
Chapter 2 Computationalism

Chapter 2
Every physical system in the universe, from wheeling galaxies
to bumping proteins, is a special purpose computer in the sense
that every physical system in the universe is implementing
some computation or other.

E.Dietrich, Thinking Computers and Virtual Persons.

Computationalism

2.1. Overview

In this chapter the concept of computation is examined. This is necessary in order to
make explicit the assumptions underlying computationalism, the metaphysical basis of
the unified framework of emergent artificiality described in chapter 5. The idea of a
formal system provides the starting point for the investigation given the initial
identification of computation with symbol manipulation. This leads to the notion of an
`effective procedure' which is formalized in the mathematical concept of a Turing
machine. The concept of a Universal Turing machine (UTM) and the Church-Turing
Thesis are introduced as the basis of computationalism. Various concepts of computation
are examined and computationalism is defined. The issue of connectionism is briefly
considered and arguments are presented in favour of realizing UTMs in discrete,
massively-parallel, locally-interacting media known as cellular automata. This leads to
two related concepts, viz. Universal Cellular Automata and Digital Mechanics. The
relation between computationalism and the physical world is examined in preparation for
the presentation of the unifying framework of computationally emergent artificiality
described in chapter 5. Finally, in preparation for the critique of computationalism
presented in Part III of this study, the computer metaphor is shown to be reducible to a
set of root metaphors and the link between computationalism and process philosophy is
briefly examined.

2.2. What is Computation ?

The McGraw-Hill Dictionary of Scientific and Technical Terms (Fifth Edition) defines
computation as "the act or process of calculating; the result so obtained." However,
Feigenbaum et al. (1983) maintain that "the computer [is] badly misnamed. `Computer'
implies only counting and calculating, whereas this unpromising hunk of wires, tubes,
switches, and lights [is], in principle, capable of manipulating any sort of symbol." (p.37)

Chapter 2 Computationalism

Boden (1977) argues similarly: "computers do not crunch numbers [that is, calculate];
they manipulate symbols", whereby symbol is meant "a meaningless cipher that becomes
meaningful by having meaning assigned to it by a user." (p.15) This identification of
computation with meaningless symbol manipulation leads directly to the notion of a
formal system.

2.3. Formal Systems

In this section the definition, interpretation and properties of a formal system are briefly
described.

2.3.1. Definition

A formal system is a rigorously defined, that is, unambiguous, system of symbols and
rules for forming and manipulating symbol structures in which only the form or `shape'
of the symbols and their combination in symbol structures is considered; possible content
or meaning associated with the symbols - whether intrinsic or extrinsic - is ignored. For
this reason, formal systems are often referred to as token systems (Moody,93),
emphasizing the purely syntactical (formal or structural) and semantically-independent
(meaning-less) nature of the primitives in such systems.

A formal system comprises

Q an alphabet composed of a set of distinct (discrete) primitive symbols. A finite
sequence of symbols is called a symbol structure or string

Q a grammar or set of formation rules defining how symbols in the alphabet may
be combined to generate well-formed formulae (wffs), that is, legal strings

Q a set of axioms or legal strings (wffs) which are given a priori

Q a set of inference or transformation rules defining how further legal strings (wffs)
may be generated from existing strings

A theorem is a legal string (wff) capable of being produced by a finite sequence of
applications of the inference rules to the axioms. The sequence of application of the rules
constitutes the proof or derivation of the theorem.

For example, consider the formal system with

alphabet {A,B}
grammar all strings s are wffs
axiom A

Chapter 2 Computationalism

 According to Casti (1989), this modelling relation is implicit in Newtonian mechanics. However, Cariani (1989)1

traces the explicit introduction of this model to Helmholtz, Hertz and Mach in the 19th Century and its recent
formulation to Rosen.

inference rules A 6 AB
sB 6 sBB
As 6AAs

The operator 6̀' denotes `is replaced by' and indicates the application of an inference rule
to an axiom or theorem. On this scheme, AAABB is both a legal string and a theorem.
However, ABAB is a legal string but not a theorem since it is not provable from within
(`inside') the system, that is, there is no proof sequence that leads to the production of
this string. Thus, inference rules introduce a level of constraint in addition to that
provided by grammar.

2.3.2. Interpretation of Formal Systems

According to Garnham (1988), "rules [in a formal computational system] make direct
reference only to formal properties of symbols, but the choice of rules depends on what
the symbols they manipulate stand for." (p.229) Consequently, a formal system requires
an interpretation which is achieved by assigning meaning to the tokens of the system.
On this basis, tokens are rendered symbolic in a Peircean semiotic or significative sense,
viz. a symbol (or sign) is something which stands as something (else) in some respect or
other for somebody (Fetzer,90). There is a connection between the symbol and that to
which it refers, the latter providing the symbol with its meaning; hence, the implication
that meaning (semantics) is imparted to formal systems (syntax) exosystemically, that
is, from without (`outside') the system. For this reason, meaning is held to be extrinsic
to formal systems. However, this position has been contested: For example, Pylyshyn
(1980) maintains that semantics can effectively be reduced to syntax, viz. "all relevant
semantic distinctions [must] be mirrored by syntactic distinctions - i.e. by features
intrinsic to the representation itself." (p.113). On this view, semantics is intrinsic to a
formal system because semantics is reflected in or reducible to syntax and formal
systems are syntactical entities. As will be seen in chapter 3, the debate over intrinsic vs.
extrinsic semantics has implications for the debate over intrinsic vs. extrinsic emergence
as a consequence of the link between semantics and observation on the one hand, and
observation and emergence on the other (Cariani,89) (Cariani,91).

An interpretation that satisfies (makes true) the axioms and theorems of the system is
called a model. Formal systems are of value because, under suitable interpretation,
isomorphisms, that is, one-one mappings or correspondences, may be established
between primitives in a formal system (axioms, rules of inference) and primitives in a
natural system (states, natural laws). This leads to a variant of the modelling relation due
to Newton (Fig 2.1) and briefly described as follows:1

N M

natural system formal system

observables theorems

encoding

decoding

Chapter 2 Computationalism

 Richness and truth are here viewed epistemologically: The former is associated with prediction (or anticipation)2

and the latter with explanation (or understanding).

Fig 2.1 Newtonian modelling relation.

1. Using the interpretation, encode states of the world and causal laws into axioms
and rules of inference in the formal system.

2. Derive theorems in the formal system.

3. Using the interpretation, decode theorems back into states of the world to which
they correspond.

The problem is to discover rich and true isomorphisms between parts (or the whole) of
reality and formal systems . However, it must be recognized from the outset that in order2

for this to be possible it is necessary to adopt a specific epistemology and ontology
(metaphysics) with respect to the world which entails viewing the latter in terms of a set
of context-free, determinate facts or `atoms' in specific relations to one another
(Dreyfus,93). The precise organization (structure or pattern) of these atoms at any instant
constitutes the global system state at that instant (Elstob,84). Rosen (1988) maintains that
the encoding-decoding operations must be non-formal since they involve mappings from
continuous (or analog) to discrete (or digital) domains and visa-versa. This is significant
because in a formal system, the alphabet is fixed; although possibly infinitely many
strings can be produced by applying the inference rules to previously generated strings
(theorems), the set of system primitives is itself `closed', that is, finite and static.
However, robotic-functionalist systems are able to augment (extend) or alternatively
substitute (replace) one alphabet for another using measurement processes to generate
new alphabetical primitives or symbols (Cariani,89). Such systems are hybrid analog-
digital devices, that is, systems which include non-discrete components that produce
symbols via a grounding in the external physical world (Harnad,90). It is crucial to
appreciate that a formal system - as a formal system - exists (or rather, subsists) in the
abstract, disembodied, and static sense of a Platonic form (section 2.7.2). Furthermore,

Chapter 2 Computationalism

 In chapter 7, it will be shown that formal and computational systems, as instances of "hard" artificiality (as3

artifactuality) are embodied - as idealizations - in the mind of the artificer-interpreter.

 As will be seen in what follows, the relevance of hybrid devices to the debate on computationalism is4

questionable since their capacity to provide a framework within which to address some of the problems
associated with the latter rests on the assumption that the physical world is ontologically continuous, the
position ultimately contested by proponents of the computationalist thesis (section 2.6.6).

all possible theorems for a formal system exist (or subsist) - as potentialities requiring
actualization or embodiment in a suitable medium or substrate - once its alphabet,3

grammar, axioms and inference rules have been specified since the latter are all fixed
(static). In this connection, it is interesting to note with Simon (1981) that

all mathematics exhibits in its conclusions only what is already implicit in its premises .. Hence all
mathematical derivation can be viewed simply as change in representation, making evident what was
previously true but obscure. (p.153)

This point is extremely significant to the debate on computational emergence which is
discussed in chapters 5, 6 and 7. Since hybrid devices are not digital computers -
although they belong to the class of machines with discrete computational elements
(Cariani,89) - they will not be considered further in this study .4

2.3.3. Properties of Formal Systems

There are two properties of a formal system which arise in relation to interpretation:

Q Consistency

every axiom and theorem of a formal system upon interpretation in some possible
world is a truth of that world, that is, there exists at least one non-contradictory
interpretation in which a string and its negation are not both provable, that is,
theorems.

Q Completeness

there exists a possible world for which all its truths are, under a suitable
interpretation, axioms or theorems of the formal system. This may also be stated
as the requirement that all `admissible' strings be provable. Thus, the formal
system described in section 2.3.1 is incomplete under the interpretation that all
strings are wffs; however, if another interpretation whereby this is not the case
(that is, ABAB is not a wff) can be found, then the system will be complete with
respect to that interpretation.

However, Gödel has shown that for any formal system F that is finitely describable,

Chapter 2 Computationalism

consistent and powerful enough to prove the basic facts about elementary arithmetic,

I. F is incomplete, and
II. F cannot prove its own consistency.

As Tipler (1995) states

Any formal system powerful enough to express the axioms of arithmetic contains a self-referential
statement equivalent to `This statement is unprovable'. If it is true, then the statement itself is
unprovable, and arithmetic is incomplete .. On the other hand, if the statement is false, then, since it
is equivalent to a statement of arithmetic, arithmetic would be logically inconsistent. (p.25)

Hence, any such system F will necessarily be either (i) incomplete and consistent, yet
unable to prove its consistency, or (ii) inconsistent. Gödel's theorems, which constrain
the axiomatization of the world, are limitations only on the extent to which a descriptive
law for every phenomenon may be constructed (Casti,89). However, they become
extremely relevant to the debate on computationalism since the latter in its "strong"
version is a formistic ontological thesis (section 2.7.2) and hence, must account for
everything in terms of mechanical (law-like) transformations.

