In: Proceedings of the 5th Workshop on Inference in Computational Semantics (ICoS-5),
April 2006, Buxton, UK. (6 pages).

The ALLIGATOR Theorem Prover for
Dependent Type Systems: Description and
Proof Sample

Paul Piwek

Centre for Research in Computing
The Open University, Milton Keynes, UK
p. pi wek@pen. ac. uk

Abstract

This paper introduces theLLicaTor theorem prover for Dependent Type Systemss].
We start with highlighting a number of propertiesmfs that make them specifically suited
for computational semantics. We then briefly introdoae and our implementation. The
paper concludes with an example obas proof that illustrates the suitability afrs for
modelling anaphora resolution.

1 Introduction

Automatedsymbolicinference requires a formal language as the substratum for
reasoning. Blackburn and Bos ([7]) make a good case for the fuBgsb Order
Predicate LogicHorL) in computational semantics, citing both practical (aaaiil

ity of high performance theorem provers and to a lesser ertedel builders) and
theoretical reasons (they discuss a range of interestirggrhena which can be
dealt with inrorL).

We agree with the idea thabrL is a good starting point, but also think that for
computational semantics to develop further as a field, sxtes going beyongbrL
should be actively explored. In this paper, a research todescribed that takes
such explorations in one particular direction. The toak+caTor — is a theorem
prover for Dependent Type Systems{) [4,5]. The Sicstus Prolog source code
of this prover is available, free of charge, for researclppses ([18]).o1s are an
attractive option for computational semantics for a nundfeeasons:

() Dynamic porenTIAL (Cf. [15]): The notion of acontextthat is built upincre-

mentallyis inherent tas.
(i) Frexmiry: By varying a limited number of parameters, it is possible to

switch from, for example, propositional to predicate logic first order to
higher order logics. Additionally, although the basic urylag logic is con-
structive, prs allows for the flexible use of axioms to regain full classical

In: Proceedings of the 5th Workshop on Inference in Computational Semantics (ICoS-5),
April 2006, Buxton, UK. (6 pages).

(iii)

(iv)

(v)

logic, or more fine-grained alternatives. For example, fassible to specify

for individual predicates whether they are bivalent.
ExTensiBILITY: A prs-context includes what is known as the signaturevir..

Consequently, the signature can be extended incrememteking it possible

to model the acquisition of new concepts by language users. _
Proor-oBJecTs: IN p1s, Gentzen-style natural deduction proofs are first-class

citizens. This gives us the following advantages: Ra)iability. It allows us
to heed thale Bruijn criterionfor reliable proof systems: “A proof assistant
satisfies the de Bruijn criterion if it generates ‘proof-aftge (of some form)
that can be checked by an easy algorithm.” (cited from [5])Naturalness
prs proofs correspond with natural deduction proofs. This isitdrest if one
is concerned with models of human reasoning in natural lagguinderstand-
ing. In psychology, some schools of thought argue that ahtleduction is a
good approximation of human reasoning (see, e.g., [2D)]RétevanceProof
objects can help to identify proofs which are valid but spusiin the sense
that they do not really consume their premises (see [14])Jystification of
behaviour Explicit proof objects provide direct access to the justfions
that an agent has for the conclusions and the interpretatiat it constructs.
This is particularly useful for dialogue agents that needegpond to utter-
ances of other agents. Such responses can themselves aggieried, for
example, through clarificatory questiors$. (22]) and why questions (4; B:
no,—p, A: Why —p?). In order to respond appropriately, the agent needs to ac-
cess its own background knowledge and how it was used to draelgsions.

pts proof objects provide a compact representation of thisrmédion.
AppLicaTiONS. DTs-Style analyses exist for a wide range of linguistic phe-

nomena including donkey sentences ([23]), anaphoric ss@rs and tem-
poral reference ([20]), belief revision ([8]), bridging awhora ([19]), clar-
ification ellipsis ([10]), metonymy ([9]), inter-agent comunication, knowl-
edge and observation ([1]), ontological reasoning for iee# dialogues ([6]),
and human-machine dialogue ([2]). Additionally, theregsaarch on relating
pts proof-theoretic natural language semantics to modelrdimoapproaches
([22]), and there are studies employing the related forsnalof labelled de-
duction to natural language semantics ([16]). In 2005, tieVorkshop on
Lambda-Calculus, Type Theory, and Natural Language tookepdad King's
College London ([11]).

We concede that none of the properties we have listed is @mvitsunique toors.
However, to the best of our knowledge, no extant logical Wak combines all
these properties in single systerwith well-understood meta-mathematical prop-
erties prs play a central role in theoretical computer science, sée [4]

2 Dependent Type Systems

pTs come in a wide variety of flavours and variations. All thesstegns share,
however, two features: tgping systenand a notion oflependencyfFirstly, prs are

In: Proceedings of the 5th Workshop on Inference in Computational Semantics (ICoS-5),
April 2006, Buxton, UK. (6 pages).

type systemsThat is, given a set of assumptioisalso known as theontex} they
provide rules for determining whether a particular objsatja, belongs to a given
type, sayt. We writel" + « : ¢, if, given the context’, a is of typet, i.e.,a inhabits
typet. The objects that are classified using type systems are @liaing) terms
of the A\-calculus.I' is a sequence of statements: ¢4, ..., x, : t, (withn > 0).

