b])

b
H'(C) :/ V| dt.
a

Surface area of a graph

Assume that g: R™ — R is Lipschitz and for an open set
UCR™ let G={(u,9(u)): uec U} CR™' Then

(@)= [ 1+ g P drrw)

v
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Basic co-area formula -

Theorem
Iff: R™ — R" is Lipschitz and m > n, then

/ JF(X) dH™(X) = amn / H™M(AN () dH(y)
A Rn

for every H™-measurable set A.
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