2.4. Computation

The Microsoft Press Computer Dictionary (Second Edition) defines a computer as

any machine that does three things: accepts structured input [data], processes it according to
prescribed rules [a program], and produces the result as output.

Computers are essentially of two kinds: analog and digital. Analog computers are
continuous devices while digital computers are discrete devices. The metaphysical
position defined and examined in this thesis, viz. computationalism, is grounded in the
latter, viz. discrete devices; hence, the grounding relation between the digital computer
metaphor and computationalism (section 2.7). Casti (1989) defines a computer as

a machine for transforming one set of meaningless symbols into another; in short, a device for
physically executing the operations called for by the rules of a formal logical system. (p.268)

However, the concept of a computer as a symbol-manipulating machine remains
problematic since it is unclear what is meant by a machine. Kelly (1993) identifies the
following characteristics as fundamental to the notion of a machine: function, design,
determinism, explicitness, automaticity and mediacy. He further agues that "any dilution
of these properties would constitute a departure from a historical understanding of the
nature of machines and invite a charge of redefinition." (p.4) Yet, according to Toulmin
(1993), this redefinition has already taken place as a result of

the evolution of the modern scientific world view [which] transformed the concepts of `machine' and

Chapter 2 Computationalism

`mechanism' to a point at which their originators would scarcely recognize them. (p.140)

Toulmin maintains that in seventeenth century thought, a machine was regarded as "an
instrument for transmitting outside action". The notion of a `living' or `thinking machine'
was ruled out not because of anything in the empirical content of the science of the
period, but as a consequence of the canonical definitions of matter and machine
respectively. For this reason, he holds that

if Descartes, Newton or Leibniz had been shown a late 20th century computer, they could only have
reacted by declaring "That's not a `machine' at all!" (p.146)

However, certain key ideas have been retained in the modern concept of a machine. For
example, Newell (1980) defines a machine as

a system that has a specific determined behaviour as a function of its input. By definition, therefore,
it is not possible for a single machine to obtain even two different behaviours, much less any
behaviour." (p.148)

According to this view, function and determinism are held to be characteristic of modern
machines including computers which leads directly to the notion of an effective
procedure.

2.4.1. Effective Procedures

Garnham (1988) defines an effective procedure as

one that could be carried out automatically by a machine, with no human intervention - one whose
result, when computed by a person, does not depend on `intuition' or any other process not open to
objective inspection [emphasis added]. (p.225)

However, the notion of `machine' in the above definition remains somewhat vague,
thereby engendering arguments over what is to be taken as constituting the abstract
essence (or universal form) of an effective procedure. In order to resolve this problem,
it is necessary to redefine the notion of an effective (or mechanical) procedure in terms
of a machine designed specifically for this purpose. This leads directly to the concept of
a Turing machine.

2.4.2. Turing Machines

A Turing machine (Turing,36) is a formal model of an effective procedure. Turing
machines (TMs) possess the two essential properties of any model of an effective
procedure, viz. (i) each procedure is finitely describable, and (ii) each procedure consists
of discrete steps, each of which could be carried out mechanically, that is, without what
Minsky has referred to as `innovation' or `intelligence' (Minsky,67). The following
description of TMs is taken from Hopcroft and Ullman (1979):

Finite
Control

a a a a1 2 nn-1
. . . B . .

Chapter 2 Computationalism

Fig 2.2 A Turing machine.

A TM consists of a finite control, an input tape that is divided into cells, and a tape head
that scans and prints (that is, reads from and writes to) one cell of the tape at a time (Fig
2.2). The tape has a leftmost cell but is infinite to the right. Each cell of the tape can hold
exactly one of a finite number of tape symbols. Initially, the n left-most cells, for some
finite n$0, hold the input, which is a string of symbols chosen from a subset of the tape
symbols called the input symbols. The remaining infinity of cells each hold a blank,
which is a special tape symbol that is not an input symbol.

On each move and depending on the symbol in the cell scanned by (read from) the tape
head and the state of the finite control, the TM performs the following operations, viz.
changes state, prints (writes) a symbol into the cell, replacing what was printed there,
moves its head left or right one cell position or halts (that is, remains in the current state).

A Turing machine (TM) is formally defined as follows:

TM = (Q, G, ', *, q , B, F),0

where

Q is a finite set of states,
' is a finite set of allowable tape symbols,
B a symbol of ', is the blank,
G a subset of ' not including B, is the set of input symbols,
* is a next-move function, a mapping from Q×'6 Q×' ×{L,R}

(* may, however, be undefined for some arguments),
q in Q is a start state,0

F f Q is a set of final states.

Chapter 2 Computationalism

2.4.3. Extensions to Turing Machines

Various extensions to TMs such as

Q a bidirectional infinite tape
Q multiple tapes
Q nondeterministic operation
Q multidimensionality of tape
Q multiple tape heads

result in a machine which can be shown to be equivalent (in computational power) to the
standard TM (Minsky,67). TMs are equivalent in computing power to digital computers
and to the most powerful mathematical notions of computation (Hopcroft,79);
consequently, the TM has become the accepted formalization of an effective procedure.

2.4.4. Computability and Decidability

Computability is usually defined with respect to TMs. For example, Minsky (1967) states
that

a function f(x) will be said to be Turing-computable if its values can be computed by some Turing
machine T whose tape is initially blank except for some standard representation of the argument x.f

The value of f(x) is what remains on the tape when the machine stops. (p.135)

Informally, a computable function is one which can be generated by a finitely defined
mechanical procedure; conversely, an uncomputable function is one which cannot be so
generated, even by executing an infinite number of steps. For example, the number pi
is computable, even though its expansion is infinite and seemingly random, since the
procedure or algorithm for determining its expansion (to any desired number of decimal
places) is finite. Thus, the notion of an effective procedure leads to the concept of a TM
and the latter defines what is meant by computability.

The notion of decidability is related to computability via a question: Is there a general
procedure (that is, algorithm or TM) for determining in advance (deciding) whether or
not a particular program (TM) will halt after a finite number of steps ? Turing showed
that no such procedure exists (or can exist), that is, given a TM T and a tape with anf

input data set I, there is no way in general to say if T will ever finish processing I.. Thisf

`Halting Problem' is essentially Gödel's Incompleteness Theorem (section 2.3.3) as
applied to TMs. What is significant in the context of this study is the question of which
processes are Turing-computable and which (if any) are not; clearly, the possibility of
conceiving the existence of uncomputables as such does not entail the non-existence of
computational analogues of natural phenomena such as matter, life and mind (chapters

Chapter 2 Computationalism

 In fact, on the "strong" computationalist position, natural phenomena such as matter, life and mind are5

themselves computational in nature.

4 and 5) . Furthermore, according to Cariani (1989), the question of computability only5

arises if the tapes of a TM are allowed to be infinite in length; TMs with finite tapes are
equivalent to finite state machines (FSMs). On this basis and given the Finite Automaton
(section 2.5.3) and `finite nature' (section 2.6.6) theses, it follows that the universe must
be a FSM and natural phenomena must all be computable.

2.4.5. Universality and The Universal Turing Machine (UTM)

Newell (1980) provides the following informal definition of the notion of universality:

For any class of machines, defined by some way of describing its operational structure, a machine

of that class is defined to be universal if it can behave like any machine of the class .. The notion of
universality thus arrived at is relative, referring only to a given class of machines [emphasis added].
(pp.149,150)

The latter position is endorsed by McMullin (1993a) who maintains the distinction
between computation universality and construction universality, whereby the latter is
understood the ability of a machine to build or construct any other machine in the same
class given the appropriate program and materials (chapter 5). (Importantly, universal
construction necessitates support for self-reproduction. This is because a universal
constructor can construct all machines including the machine that is itself.) Minsky
(1967) defines a Universal Turing machine (UTM) as follows:

A universal Turing machine (UTM) is a [Turing] machine U with the property that for each and every
Turing machine T, there is a string of symbols d such that if the number x is written in standardT

notation on a blank tape, followed by the string d , and U is started in q on the leftmost symbol ofT 0

d ,, then when the machine stops the number f(x) will appear on the tape, where f(x) is the number thatT

would have been computed if the machine T had been started with only x on its tape. (p.136)

McMullin (1993a) maintains that a UTM is doubly universal since

it is firstly universal with respect to all [Turing machine] computations (which give it its original
title); but this then turns out (at least if the Church-Turing Thesis is accepted) to mean that it is
universal with respect to the computations of any effective computing system whatsoever, not `just'
those of the [Turing machine] system. (p.4)

According to Newell (1980), "the class of all Turing machines is very large - by using
enough states (and it may take a very large number) the input-output behaviour of any
physical mechanism can be approximated as closely as required." (p.152) It must be
remembered that digital computers can only approximate UTMs since no physical
machine has an infinitely large memory (or `tape'). TMs therefore provide an idealistic
model of computation (Garnham,88) since physical computers are, in reality, finite state

Chapter 2 Computationalism

 Additional support for this position is provided by evolutionary cosmology (chapter 6).6

machines (FSMs) (Cariani,89). This limitation certainly applies to artifactual computers,
that is, to computational devices; however, it is an open issue whether the universe itself
is finite or infinite . Consequently, it is an open issue whether the universe is a UTM or6

FSM (assuming it is ontologically computational). Hence, TMs (as originally conceived)
are ontologically-idealistic as opposed to existentially-constructable entities.

The concept of universality described above is intrinsically Platonic or formistic (section
2.7.2) in nature: Functionality is defined purely in abstract behavioural terms, the
situatedness of functional activity, that is, the context in which behaviour is regarded as
functional, being ignored. While it may indeed be the case that two systems are universal
with respect to the Platonic (or space-time independent) aspect of their functionality, this
functionality may necessitate specific spatio-temporal conditions in order to be realized.
If this is the case, then can it really be said that the functionality of two systems operating
in two different spatio-temporal contexts is identical ? Pattee (1995a), in the context of
a discussion of the evolution of biological organisms, makes a similar point regarding
the necessity of including spatio-temporal responsivity requirements in the definition of
functionality: Two systems must generate identical behaviour within identical spatio-
temporal observation frames in order to be considered functionally equivalent. Only by
assuming a Platonic position is it possible to reduce functionality to context-free
behavioural activity. According to Heidegger, however, the capacity for conceiving
function in this way is restricted to a particular class of systems with the capacity for
abstract, thematic reflection (chapters 1 and 6), viz. human beings (or Dasein); on his
view, the abstract Platonic conception of functionality is incomplete since human beings
are concretely `thrown' into the historical situation that is `world' (chapter 6). Thus, there
is at least one kind of Being that is not adequately conceived in terms of ahistorical
functionality.