Dependencis the second feature ofrs, and it comes in two forms. First, there
is dependency between statements in the context: in ordseta typé;. to classify
an objectry, this typet, needs to have been introduced in that part of the context
thatprecedest or t;, has to be a sort. In other wordg,can only be used if (1) it
itself inhabits a type or can be constructed from other typasare available in the
context preceding it, or (2) it belongs to a fixed and usuathalé set of designated
types that are callesorts Because sorts need no preceding context, they make it
possible to keep contexts finite.

Second, there is a variety of dependency that ocmsigletypes. Since type
systems are used to classify terms of Mealculus, they can also deal with func-
tions. A functionf from objects of type; to objects of type, inhabits the function
typet; — t,. Dependenfunction types are a generalization of function types: a
dependent function type is a function type where the rangleeofunction changes
depending on the object to which the function is applied. ibgtion for depen-
dent function types i$lx : A.B (we also use our own alternative ‘arrow notation’:
[z : A] = B). If we apply an inhabitant of this function type, sfyto an object of
type A, then the resulting objedgta (f applied toa) is of type B, but with all free
occurrences af in B substituted with: (that is, the type of a is B[z := a).

One way to make the leap from type systems to logic is as felléwom a log-
ical point of view, we are interested in propositions as thestituents of deductive
arguments. In classical logic, one focuses on judgementiseofollowing form:
the truth of propositiorg follows/can be derived from the truth of the propositions
pi1,-..,Pn. We reason from the truth of the premises to the truth of theckn
sion. To do logic in aTs, we move fromtruth to proof. we, now, reason from the
proofs that we (assume to) have for the premises to a proghéconclusion. In
other words, we are interested in judgements of the follgWorm: « is proof of
propositiong follows/can be derived assuming thatis a proof ofp;, a; is a proof
of ps, ..., anda, is a proofp,. Such a judgement can be formalized in@& as
ai : pi,...,a, : pp Fa:p. Thus, we read : p as ‘ais a proof for p’. Thus, we
model proofs asX-calculus) terms and propositions as (a certain class p@styn
prs. This is known as the Curry-Howard-de Bruijn embedding.

The embedding is grounded in the Brouwer-Heyting-Kolmogadrterpreta-
tion of proofs asconstructionse.g., a proof for a conditional — ¢ is identified
with a method that transforms a proof @fnto a proof forqg. In aprs, this is for-
malized by modelling the proof for a typep — ¢ as a function from objects of
type p to objects of typey, such that ifa is a proof ofp, then f applied toa is a
proof of g (i.e., fa : ¢). Universal quantification is dealt with along the samedine
In apts, the counterpart for universal quantification is the depaméLinction type.
In particular,vz € A : P(x) becomeqIlz : A.Px). A proof for this type is a

In: Proceedings of the 5th Workshop on Inference in Computational Semantics (ICoS-5),
April 2006, Buxton, UK. (6 pages).

function f which, given any objeai : A, returns the proofa for Pa.

Pure Type Systems (prs; [4]) are of particular interest, because of their gen-
erality. With a small number of parameterss can be tailored to match a wide
variety of prs. ALLicaTor implements an extension ofs with X types. X types
are also known as dependent product types and can be used&b/xrend3.

3 System Architecture, Implementation and Proof Sample

There is no room for a detailed description of the system,Herghat we refer to
the documentation and code available at [18]. What we can igfférstly, a list of
differences betweenLricaTor and othemrs provers: (aurricaror directly con-
structs proof objects for natural deduction proofs. Othewers forprs typically
work with internal representations that are only at the driiti@reasoning process
translatedto natural deduction proof objects. For exampleckrai. ([13]) uses
tableaux and translates these, whereas([3]) is based on the mating method.
The handbook chapter by Barendregt and Geuvers on proofagsiorors ([5])
lists a number of further automated theorem provers, noméhath works directly
with proof objects. (bhrLicaTror was not developed with mathematical/program
specification reasoning in mind, but rather for inferenodamguage interpretation.
As a consequence, it has been streamlined to link up withtinatand function-
ality relevant to computational semantics (specificallpvang for notation which
is close to [15] and omission of inductive types). (3) To thestbof our knowl-
edge,aLLicaTor IS the only automated theorem prover which directly conftm
the specification of Pure Type Systems ([4]), the most gémeichflexible kind of
prs (Mostprs can be emulated ints; see [17] for an overview ofrs and their
counterparts imrs).

Arrigator 1.0 has been implemented in Sicsteisoroc and been tested with
version 3.12.2 of Sicstus. An overview of the architectwr@resented in Figure
1.a. Note that the system applies both forward and backwdedeincing. Most
of the forward inferencing takes place before backwardrarfeing (though some
backward inferencing rules do also have forward inferemciomponent). Reduc-
tion of terms is also carried out mainly before backwardremeing. Inferencing
is done with a flattened representations>of terms (the arrow notation). Proofs
are checked at the end of the inferencing process for theilecmess (the code for
proof checking is separate from the theorem proving code).

Currently, arLicaTor has the status of an experimental research tool. It is in-
tended for testing computational solutions to theordiiazlallenging problems in
computational semantics. Scalability has, so far, not lggen much attention,
though it will obviously need to be addressed if the systein ise used in large-
scale practical applications. Currently, the system is im@néended as &aseline
andstarting pointfor implementing efficient and effective proof search hstics.
We now conclude with an example of the usexoficaTor.

The discourse ‘The barn contains a chain saw or a power Hrill.” (p. 205 of
[15]) poses a problem for the structural approach to anaptesolution proposed in