2.4.6. The Church-Turing Thesis (CTT)

The Church-Turing Thesis (or CTT) states that any process which could naturally be
called an effective procedure can be implemented by running a suitable program (TM
specification) on a UTM. An alternative formulation of the CTT (Hopcroft,79) is that

the intuitive notion of `computable function' can be identified with the class of partial recursive
functions, i.e. the class of integer functions computable by Turing machines, assuming that the
intuitive notion of ̀computable' places no bounds on (i) the number of steps or (ii) the amount of
storage (i.e. space-time requirements) involved in computation.

Although one cannot prove that the TM model is equivalent to the intuitive notion of an
effective procedure or computer, there seem to be compelling arguments for this
position, specifically the fact that universal recursive functions, Post canonical systems,
Markov algorithms etc are all equivalent to UTMs. Minsky (1967) asserts that "any

Chapter 2 Computationalism

procedure which could `naturally' be called effective, can in fact be realised by a (simple)
machine." (p.105) However, he recognizes the problems associated with this position,
which is an informal statement of the CTT, emphasizing that it is "a subjective matter,
for which only argument and persuasion are appropriate; there is nothing here we can
expect to prove." (p.108) As Newell (1980) states,

Church's statement is called a thesis because it is not susceptible to formal proof, only to the
accumulation of evidence. For the claim is about ways to formalize something about the real world,
i.e. the notion of machine or determinate physical mechanism. (p.150)

The CTT raises a number of interesting issues. For example, Minsky (1967) states that

[the] most obvious application [of the notion of an effective procedure] is to computation and
computers, but I believe it is equally valuable for clear thinking about biological, psychological,
mathematical, and (especially) philosophical questions. (p.viii)

This generic application of the concept of an effective procedure (or computation)
throughout the phenomenal hierarchy leads to the notion of computationalism.

2.5. Computationalism

The origins of computationalism, the metaphysical view that the world at its most
fundamental level is computational in nature, can be traced to two related disciplines,
viz. computational psychology and the philosophy of mind. The essence of the original
notion is captured in the following statement of McMullin (1993b), viz.

all mental states and events, can, in principle, be completely reduced, without residue, to states and
events of some universal computer (p.1)

and is clarified by the dictum "mind is to brain as program is to hardware" (Johnson-
Laird,88), a computational variant of Cartesian mind-matter dualism referred to in the
literature as the "strong" AI thesis (Searle,80) or, more explicitly, computationalism
(Dietrich,90) (Shapiro,95). Sharples et al. (1989) define computationalism as

the notion that the operation of the mind can be explained entirely in terms of the formal, or
functional, properties of a computational system.

Thus, computationalism is a type of functionalism (chapter 1), the latter of which is
associated with notions such as multiple-realizability and medium independence (chapter
4). The functionalist position can be formally stated as follows:

a computational state s is identical to a computational state s if the causal1 2

relations holding between s , its inputs, outputs and other states are identical to1

the casual relations holding between s , its inputs, outputs and other states.2

Hardware Software

Brain

Body

Mind

Life

MatterComputation

(Mentalism)

(Vitalism)

(Materialism)

Chapter 2 Computationalism

Fig 2.3 Computational Phenomenal Dualisms.

Significantly, the identity relation holding between two computational states makes no
reference to the properties of the substrate or media in which the computations are
realized beyond the capacity of these media to support computation. Hence, in
computationalism, form is separable from matter and the mind can be understood
without doing neurophysiology since it is independent of the brain in the same way that
programs are independent of hardware (Searle,80). It is important to appreciate that
multiple realizability is a general statement about the functional or causal equivalence
of phenomena rather than a specific statement about the nature of phenomena such as
mind. This makes possible the extension of the original mentalistic concept of
computationalism to other phenomenal domains such as biology leading to the vitalistic
dualism, `life is to body as program is to hardware', known as the "strong" A-Life thesis
(Sober,91). However, its application to physics leads to an interesting situation
necessitating an inversion of the hardware-software relation: `matter is to computation
as program is to hardware'. What was previously identifiable as hardware (matter) in the
mind-brain and life-body relations is now defined as software and what was previously
associated with software (computation) is now identified with hardware. However, are
`soft-hardware' and `hard-software' coherent concepts ? In Kantian terms, moving from
phenomena (the physical) to noumena (the metaphysical) has necessitated inverting the
hardware-software dualism (Fig 2.3):

The dissimilarity between `computational-materialism' and other computational
phenomenal dualisms is described by Rosen (1987) as follows:

Although .. the mechanical theories of physics (and the field theories, too, for that matter) are closely
related in their form to the ideas of Turing, and to the formalizations his machines execute, there is
one obvious difference. Namely, a system of particles is, in a sense, all hardware. The dualism
between state (phase) and dynamical law is at root not the same as the dualism between hardware and
software, which is inherent in the `mechanization' of formal processes by Turing machines. For
instance, in our little embodiment of mechanics by a two-tape machine, the tape processor (the
`hardware' of the machine) has no counterpart in the physics of the system; the mechanical system
itself has, in turn, become all software. (p.9)

Chapter 2 Computationalism

Assuming the above inversion is valid, it is worthwhile assessing the status of the
computationalist thesis. There are at least three perspectives on this issue: First, there are
those such as Bringsjord (1996) who maintain that computationalism, as a thesis about
mentality, can be and already has been refuted using variants of Searle's Chinese Room
argument; second, there are others such as McMullin (1993b), who are sympathetic to
this position, yet maintain that the arguments used to support it are weak; and finally,
there are those such as Dennett (1995) who continue to uphold variants of the
computationalist position on the basis of the following statement made by Pylyshyn
(1980), viz.

computation is the only worked-out view of process that is both compatible with a materialist view
of how a process is realized and that attributes the behaviour of the process to the operation of rules
upon representations (p.113)

While there may be grounds for refuting computationalism within AI, cognitive science
and the philosophy of mind, it is unclear at the outset whether (and if so, how) such
arguments extend to computational life (Keeley,93) and/or computational matter
(Fredkin,90). Statements such as the following due to Newell et al. (1976) support this
latter cautionary view, viz.

the phenomena surrounding computers are deep and obscure, requiring much experimentation to
assess their nature. (p.114)

General formulations of computationalism, such as that any physical structure in which
states and state transitions can be interpreted as representing some other system is a
computer (Churchland,92), support the application of the concept throughout the
phenomenal hierarchy. For example, the idea that the world is a formal system of the
Turing machine kind is expressed in the following speculation by Hofstadter (1979):

One could suggest .. that reality is nothing but one very complicated formal system. Its symbols do
not move around on paper, but rather in a three-dimensional vacuum (space); they are the elementary
particles of which everything is composed .. The [formation and transformation rules] are the laws
of physics, which tell how, given the position and velocity of all particles at a given instant, to modify
them, resulting in a new set of positions and velocities belonging to the `next' instant. So the theorems
of this grand formal system are the possible configurations of particles at different times in the history
of the universe. The sole axiom is (or perhaps, was) the original configuration of all the particles at

the `beginning of time'. (p.53)

This position is endorsed by Tipler (1995) who defines the human being as

nothing but a particular type of machine, the human brain as nothing but an information processing
device, the human soul as nothing but a program being run on a computer called the brain. Further,
all possible types of living beings, intelligent or not, are of the same nature, and subject to the same
laws of physics as constrain all information processing devices [emphasis added]. (p.xi)

However, perhaps the boldest statement of the computationalist thesis is that appearing

Chapter 2 Computationalism

in (Tallis,94):

Physical systems are .. computational systems, processing information, just as computers do, and
scientific laws may be considered as algorithms. This extraordinary view is enhanced by the
observation that in post-classical (quantum) physics many physical quantities normally regarded as
continuous are in fact discrete: nature is thus more amenable to digitization. In other words, the
universe is not merely a huge computer: it is a huge digital computer. (p.31)

In order to further clarify the notion of computationalism, three related theses will now
briefly be examined: (i) the Physical Symbol System Hypothesis, (ii) the Physical
Church-Turing Thesis, and (iii) the Finite Automaton Thesis.

2.5.1. The Physical Symbol System Hypothesis (PSSH)

The Physical Symbol System Hypothesis (PSSH) (Newell,76) states that

a physical symbol system has the necessary and sufficient means for general intelligent action

whereby `general intelligent action' is meant "behaviour appropriate to the ends of the
system." (p.116) On this definition, a physical symbol system is necessarily a teleological
(goal-directed) entity. While this might be acceptable for mind and life, the notion of
teleological matter is incoherent with respect to Newtonian and post-Newtonian physics
and the PSSH assumes the latter. Hence, in order to facilitate generalization of the PSSH
to life and matter, it is necessary to redefine it as follows:

a physical symbol system has the necessary and sufficient means for generating phenomena such as
matter, life and mind.

Newell et al. (1976) define a physical symbol system (PSS) as

Q a set of physical patterns called symbols

Q a set of physical structures called expressions composed from a number of instances (or tokens) of
symbols related in some physical way

Q a set of processes for producing new expressions (symbol structures) from existing expressions

The crucial issue for Newell (1980) is realizability:

a physical symbol system .. is realizable in our universe [and] its notion of symbol is a priori distinct
from the notion of symbol that has arisen in describing directly human linguistic, artistic and social
activities. (p.141)

Simon (1981) expands on the latter point by asserting the ontological nature of the PSS
concept:

The computer is a member of an important family of artifacts called symbol systems, or more

Chapter 2 Computationalism

explicitly, physical symbol systems. Another important member of the family (some of us think,
anthropomorphically, it is the most important) is the human mind and brain. (pp.26-27)

Two notions are associated with a PSS:

Q Designation: An expression designates an object if, given the expression, the system can either (i)
affect the object itself or (ii) behave in ways depending on the object.

Designation therefore necessitates establishing the equivalent of encoding (sensor,
measurement) and decoding (effector, control) relations between objects and a PSS.

Q Interpretation: The system can interpret an expression if the expression designates a process and if,
given the expression, the system can carry out the process.

According to Pylyshyn (1980), "[syntactic or symbolic] expressions are `interpreted' by
the built-in functional properties of the physical device." (p.113) Thus, a PSS is argued
to be capable of self-interpretation. However, the most important feature about PSSs as
regards the bearing of the PSSH on the issue of computationalism is that

symbol systems form a class - it is a class that is characterised by the property of universality ..
Central to universality is flexibility of behaviour .. a universal machine is one that can produce an
arbitrary input-output function; that is, that can produce an independence of output on input.
(Newell,80;p.147)

As Newell (1980) states, "our situation is one of defining a symbol system to be a
universal machine, and then taking as a hypothesis that this notion of symbol system will
prove adequate to all of the symbolic activity this physical universe of ours can exhibit,
and in particular all the symbolic activities of the human mind." (p.155)

From the above, it is observed that PSSs are distinguishable from formal systems
(section 2.3) in two ways: (i) the primitives and operations in a PSS are physical and
hence, subject to the laws of physics; (ii) symbols in a PSS exist ontologically, that is,
independent of human interpretation. If the laws of physics are themselves recast in
formal (syntactic) terms and a "strong" formalist or computationalist view of reality is
assumed (chapters 4 and 5), PSSs become identical with formal systems. Newell et al.
(1976) maintain that a PSS is part of a larger world which includes objects, that is,
entities which are not PSSs. This might appear to entail the view that the reduction of
PSSs to formal systems cannot be complete (that is, totalistic). However, under
formalism, the ontology of objects is also ultimately formal (section 2.5.2); hence, the
dualism of objects and physical symbol systems reduces to an ontologically monistic
formal system. The two kinds of entities can be functionally distinguished for certain
kinds of PSS: a mental or vital PSS is goal-directed whereas an object (material PSS) is
not; however, whether such distinctions are intrinsic or extrinsic is an open issue.

Chapter 2 Computationalism

 Furthermore, and as will be seen in chapter 6, the conception of Being (or existence) in static (that is, Platonic)7

terms is highly problematic.

2.5.2. The Physical Church-Turing Thesis (PCTT)

Randall (1996) defines four increasingly "strong" versions of the Church-Turing thesis:

CTT(1) All computable things correspond to a lambda-form or Turing Machine. (Mathematical)

CTT(2) All physical things correspond to a Turing Machine. (Physical)

CTT(3) All thinkable things correspond to a Turing Machine. (Mental/Epistemological)

CTT(4) All things correspond to a Turing Machine. (Ontological)

Acceptance of the validity all four versions of the CTT leads Randall to argue for the
existence of immaterial (non-physical) computables only:

computable uncomputable

physical dissolution to void rejected by CTT(2) &
(material) (forms = reality) dissolution to void

non-physical accepted by all rejected by CTT(4)
(immaterial) CTTs

Table 2.1

On Randall's view, CTT(2) or the Physical Church-Turing Thesis (PCTT) must
ultimately be replaced by CTT(4), that is, the Ontological CTT (OCTT). This is a
consequence of the dissolution to void suffered when physical entities are analysed in
order to determine what constitutes their `similarity in difference': The reality of physical
entities is defined by the extent to which they participate in Platonic forms (or ideas) to
which the mind has access (section 2.7.2); hence, entities can have no real existence apart
from the forms. On Randall's view, physics must be reduced to form since "any attempt
to define physical things as things-in-themselves apart from the forms suffers dissolution
into nothingness, as [happens] for static sets." (p.10) However, the metaphysical nature
of the commitment to identify existence or Being with form must be recognized (chapter
1) : Randall's reduction of the PCTT to the OCTT only holds if Platonism is assumed a7

priori ; crucially, an existential-computationalist position is consistent with the PCTT.
Moreover, Randall's claim that physical uncomputables are meaningless is problematic
since examples of physical uncomputables have been documented in the literature
(Calude,95). However, the OCTT is the basis of computationalism; hence, although the
PCTT provides a sufficient framework within which to investigate the emergence of

Chapter 2 Computationalism

 To the extent that mind (more specifically, consciousness) is a natural, yet non-physical phenomenon, this8

subsumption becomes necessary.

artificial analogues of natural physical phenomena from a computational substrate, the
PCTT must be viewed as subsumable by the OCTT .8

Rosen (1991) describes the PCTT as follows:

through equivocation on the word `machine', Church's Thesis can be painlessly transmuted into an
assertion about the material world itself; an assertion about what can be entailed in the causal world
of material phenomena. That is, Church's Thesis can be interpreted as an assertion about the structure
of the category of all models of any material systems. (p.9)

According to Rasmussen (1991b), the PCTT entails holding that "a universal computer
at the Turing machine level can simulate any physical process." (p.768) The problem
with this position is that the word `simulate' is ambiguous: Does it imply appearance (as-
if, simulation proper) or reality (instantiation, realization) ? On the "strong" (ontological)
interpretation of computationalism it must be the latter. (The difference between
simulation, realization and emulation is discussed in chapter 4).

Svozil (1993) maintains that the CTT includes a physical as well as a syntactic claim by
specifying which types of computations are physically realizable: "As physical
statements may change with time, so may our concept of effective computation." A
corollary of this is that digital computers are physical systems which are universal up to
finite complexities. Thus, according to Svozil, physics constrains computation. However,
if the PCTT is afforded ontological status the position is reversed. As Rosen (1991)
argues, the implications of the CTT for the mathematical and physical worlds are quite
different:

In mathematics, Church's Thesis does no .. damage, because whatever is not simulable is thereby
relegated to the category of `ineffective' .. Gödel's Theorem already tells us that, in these terms,
almost all of Number Theory is thereby rendered `ineffective'. But the material world is different;
whatever happens, or can happen in it, must thereby be `effective'; at least, it must be so in any
normal usage of that term. Hence the equation `effective' = `simulable', which is the essence of
Church's Thesis boxes us in from the outset to a world of simple systems; a world of mechanisms.
(p.11)

Thus, while physics may constrain computation, computation also constrains physics.
(This issue is examined further in chapter 4 in the context of a computational theory of
matter.)

2.5.3. The Finite Automaton Thesis (FAT)

This "strong" (or ontological) version of the finite automaton thesis (FAT) states that the
universe is a finite automaton, whereby finite automaton is meant a computational device

Chapter 2 Computationalism

 That is, the situatedness of human observers within the physical universe.9

which is finite in all its features, for example, a TM with a finite number of internal
states, finite number of input and output symbols, finite tape etc. This version of the
thesis involves the following two claims (Svozil,93), viz.

Q the `laws of nature' are mechanistic, that is, computable in the Church-Turing sense

Q under certain `mild' assumptions, the computational capacities of physical systems are finite

The `weak' (epistemological) version of the FAT merely states that there are phenomena
in automaton universes which translate into physics and which are only sensibly analyzed
using algorithmic techniques. The FAT is closely connected to the finite nature thesis
(section 2.6.6); however, it is an open issue whether the universe it itself finite or
infinite. Hence, the status of the FAT is a priori undecided and, perhaps, undecidable,
given the endosystemicity of human observers . However, computationalistically, the9

universe is either a finite automaton or a UTM.

2.5.4. Concepts of Computation

Emmeche (1993) (1994) proposes to extend the definition of computation by
distinguishing four concepts (as contrasted with kinds) of computation:

Q COC1: Formal or algorithmic (symbolic) Reality
Q COC2: Informal, intuitive, or `mathematical' Mind
Q COC3: Biological Life
Q COC4: Physical or non-representational (non-symbolic) Matter

Emmeche (1994) maintains that the problem of the different concepts of computation
may be resolved by adopting a pluralistic stance, viz. "that we simply face different kinds
of computations." (p.19) However, this view is incoherent: If there are many kinds of
computations, what is it that allows them to be identified as computations ? It must be
that they are members of the universal class of computations. Hence, computational-
pluralism must, somehow, reduce to computational-monism.

Following Fetzer (1990), Emmeche (1994) further argues for a semiotic (significative
or sign-based) understanding of the concept of computation, viz.

it is by no means clear how to speak rationally about computations without presupposing the
existence of a complex system including (a) a conceptual structure of symbols, rules of
manipulations, and well-formed strings as axioms to be manipulated; plus (b) an organism or a well-
designed physical device that in some way can do the manipulations; and thirdly, (c) an interpreter,
that makes sense of (a) and (b). (p.19)

However, assuming the ontological form of the PCTT (section 2.5.2), (i) these triadic

Chapter 2 Computationalism

 However, as stated in section 2.5.2, the existence of physical uncomputables has been documented in the10

literature. According to Cariani (1989), hybrid analog-digital devices constitute examples of finite, physical,
uncomputable systems capable of open emergence (chapters 3 and 6). On this hylomorphic view, the physical
universe is held to be finite in extent yet offering infinite capacity for classification via measurement. It is hard
to see how this eliminates the role of infinity completely and, if Knight's criticisms of infinities in ARNNs
extend to Cariani's evolutionary robotic devices, it must be the case that the equivalent of a TM tape of infinite
length has been tacitly reintroduced into the picture.

functions must be realizable by a PSS that is itself a formal system and (ii) COC2-COC4
must be reducible to COC1.

2.5.5. Definition: Computationalism

This metaphysical position may be stated in Kantian terms as follows: The noumenal
reality underlying phenomenal appearance is computational; hence, all natural and
artificial phenomena are, ultimately, computational phenomena. This statement is to be
interpreted in the "strong" ontological sense implied by the maxim, "Being is
computation" (chapter 6), and not in the "weak" epistemological sense that computation
merely provides a means for understanding (explaining and predicting) the various
manifestations of Being.

2.5.6. Analog Devices and Connectionism

There may be a problem with the Church-Turing thesis given that it was originally
formulated in the context of discrete computational devices, that is, digital computers.
Siegelmann (1995) has argued that analog connectionist devices such as analog recurrent
neural networks (ARNN) have super-Turing capabilities; consequently, there may be a
need to complement the Church-Turing thesis with an analog computation thesis.
However, others have argued that this view is incorrect since it assumes, for example,
that neural network coefficients can have arbitrarily large accuracy, that is, an infinite
amount of information may be packed into each coefficient (Knight,96). Such devices,
it is argued, are not physically realizable and since they clearly violate the finite automata
thesis (FAT) (section 2.5.3) and Fredkin's finite nature thesis (section 2.6.5) will not be
considered further herein .10

Regarding connectionist systems (that is, networks of elements with weighted links),
Kelly (1993) observes that "there is some dispute about the real nature of connectionism,
whether it is truly a new paradigm or is merely another mode of implementation of
essentially classical systems." (p.202) This observation is supported by (1) the
computational equivalence of discrete-state artificial neural networks and Turing
machines (Bringsjord,90), (2) the ontological relation between declarative (or functional)
programs and artificial neural networks (Salt,96), and (3) the formal equivalence of
discrete-state artificial neural networks and symbolic computational systems (such as
classifier systems and semantic networks) which can be shown by reduction to a generic

Chapter 2 Computationalism

mathematical formalism based on graph-theoretic concepts (Farmer,90). Since discrete
nature is assumed in this study (section 2.6, chapters 4 and 5), analog devices and neural
networks must be reducible to discrete devices.

2.6. Implementing Computationalism

In this section the cellular automaton formalism, which provides the means for realizing
the computationalist world view described in section 2.5, is introduced. Only
deterministic, that is, non-probabilistic, cellular automata (CAs) are considered.
However, this does not present any problems since nondeterminism adds nothing to the
power of TMs (section 2.4.3) and the class of CAs which are of ultimate interest in the
context of this study, viz. Universal CAs (or UCAs), are computationally equivalent to
UTMs.

2.6.1. From Turing Machines to Cellular Automata

Putnam (1988) maintains that

functionalists have abandoned the Turing machine formalism, and so far we have only the vaguest
descriptions of what the computational formalism is supposed to be. Without a computational
formalism, the notion of a `computational state' is meaningless. (p.84)

Although Putnam's comments were made in the context of an evaluation of the
functionalist programme within cognitive science and the philosophy of mind, they have
much broader implications for an ontological computationalism grounding artificial
analogues of natural phenomena such as matter, life and mind. Specifically, there is a
need to redefine computationalism in terms of a new formalism, one which will support
functional isomorphisms with natural phenomena. Assuming an emergentist perspective
(chapters 3 and 5), it becomes necessary to examine the way in which a computational
ontology must be realized in order to provide the ground for an artificial analogue of the
lowest level in the natural phenomenal hierarchy, viz. the material or physical level.

Hillis (1985) describes the two senses in which `computational model' may be
understood: (i) "a model of all possible computational worlds", that is, a
"metacomputational theory" or (ii) "a model of a particular computational system" and
"physics may be such a model" (p.142). Analogously, Pattee (1995a) differentiates
between two interpretations of computation: (i) "computation as a universal, abstract
dynamics to which even the laws of physics must conform" and (ii) "computation as a
locally programmable, concrete, material process strictly limited by the laws of physics."
(p.29) Given the nature of the study described in this thesis, it could be argued that
`computational model' must be understood in the first sense since computationalism is
a metaphysical position and hence, encompassing of the physical (chapter 1). However,
given the specific form of computationalism presented in this study, viz. a
computationalism supporting the emergence of artificiality (or artificial analogues of

Chapter 2 Computationalism

natural phenomena), the computational model must support computational analogues of
physical concepts since the physical level constitutes the lowest level in the phenomenal
hierarchy.

In the context of a discussion of `why computer science is no good', Hillis (1985) asks
whether or not there will ever be "a model of computation that is as powerful and
beautiful as our models of physics", maintaining that "computer science is missing many
of the qualities that make the laws of physics so powerful: locality, symmetry, invariance
of scale." (p.137) Locality means that objects must be in contact in order to interact with
each other; action at a distance is not allowed. As Hillis states, "our old models of
computation impose no locality of connection, even though the real world does." (p.139)
(This Newtonian view is problematic since it ignores non-local physical interaction
between particles at the quantum level. However, as discussed in chapter 5, attempts
have been made to overcome such problems within classical or Newtonian systems.)
Symmetry implies reversibility, viz. physical laws apply irrespective of the `direction' of
time. Again, as Hillis states, "in physics .. many fundamental quantities are conserved,
whereas in our old models of computation, data can be created or destroyed at no cost."
(p.138) (This is an idealization since in a closed system - and the universe is assumed
closed under this argument - entropy, which measures the degree of disorder in a system,
increases as a consequence of the dissipation of energy in the form of heat during
collisions between bodies within the system.) Invariance of scale simply means that
physical laws apply irrespective of the size of the objects concerned. (Again, this is an
idealization: As stated in chapter 4, when objects are very small, quantum effects start
to become significant, and when moving close to the speed of light, relativistic effects
become significant). Assuming the problems described above - which arise under
idealized conditions - can be overcome, a computational substrate supporting analogues
of physical properties such as locality, symmetry, and invariance of scale provides a
suitable candidate for defining what is meant by computation and realizing (or
implementing) ontological computationalism. As will be seen in what follows and in
chapter 5, the cellular automaton (CA) is such a substrate. Informal introductions to CAs
based on an examination of the Game of Life are provided in (Berlekamp,82),
(Gardner,83) and (Poundstone,85); more detailed investigations of elementary CAs are
described in (Wolfram,83b,84b,86). In the following sections the CA formalism and
some of its basic properties are described; CA models of specific natural phenomena
such as matter, life and mind are discussed in chapter 5.

2.6.2. Cellular Automata and Computationalism

A cellular automaton (CA) provides a suitable mathematical framework (formalism) for
modelling natural systems with large numbers of discrete degrees of freedom; in this
respect, they are the discrete equivalent of models based on systems of differential
equations. CAs represent universes of pure information (Stonier,92) and may be regarded
as "stylised, synthetic universes" (Toffoli,87) of the Newtonian kind: Space is
represented as a uniform Cartesian grid or lattice of cells with each cell containing a

Chapter 2 Computationalism

finite amount of information (`matter'); absolute time advances in discrete steps and
`universal laws' are expressed by an update rule which is locally defined and globally
applied. Wolfram (1984a) identifies the following five characteristics as defining
standard CAs:

1. They consist of a discrete lattice of sites.

2. They evolve in discrete time steps.

3. Each site takes on a finite set of possible values.

4. The value of each site evolves according to the same deterministic rules.

5. The rules for the evolution of a site depend only on the local neighbourhood of sites around it.

Standard CAs provide general discrete models of homogeneous systems whose global
behaviour is determined by the long-term time evolution of local interactions. It must be
recognized from the outset that standard CAs are `closed' systems (chapter 3) since the
dynamics of such systems over time is completely determined by the initial state of the
lattice cells and the local interaction rule (Aleksic,92).

A cellular automaton (CA) can be viewed either (i) as a computer, or (ii) as a logical
universe, a structure into which may be embedded higher order computational structures
including `virtual' computers (Langton,90). This is a consequence of the fact that in a
CA, objects interpretable as passive data and objects interpretable as computational
devices are both assembled out of the same kind of structural elements and are subject
to the same fine-grained laws. Hence, CAs can be viewed either as information
transducers or informationally autonomous systems (Toffoli,87). Langton clarifies the
distinction as follows:

On the first view, an initial configuration constitutes the data that the physical computer is working
on, and the [state] transition function implements the algorithm that is to be applied to the data.

On the second view, the initial configuration itself constitutes a computer, and the [state] transition
function is seen as the `physics' obeyed by the parts of this embedded computer. The algorithm being
run and the data being manipulated are functions of the precise state of the initial configuration of the
embedded computer. In the most general case, the initial configuration will constitute a universal
computer. (pp.15-16)

Clearly, for CAs to provide a means of realizing computationalism, the latter of the two
positions must be adopted. According to Wolfram (1985),

one expects the fact that computers are as powerful in their computational capacities as any physically
realizable system can be, so that they can simulate any physical system [emphasis added]. (p.735)

(a) (b) (c)

Chapter 2 Computationalism

Fig 2.4 Various 2-D neighbourhood templates.

2.6.3. Definition: Cellular Automaton (CA)

Cellular automata (CAs) are discrete dynamical systems consisting of d-dimensional
(d$1) lattices of cells in which each cell is a finite state machine (FSM) - or finite state
automaton (FSA) - defined by the following triplet:

< S, N, R > (2.1)

S is the set of states that each FSA may assume. S is the set of input neighbourhoodN

states each of which is defined as the cross product of the states of those cells covered
by a template of size |N|$1. (By convention a cell is included in its neighbourhood).
Examples of neighbourhood templates when d=2 for lattices with different geometries
(square and hexagonal respectively) are shown in Fig 2.4. CAs with d=3 (Bays,87a) are
particularly interesting since their geometries correspond to the perceived three-
dimensions of the natural world and therefore provide a suitable basis for modelling the
universe (chapter 5). R:S6S is the state-transition rule defined by associating a uniqueN

next state in S with each possible neighbourhood state in S . Since there are |S| possibleN

states which can be assigned for each of the Q=|S | possible input neighbourhood states,N

there are |S | possible state-transition rules R which can be defined. For example, in aQ

binary CA with a neighbourhood of three cells (S=2, N=3), there are 256 possible state-
transition rules.

A CA is defined by the 5-tuple:

< k, S, L , N, R > (2.2)0

where k with k$1 is the size of the lattice (number of cells); L is the initial configuration0

of cells in the lattice at time t=0 (L 0L and |L|=|S|); and S, N and R are as defined in0
k

(2.1). The lattice is either spatially (i) infinite (k=4), (ii) finite and periodic or (iii) finite
and non-periodic. In standard CA, the local update rule R is applied globally (each FSA

Chapter 2 Computationalism

Fig 2.5 1-D CA space-time evolution (rule 150).

computes the same function) and synchronously (all cells are updated simultaneously).
For example, consider the 1-D periodic CA defined as follows:

S = {0,1}
|N| = 3
k = 10
L = 0 0 1 0 1 1 0 1 0 00

R = 00060, 00161, 01061, 01160, (XOR function)
10061, 10160, 11060, 11161

The space-time evolution of this CA is as follows:

0 0 1 0 1 1 0 1 0 0 (t = 0)
0 1 1 0 0 0 0 1 1 0 (t = 1)
1 0 0 1 0 0 1 0 0 1 (t = 2)
0 1 1 1 1 1 1 1 1 0 (t = 3)
1 0 1 1 1 1 1 1 0 1 (t = 4)

The space-time evolution of this CA (rule 150 following the Wolfram coding scheme)
for 100 iterations (t = 0..99) with an initial configuration density D = 0.01 (lattice cellsINIT

are initially assigned to be in the `1' or `on' state with probability 0.01) is shown in Fig
2.5:

Conway's Game of Life rule (Berlekamp,82) is particularly interesting as an example of
a 2-D CA that is capable of supporting universal computation. The rule is extremely
simple: (i) if a dead cell is surrounded by exactly three live cells at time t then it will be
live at time t+1; (ii) if a cell is in the live state and surrounded by either two or three live
neighbouring cells at time t then it will remain live at time t+1 else it will die. Given a
precise initial configuration of the lattice, this CA can generate an extremely diverse
array of structures including blinkers (periodic oscillators), gliders (translating
oscillators), puffer trains (dynamic structures which generate `debris', that is, static

tn tn+1 tn+2 tn+3 tn+4

Chapter 2 Computationalism

Fig 2.6 Space-time evolution of a glider.

structures) and most importantly with respect to the construction of universal computers,
glider guns (dynamic structures which emit gliders at regular intervals). An example of
a glider is shown in Fig 2.6:

After four iterations, the glider has translated diagonally by one cell. Gliders and other
structures will be examined further in chapter 5 when various CA models of the universe
are presented.

2.6.4. Describing the Structure of CAs

The following table describes a set of isomorphisms between natural systems, continuous
dynamical systems, formal systems and TMs based on the Newtonian modelling scheme
introduced in section 2.3.2:

Natural Dynamical Formal Computational

primitives number field alphabet tape symbols

state-space state manifold All symbol strings strings All tape patterns

state state symbol string tape pattern

initial state initial conditions axioms input tape pattern

laws vector field inferences program instructions

state-sequence trajectory derivation sequence sequence of tape patterns

observables attractors theorems output

Table 2.2 Isomorphisms between various systems.

Since CAs are discrete dynamical systems, they are readily described in terms which are
analogous to those used in the description of continuous dynamical systems:

Chapter 2 Computationalism

Dynamical System CA
number field FSM states

state manifold state-space
state state

initial conditions initial state
vector field state-transition function
trajectory trajectory
attractors attractors

Table 2.3 Isomorphism between continuous dynamical systems and CA.

In continuous dynamical systems described by systems of differential equations, a
manifold is an n-dimensional space analogous to a surface. In a discrete dynamical
system such as a CA, a topological manifold corresponds to the space defined by the
geometry of the cell lattice. For example, in a finite two-dimensional CA with periodic
boundary conditions, the topological manifold is a torus; in a three-dimensional CA, it
is a toroid. The state manifold, on the other hand, defines the space of possible global
states that the dynamical system can assume; however, it is more usual to refer to the
state manifold of a CA as its state-space. In continuous dynamical systems, each point
in the state manifold is described by a set of coordinates based on some number field:
For example, each body in a gravitational system is described by three position
coordinates and three velocity coordinates. In a CA, each point in the state-space is
described by the state of the FSA at the corresponding lattice site. A CA state is defined
as the global pattern formed by the states of the FSAs at each cell in the lattice; the state-
space is the set of all such states. A state-transition function or rule is the equivalent of
a vector field in a continous dynamical system and determines how the CA evolves in
space-time. In both discrete and continuous dynamical systems, a trajectory is a sequence
of states, a basin of attraction is the set of all trajectories converging on an attractor, and
the basin of attraction field is the set of all basins of attraction for a particular system. (In
deterministic systems such as CA the basins are discontinuous, that is, unconnected).
Attractors mark the end points in dynamical systems. In continuous dynamical systems,
there are three kinds of attractors: (i) fixed point, (ii) limit cycle, and (iii) chaotic or
`strange' attractors. However, in discrete dynamical systems such as CA, four kinds of
attractor have been identified corresponding to four classes of behaviour (Wolfram,83b),
the first three of which are directly analogous to those identified in continuous dynamical
systems:

Class I evolution leads to a homogeneous state
Class II evolution leads to a set of stable or periodic structures
Class III evolution leads to a chaotic pattern
Class IV evolution leads to complex structures, sometimes long-lived

A detailed study of the basin of attraction fields for a range of CAs and a related
formalism, the random-boolean network (Kauffman,93), is presented in (Wuensche,93).

Chapter 2 Computationalism

Fig 2.7 Example of a basin of attraction field.
[Source: (Wuensche,93)].

An example of a basin of attraction field is shown in the following graphical state-space
portrait (Fig 2.7). The topology of the portrait is that of transient branching trees rooted
on attractors; the directionality of the graph is from the outermost branches to the
innermost attractor sites. Nodes in the network represent global system states and arcs
represent the transitions between states. States without precursor states are referred to as
`Garden of Eden' states.

2.6.5. Universal Cellular Automata (UCAs)

CAs supporting behaviour in class IV, that is, generation of complex structures such as
translating periodic oscillators or `gliders', are of interest since the structures they
produce can be used to construct universal computers (CA equivalents of UTMs). A
Universal CA (UCA) is a computation-universal or UTM-equivalent CA capable of
simulating the behaviour of any other CA (Fredkin,90). The empirical or constructive
proof of computational universality for the two-dimensional CA known as the Game of
Life is described in (Berlekamp,82) and outlined for the three-dimensional version of the
same CA in (Bays,87a). However, computation-universal one-dimensional CAs also
exist provided |N-1| DIV 2 > 1 or/and |S| > 2 (Wolfram,83b).

2.6.6. "Digital Mechanics"

Laplace maintained that given the position and momentum of every particle in the
universe at any given time, it is possible to predict the past or future of each particle.
This formulation of the mechanistic idea of determinism (section 2.7.4) introduces the
notion of reversibility, viz. that the spatio-temporal evolution of a system may be run

Chapter 2 Computationalism

backward as well as forward. The Laplacian thesis was formulated in the context of a
consideration of linear systems, which do not suffer the unpredictability effects
associated with the n-body problem. (The latter arises from interactions involving n
bodies, where n$3; classical or Newtonian physics is unable to predict the outcome of
such events because analytical solutions of n-body systems of interaction cannot be
generated.) It can be shown that the Laplacian position is epistemologically untenable
given the chaotic behaviour of non-linear dynamical systems; however, it remains intact
as an ontological thesis finding its modern expression in computationalism. The idea that
the future state of the universe can be completely determined by applying the the laws
of physics to its current state provides the foundation for digital mechanics (DM)
(Fredkin,90), a computationalist theory of nature based on the cellular automaton (CA)
formalism. Briefly stated, Fredkin argues that some CA model, a reversible universal
CA, may be programmed to act like physics. In order for DM to model both classical
(Newtonian) and post-classical (quantum) physics, it is necessary to assume the `finite
nature' thesis which is closely related to the finite automaton thesis (section 2.5.3):

I the universe is finite in the amount of information contained in a finite volume of space-time

II the universe is finite in the total volume of space-time

On this point, Fredkin maintains that

finite nature may or may not be true, but surely the assumption is not known to be false. If finite
nature turns out to be false then DM is irrelevant as an exact model, but it might be useful as an
approximate model (the way computers are presently used to model physics). (p.256)

Additionally, Fredkin maintains that DM must be computation-universal (section 2.4.5):
If microscopic physics (assuming finite nature) was not universal, it would not be
possible to macroscopically construct ordinary computers; however, since this is
possible, it might be inferred that nature is an instantiation of a UTM. As Fredkin states,

finite nature does not just hint that the informational aspects of physics are important, it insists that
the informational [that is, syntactic] aspects are all there is to physics at the most microscopic level
[emphasis added]. (p.259)

However, simply because nature is computation universal does not necessarily imply that
it is a UTM since it is quite possible that nature supports a more powerful form of
information processing (Rasmussen,91b). Additionally, the notion of information and
information-processing is itself problematic since information implies the existence of
an entity which can be informed. A possible solution to this problem is provided in the
ambiguity of the closing words in the above statement, viz. "at the most microscopic
level": It is conceivable that entities with the capacity for being informed may emerge
from the syntactic DM substrate; thus, syntax can give rise to semantics with the latter
as an emergent property (chapter 3) of the substrate. This idea is explored in chapter 5
where an emergentist scheme based on DM is presented as a unifying framework for

Chapter 2 Computationalism

 For example, as Platonic objects in the mind.11

 To the extent that mind is phenomenon within the natural universe, mind can be viewed as physical; however,12

this should not be taken as supporting conventional materialism.

computational matter, life and mind.

2.6.7. Computationalism and The Physical World

Barrow (1991) maintains that it is an unresolved issue whether the symmetry of physical
laws or the notion of computation is fundamental:

Is the Universe a cosmic kaleidoscope or a cosmic computer, a pattern or a program? Or neither? The
choice requires us to know whether the laws of physics constrain the ultimate capability of abstract
computation. Do they limit its speed and scope? Or do the rules governing the process of computation
control what laws of Nature are possible? (pp.203-204).

The possible ways in which physics constrain the possibilities for computation are
discussed in chapter 5. As a preamble to that discussion, it is worth considering the
following: In order for reality to be computational at its most basic level, that is, in order
for computationalism to be an ontological thesis, it is necessary that the universe do only
computable things. However, it is recognized that uncomputable mathematical operations
exist, at least in some abstract sense (section 2.4.4). In order to reconcile this fact with11

the computationalist thesis, it is necessary to maintain that computationalism is a thesis
about existence and since "Being is computation" (section 2.5.5 and chapter 6), that is,
to exist is to be computable, uncomputables do not exist; rather they subsist in a separate
Platonic realm (section 2.7.2) or in the imagination. However, there are (at least) three
problems with this position: First, the claimed physical existence of uncomputables
(section 2.5.2); second, the fact that mind (more precisely, imagination) is capable of
conceiving the possibility of uncomputables and yet is, in some sense , a physical12

phenomenon (Penrose,89) (Penrose,94); third, on this view, subsistence is equivalent to
non-existence (since uncomputable) and yet subsistence is surely a way (or mode) of
Being implying, thereby, that Being somehow transcends both computationalism and
existence (chapters 6 and 7).

Barrow maintains that the concept of computation may need to be redefined given the
quantum theoretical picture of reality (since quantum computation is more powerful than
TM computation). However, under computationalism, physical theories based on
mathematics involving non-TM-computable entities must be reducible in principle to
theories which are describable in purely TM-computational terms. In chapter 5,
arguments for subsuming quantum theory into computation theory based on a CA
realization of digital mechanics (section 2.6.6.) will be presented.

Chapter 2 Computationalism

2.7. Deconstructing Computationalism

The previous sections were concerned with constructing a view of reality based on the
concept of the computer. In this section, the computer metaphor is shown to be reducible
to a synthesis of the form and machine metaphors. This reduction allows for the
grounding of computationalism in at least three antecedent metaphysical positions, viz.
determinism, mechanism and formism. Additionally, and as a consequence of the
commitment to realize computationalism in a cellular automaton (CA) substrate, there
is a need to examine a fourth metaphysical position related to mechanism, viz. atomism.
The importance of reducing computationalism to antecedent metaphysical positions is
that it provides a point of entry for a critique of the former: Potential shortcomings of
computationalism may be identified by examining the actual (that is, existing)
shortcomings associated with its philosophical precedents.

2.7.1. Computers, Forms and Machines

Putnam (1988) claims that computer science heralded the birth of a new paradigm
(chapter 1) in the sense that it created a new metaphor for thinking about reality.
However, is the computer metaphor new in the sense that it defines a `root' metaphor
(chapter 1) ? As stated previously (section 2.4), Toulmin (1993) maintains that the notion
of the machine has evolved through history. Are computers simply a new kind of
machine ? In order to answer this question, it is necessary to examine the possible
connections between the computer metaphor and other existing root metaphors,
specifically the metaphors of form and machine. It could be argued that the adoption of
a `bottom-up' or connectionist approach to realizing computationalism (such as that
based on CAs) necessitates that notions associated with other root metaphors such as
organism and context be considered; the organismic interpretation of Physical Symbol
Systems and the implied contextualism of cellular automata (section 2.6.1) appears to
support this contention. However, it could also be maintained that ideas associated with
organism (or integration) and context (or history) are only epistemologically-significant
when considering the phenomena emerging from a computational substrate and not
ontologically-relevant to consideration of the substrate itself. Since this view seems to
reflect computationalist thinking in general, and since it is computationalism as ontology
that is under scrutiny in this study, it has been adopted, viz. the `world hypothesis'
(chapter 1) computationalism is assumed to be derived from the synthesis of two root
metaphysical systems, viz. formism and mechanism.

2.7.2. Formism

The root metaphor of formism (or Platonism) is similarity (Pepper,42). In formism,
objects of perception have independent dual aspects: (i) particularity (which is specific)
and (ii) quality (which is universal). For example, the tree outside my window is a
specific tree; however, tree refers to the universal concept or quality of tree-ness which

Chapter 2 Computationalism

is independent of any particular tree. Other formistic categories include (iii) relation,
which is the similarity between pairs of particulars and (iv) character, which refers either
to a quality or relation.

There are two basic kinds of formism, viz. immanent and transcendent. In immanent
formism, the basic categories are characters, particulars and participation, that is, ties
between characters and particulars. Full appearance of characters in particulars is
necessary. In transcendent formalism, the basic categories are norms, matter and a
principle of exemplification which materializes the norms. Partial appearance of norms
in matter is sufficient. However, both kinds of formism acknowledge:

I categories of forms (characters, norms)
II the appearance of these forms in nature
III the connection between categories I and II

Particulars without characters are held to exist, particulars with characters are held to
exist concretely, and forms are said to subsist. Hence, particulars exist in the material
world, while forms subsist in the world of Platonic ideas.

According to Pepper (1942), causality in formism is the result of

the participation of patterns, norms, or laws in basic particulars through the forms of time and space.
(p.175)

Causality is the determination of the characters of certain basic particulars by a law which is set in
motion by the characters of other basic particulars which participate in that law. A law, in other
words, is a bridge from one set of basic particulars to another set, determining the characters of one
set by those of the other. (pp.176-177)

A law is not a basic particular, nor a concrete existent particular (i.e. a single exemplification of the
law), nor a collection of concrete existent particulars (i.e. a class). A law is a form [and] this is one
of the fundamental distinctions between formism and mechanism. (p.177)

The formistic notion of causality finds expression within discrete dynamical systems
such as CAs in (i) states, which are configurations (shapes, patterns, or forms) that the
elements in a system can assume and (ii) state-transition functions (or rules), which are
meta-configurations (shapes, patterns, or forms) mapping configurations to
configurations. The total state of a system is the pattern produced by its elements.
Additionally, the basin of attraction field in a finite lattice CA (section 2.6.4) can be
viewed as a Platonic form. (An infinite lattice CA whose states are algorithmically-
compressible (Chaitin,90), that is, can be described using a representation of shorter
length than the states themselves, also has a basin of attraction field - although its nodes
are not states but the compressed representation of these states - and thus, can also be
viewed as a Platonic form).

The main weakness of formism is that is does not lead to a systematic or unified

Chapter 2 Computationalism

metaphysics. As Pepper (1942) states,

[Formists/Platonists] regard system as something imposed upon the parts of the world by other parts,
so that there is an inherent cosmic resistance in the world to determinate order as well as a cosmic
trend to impose it. (p.143)

2.7.3. Mechanism

The root metaphor of mechanism is the machine (Pepper,42). Angeles (1981) defines
mechanism as the theory that all phenomena are physical and can be explained in terms
of material changes, that is, matter in motion. There are two important aspects to
mechanism:

Q the whole is neither ontologically prior to the parts nor causally efficacious upon them, but merely
the sum total (quantitatively and qualitatively) of the interacting parts.

Q all phenomena can be explained in terms of the principles by which mechanistic systems, that is,
machines, are explained without recourse to intelligence as an operating cause or principle.

This view is consistent with Runes (1960) who defines mechanism as the theory of total
explanation by efficient, as opposed to final, causes (chapter 6). Broad (1925) lists four
essential characteristics of a `purely mechanistic' ontology:

Q a single kind of stuff, all of whose parts are exactly alike except for differences of position and
motion;

Q a single fundamental kind of change, viz. change of position [or location]. (Changes of higher order -
e.g. velocity, acceleration - are derived from the change in position);

Q a single elementary causal law, according to which particles influence each other by pairs;

Q a single and simple principle of composition, according to which the behaviour of any aggregate of
particles, or the influence of any one aggregate on any other, follows in a uniform way from the
mutual influences of the constituent particles taken by pairs.

Pepper (1942) provides a detailed description of the notion of mechanism beginning with
a description of its basic categories:

Primary categories (effective)

Q Field of location
Q Primary qualities
Q Laws holding for configurations of primary qualities in the field (primary laws)

Chapter 2 Computationalism

 However, if some version of the anthropic principle (chapter 6) holds, the selection of initial state and state-13

transition rule may be far from arbitrary (contingent), in fact, necessary and highly-specific. Yet, this position
is also problematic since if the many-universes interpretation of quantum theory (chapter 4) is valid, it is simply
the case that the universe in which human observers exist merely happens to be one universe among potentially
many in which the emergence of observers is possible, thereby undermining the uniqueness of the universe
inhabited by human beings. The significance of the givenness of initial state(s) and law(s) of evolution in the
context of the distinction between naturality (or natural phenomena) and artificiality (or artifactual analogues
of natural phenomena) is examined in chapters 6 and 7.

Secondary categories (ineffective)

Q Secondary qualities
Q A principle for connecting the secondary qualities with the first three primary or effective categories
Q Laws, if any, for regularities among secondary qualities (secondary laws)

Primary and secondary qualities may be differentiated as follows:

Such qualities as alone are relevant to the description of the efficient functions of a machine are
historically called primary qualities. (p.192)

[Consequently,] qualities which are observed in parts of a machine but are not directly relevant to its
action have been called secondary qualities. (p.193)

It is important to realize that what is to count as a primary quality is determined by
function, that is, a goal (or telos). This should be obvious given the fact that machines -
which provide the root metaphor underlying mechanism - are artifacts designed to fulfil
human purposes; hence, the possibility of a connection between mechanism and
teleology or intentionality.

Pepper identifies two basic kinds of machines: (i) discrete, in which action occurs by
contact (for example, the push-pull machine) and (ii) consolidated, in which action
occurs at a distance (for example, the orbits of planets arising from gravitational fields).
These correspond to the two ways in which to view CAs: (i) local neighbourhood
interaction between cells (FSAs) and (ii) global basin of attraction fields describing
overall CA behaviour. Discrete mechanism is defined by a polarity of chance (or
accident) and necessity: Chance results from the independence of details (for example,
time independent of space, one atom being independent from another etc); necessity
arises as a consequence of determinism (section 2.8.4). Chance can be identified in CA-
computationalism (chapter 5) with the definition (or specification) of the CA substrate
itself (section 2.7.2); necessity may be identified with the operation of the CA once it has
been so defined. This is because both initial state and state-transition rule are givens
(chapters 6 and 7) and hence, contingent when viewed from within the CA system13

whereas the evolution of CA phenomena is deterministic, that is, driven by necessity.
However, according to Pepper (1942), discrete mechanism ultimately leads to
consolidated mechanism:

Chapter 2 Computationalism

 Secondary qualities are epiphenomenal and hence, non-causal on conventional mechanism.14

Discrete mechanism is .. internally contradictory. It implies strict similarity and, consequently, the
formistic categories. Indeed, not only are laws threatened with the status of forms, but also the atoms
[for] what about the similarity of the atoms and the configurations ? The intention is to reduce
similarities to configurations of ultimate differentiations of the spatiotemporal field - to draw nature
completely and solidly into that field .. To achieve this end, however, [the mechanist] must
consolidate his categories. The primary qualities and the laws must become structural features of the
spatiotemporal field as intimately involved in it as the dimensions of space with one another.
Similarity can then be relegated to the structure of that field and kept from flying into subsistent
forms. (pp.211-212)

As will be shown in chapter 5, the shift from discrete to consolidated mechanism finds
one of its most sophisticated expressions in the emergentist metaphysics of Alexander
(1920), viz. matter, life and mind as Space-Time complexes. It is highly significant, as
Pepper goes on to state, that "there are no laws in consolidated mechanism; there are just
structural modifications of the spatio-temporal field. And there are no primary qualities,
for these are resolved into field laws, which are themselves resolved into the structure
of the field." (p.214) Furthermore,

a completely consolidated [that is, unified] universe would be a completely mechanized and internally
determined universe. (p.207)

This is consistent with the computationalist position. However, as will be shown in
chapter 7, a mechanistic view - and hence, by the same token, a computationalist view -
of nature is untenable because of the problem of the irreducibility of secondary qualities
to primary qualities (Russell,67). This problem, known as the mind-body problem
(chapter 4), `hard' problem (Chalmers,96) or category problem (chapter 7), is essentially
identical to what Pepper (1942) refers to as the `problem of unresolved discreteness', viz.
the inability of mechanism to explain how and why secondary qualities should occur
given that they are superfluous to a mechanistic ontology . Adopting a more modest14

position based on a hierarchical view of phenomenal reality in which the world is merely
ultimately grounded at the ontological level in a mechanistic monism - a position known
as emergent-materialism or simply emergentism (Mayr,82) - does not resolve the
problem, irrespective of whether or not emergents are held to be causally efficacious.
However, as shown in chapter 6, this does not preclude the possibility of some (radical)
emergentist position being correct. The connection between mechanism and emergentism
is examined in chapter 3 in connection with an investigation into the meaning of
computational emergence.

2.7.4. Determinism

Angeles (1981) defines determinism as the view that every event has a cause; further,
that all things in the universe operate in accordance with causal laws, that is, that
everything is absolutely dependent upon and necessitated by causes. For current

Chapter 2 Computationalism

 However, as shown in chapter 6, Bunge (1959) maintains that the causal relation is one-one.15

purposes, a cause may be defined as `something which brings something about', the latter
something being referred to as an effect of the cause. A cause can have more than one
effect in a world provided the effects are logically and physically consistent. For
example, switching on an electric light brings about the illumination and the heating of
a room; however, switching on a light cannot bring about both the illumination and the
darkening of the room since in this case the effects are logically and physically
inconsistent. Additionally, an effect can have more than one cause implying a many-one
mapping between causes and effects which allows for the possibility of functionalism .15

Aristotle identifies four kinds of causality, viz. material, efficient, formal and final
causality (chapter 6); however, materialism recognizes only material and efficient
causation which is mapped into the scientific language of particles and the physical laws
governing their interactions. Formal systems (and computationalism) retain the idea of
material and efficient causation in the notion of axioms (initial states) and inference rules
(state-transition rules) respectively.

Philosophically-speaking, there are two kinds of determinism, viz. epistemological and
ontological. A system is epistemologically-deterministic if its future state can be
predicted from a knowledge of its current state and the laws governing the behaviour of
the system: Two-body collisions in classical Newtonian systems are epistemologically-
deterministic since the outcome of the collisions can be predicted from a knowledge of
the position and momentum of the bodies and Newtonian mechanics. A system is
ontologically-deterministic if effects follow necessarily from causes, that is, the relation
between causes and effects is either one-one or many-one. (Here an effect refers to the
state of a system at a particular instant which contrasts to its usage in the previous
example, viz. switching on an electric light, where an effect refers to what might be
called a sub-system state. The concept of systems and subsystems is described in chapter
3). Ontological determinism implies that the state of a system s at time t suffices to fix
its state s' at time t+1 irrespective of whether a description of s' can or cannot be
produced at t; current events are completely (that is, totalistically) caused by previous
events. It is significant that systems can be ontologically-deterministic and at the same
time epistemologically-non-deterministic: For example, deterministic randomness
(Davies,87) is a characteristic of computational non-linear dynamical systems. However,
epistemological non-determinism becomes epistemological determinism if the causal
sequence of the system can be replayed. This latter point has crucial implications for the
possibility of emergence in closed or finite systems as will be shown in chapter 3.

2.7.5. Atomism

The view developed by early Greek Philosophers such as Leucippus, Democritus and
Epicurus (5th Century BC) that reality is composed of atoms, viz. minute material
particles that are the ultimate constituents of all things having properties such as size,

Chapter 2 Computationalism

 This is a consequence of the problem of generating change from stasis which leads to the Zeno paradoxes.16

shape, position, arrangement and movement as intrinsic. Atoms are eternal, simple,
separate, irreducible, uchangeable and infinitely many of them exist moving in empty
space. Objects are formed as a consequence of collisions between atoms. (Angeles,81)
This translates into the language of CAs as follows: Atoms are identifiable with lattice
cells in the `on' or `1' state (in CAs with binary or two-state FSAs), empty space as cells
in the `off' or `0' state; objects are identifiable with patterned groupings of cell states: For
example, the glider structure in Conway's Game of Life (section 2.6.3) is a pattern of five
cells in the `on' state. In making use of the notion of pattern, this interpretation of CAs
in atomistic terms ultimately becomes parasitic on formism. However, this is consistent
with the claim that computationalism constitutes an eclectic, that is, synthetic,
metaphysics (section 2.7.1).

2.7.6. A Note on Process Philosophy

All the previous metaphysical positions, and atomism in particular, assert the ontological
primacy of substance over process, that is, of thing (being) over activity (becoming).
However, as Rescher (1996) states, "in a dynamic world, things cannot do without
processes. Since substantial things change, their nature must encompass some impetus
to internal development. In a dynamical world, processes are more fundamental than
things. Since substantial things emerge in and from the world's course of changes,
processes have priority over things." (p.28) Thus, substances are redefined as manifolds
or complexes of processes. Consequently, Rescher (1996) maintains that while a process
ontology can be monistic, a substance ontology is necessarily dualistic: "processes
without substances are perfectly feasible in the conceptual order of things, but substances
without processes are effectively inconceivable." (p.46) A process may be defined as16

a coordinated group of changes in the complexion of reality, an organized family of occurrences that
are systematically linked to one another either causally or functionally. (p.38)

The primacy of process might appear to support an interpretation of computationalism
as metaphysically processual: Computationalism is grounded in the notion of
computation which can be understood in dynamic terms, viz. a computation is a program
in execution or a process. This conceptual link between computationalism and process
ontology is further strengthened because

the basic idea of process involves the unfolding of a characterizing program through determinate
stages. The concept of programmatic (rule-conforming) developments is definitive of the idea of
process: The unity/identity of a process is the unity/identity of its program [emphasis added]. (p.41)

Additionally, "the shift in orientation from substance to process - from a substantive
unity of hardware, of physical machinery, to a processual unity of software, of
progamming or mode of functioning" (p.108) leads to the view that "processes, seen

Chapter 2 Computationalism

 On Rescher's view, such processes must be computational since processes are computational (though not17

necessarily discrete or digital) by definition (that is, essentially).

abstractly, are inherently structural and programmatic - and, in consequence, universal
and repeatable." (p.74) From such statements, it might appear that the philosophical
precedent of computationalism is processism rather than atomism or mechanism.
Furthermore, against formism (Platonism), it is held in process ontology that a physical
object is identified as the thing it is, "not by a continuity of its material components or
its physical form but by a processual or functional unity [emphasis added]." (p.52); it is
unity of law or functional typology which is important as contrasted with unity of being
(individualized specificity). Finally, process philosophy views nature as characterized
by "creative innovation, productive dynamism, and an emergent development of richer,
more complex and sophisticated forms of natural existence [emphasis added]" (p.101),
which is consistent with the concept of computationally emergent artificiality (chapter
5).

However, identifying CA-computationalism with processism is problematic for (at least)
five reasons: First, according to Rescher (1996), "the identity of things is discrete
(digital); that of processes is continuous (analogic)" (p.53). On this view, CA-
computation must be interpreted as non-processual and derivative of processes which are
computationally-analogue . If a processualism of this kind is adopted, CA-17

computationalism must be incorrect; second, upon closer examination, it is readily shown
that the mechanism underlying processism is very different to that underlying
computationalism. For example, Rescher maintains that

process philosophy rejects a pervasive determinism of law-compulsion. Processists see the laws of
nature as imposed from below rather than above - as servants rather than master's of the world's
existents. Process metaphysics envisions a limit to determinism that makes room for creative
spontaneity and novelty in the world (be it by way of random mutations with naturalistic processists
or purposeful innovation with those who incline to a theologically teleological position). (p.98)

Processes are not the machinations of stable things; things are the stability patterns of variable
processes. (p.99)

To be sure, it is certainly possible to minimize the significance of novelty by conceiving of the role
of process in nature as consisting in a fixed number of elemental process types themselves fixed for
all time - through whose combination and interplay all other natural processes arise. But such a hard-
edged, atomistically stabilitarian view of process does violence to the spirit of the enterprize of
process philosophizing .. Processuality does not happen simply at the ground-flow level of things,
events and phenomena. The types of items at issue can change as well. (p.81)

This is significant since states are defined as ontological absolutes in CAs: A FSA has
a finite and static set of states and its functional connectivity to other FSAs (in a standard
CA) is uniform (regular, symmetrical), finite and static; hence, the CA structures
generated during execution are ontologically reducible to a finite set of static primitives.

Chapter 2 Computationalism

As will be seen in what follows (chapters 3, 6 and 7), this implies that the emergence of
structures in CAs is either (i) static and finite (`closed') assuming a finite lattice or (ii)
potentially infinite, yet constrained to formal constructions using a fixed alphabet in the
case of an infinite lattice (Cariani,89) (Ali,98a); third, the notion of state does not appear
within processism. In its place there is the notion of (inner) condition/structure, order or
situation. This is highly significant since computationalism, being a variant of
mechanism, is either (1) ontologically-externalistic or (2) topologically-internalistic
(chapter 6); experiential-internalism (chapter 7) is excluded on this metaphysics or
interpreted as epiphenomenal. However, processualism, unlike mechanism, is not
definitionally-inconsistent with experiential-internalism; fourth, the space-time of
processualism is not "a matrix of order imposed on natural process from without by the
structure of a process-independent stage on which natural processes must play
themselves out." (p.95) However, this classical Newtonian conception of space-time
appears to be central to CA-computationalism (chapter 5): The notion of a Cartesian
space-time grid is an ontological absolute in CAs; in a processual metaphysics, by
contrast, the grid is emergent from physical processes; finally, as Rescher (1996) states,
in atomistic systems "the properties of substances are never touched by change, which
affects only their relations" (p.10) and this is certainly the case in CAs. As stated
previously, the set of states of a FSA - the equivalent of substance in a CA - are static
and finite.

The above arguments lead to the following position: While it may be reasonable to
interpret computationally emergent artificial phenomena (for example, analogues of
matter, life and mind) in processual terms, it is simply not the case that computationalism
is consistent with a processual ontology (noumenal ground). As Rescher (1996) states,
"nature's processes follow patterns - but not in a rigidly programmed and preordained
predetermined way [emphasis added]" (p.82) and, as will be shown in chapters 6 and 7,
this is inconsistent with the ontological determinism associated with computationalism.
For this reason, formism, mechanism, determinism and atomism can be viewed as
necessary and sufficient in order to classify the ontological essence of computationalism.

2.7.7. Computationalism, Metaphor and Metaphysics

The computer is a machine, but a machine with a flexibility derived by abstracting away
its functional form; hence, the synthesis or eclectic mix of formism and mechanism in
computationalism. This implies that computationalism is a permutation of two logical
postulates, in this case of two metaphysical systems, thereby refuting Pepper's assertion
of the mere possibility of the postulational method (chapter 1). However, it is interesting
to consider whether metaphor production could occur in a computational substrate. As
Pepper concedes,

at the break of the century, when the potentialities of the new symbolic logic were dawning upon
men, there were some who expected that mathematical logical systems would yield all that traditional
metaphysical systems had, and more too, and would therefore in time completely supplant the

Chapter 2 Computationalism

traditional modes of metaphysical thought. These hopes have waned. But the possibility still remains
of using the apparatus of symbolic logic as a means of generating world theories. (pp.87-88)

Lugowski (1989) describes a framework for generating metaphor using a "metaphor for
metaphors" based on "meta-stable dynamical systems that shift amongst contextually-
cued attractor states" (p.355), a notion which readily translates into the language of CA-
computationalism (section 2.6.4). Given that metaphysics is ultimately metaphorically
grounded and accepting Lugowski's claim for computational metaphor generation, what
must a computationalism that supports metaphor (and hence, metaphysics) generation
look like ? In other words, what kind of computationalism could give rise to the concept
of computationalism ? Johansson (1993) argues in favour of defining computationalism
in connectionist or fuzzy logic terms, such a position being motivated by the view that
information processing in the brain must be `poetic' in nature if the intrinsic vagueness
or indeterminacy associated with metaphors is to be addressed. A simpler approach
might involve embedding a `virtual' machine capable of supporting universal
computation in a computational substrate (chapter 5), leading, perhaps, to what might be
referred to as `metaphysics via computation'. According to Pepper,

the idea is to conceive a world theory in the form of a deductive system with theorems derived from
postulates. Once [we] obtain such a system .. new world theories might then be generated like
geometries by simply adding or dropping or changing a postulate and noting the result in the self-
consistency of the system and in the application of the theorems to all the observed facts of the world.
(p.88)

