

T e c h n i c a l R e p o r t N o 2 0 0 6 / 0 3

Constraint-based Natural Language Generation: A
Survey

Paul Piwek

Kees van Deemter

25th March 2006

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

ISSN 1744-1986

Constraint-based Natural Language

Generation: A Survey

Paul Piwek
Centre for Research in Computing

The Open University, UK

Kees van Deemter
Department of Computer Science

University of Aberdeen, UK

March 2006

Abstract

This paper contains a survey of 25 papers that deal with constraint-based
approaches to Natural Language Generation (nlg). Amongst other things, we
discuss the nature of the constraints that have been modelled in nlg (stylistic,
syntactic, etc.), their type (hard versus soft), the units to which the constraints
are applied (words, sentences, rhetorical structure, etc.) and the approaches
to solving constraint satisfaction problems in nlg. The survey starts with a
brief introduction to the constraint-based view of nlg and a section that aims
to clarify the many-faceted notion of a constraint. The aim of this survey is to
provide the reader with an overview of constraint-based approaches to nlg; it
does not present an exhaustive list of all the literature in this area. What it does
aim for, is to give a reasonably representative sample of the various approaches
to constraint-based nlg.

Table of Contents

1 Introduction 3

2 What is a constraint? 5
2.1 Formal definition of the notion of a constraint 5
2.2 Hard constraints and priorities 7
2.3 Solving Constraint Satisfaction Problems 9

3 Constraints in NLG: Approaches and Architectures 10
3.1 Nature of constraints . 10
3.2 Units to which constraints apply 11
3.3 Types of constraints . 11
3.4 Approaches for dealing with multiple soft constraints 12
3.5 Approaches to satisfying constraints 12

4 Papers on Constraints in NLG 15
4.1 Becker and Lockelt [6], 2000, ‘Liliput: A Parameterisable Finite-

Domain Constraint Solving Framework and Its Evaluation with
Natural Language Generation Problems’ 16

4.2 Callaway and Lester [9], 1997, ‘Dynamically Improving Explana-
tions: A Revision-Based Approach to Explanation Generation’ . 16

4.3 Dale & Haddock [12], 1991, ‘Content Determination in the Gen-
eration of Referring Expressions’ 17

4.4 van Deemter [57], 2004, ‘Towards a Probabilistic Version of Bidi-
rectional OT Syntax and Semantics’ 18

4.5 Elhadad, McKeown and Robin [15], 1997, ‘Floating Constraints
in Lexical Choice’ . 19

4.6 Gardent [16], 2002, ‘Generating Minimal Definite Descriptions’ . 20
4.7 Hovy [24, 25], 1988, ‘Generating Natural Language under Prag-

matic Constraints’ . 21
4.8 Inui, Tokunaga and Tanaka [26], 1992, ‘Text Revision: A Model

and Its Implementation’ . 22
4.9 Kibble and Power [28], 2004, ‘Optimizing Referential Coherence

in Text’ . 23

1

4.10 Langkilde-Geary [30], 2004, ‘An Exploratory Application of Con-
straint Optimization in Mozart to Probabilistic Natural Language
Processing’ . 24

4.11 Langkilde and Knight [29, 31], 1998, ‘Generation that Exploits
Corpus-based Statistical Knowledge’ 25

4.12 Manurung, Ritchie and Thompson [35, 34], 2000, ‘Towards a
Computational Model of Poetry Generation’ 25

4.13 Marciniak & Strube [36], 2005, ‘Beyond the Pipeline: Discrete
Optimization in NLP’ . 26

4.14 Mellish, Knott, Oberlander and O’Donnell [38], 1998, ‘Experi-
ments Using Stochastic Search for Text Planning’ 27

4.15 Moriceau and Saint-Dizier [39], 2004, ‘A Constraint-Based Model
for Preposition Choice in Natural Language’ 29

4.16 Neumann and collaborators (1990–1998) on constraint-based gram-
mars, reversible grammars and revision 29

4.17 Paiva and Evans [47], 2004, ‘A Framework for Stylistically Con-
trolled Generation’ . 32

4.18 Piwek and Van Deemter [48], 2003, ‘Dialogue as Discourse: Con-
trolling Global Properties of Scripted Dialogue’ 33

4.19 Power [49], 2000, ‘Planning text by constraint satisfaction’ 33
4.20 Reiter [52], 2000, ‘Pipelines and Size Constraints’ 34
4.21 Thiam Chye [10], 2005, ‘Multi-document Summarization by Gen-

eration’ . 35
4.22 Williams [59], 2003, ‘Language choice models for microplanning

and readability’ . 36

Acknowledgements 38

Bibliography 38

2

Section 1

Introduction

The mainstream characterization of Natural Language Generation (nlg) is as
addressing the problem of mapping non-linguistic representations to expressions
in natural language (e.g., [53]).1 nlg researchers have dealt with generation
from a variety of non-linguistic representations including database entries, for-
mulae in logical calculi and expressions of knowledge representation formalisms.
Generation of linguistic expressions of various sizes and types has been inves-
tigated, including subsentential units (e.g., noun phrases), individual sentences
and multi-sentence discourse. Additionally, some have investigated generation
of multimodal output which combines natural language expressions with non-
verbal signs such as gestures, graphics, layout, etc. (see, e.g., [55] for an overview
of recent work).

In this paper, we survey work on nlg that adopts a specific perspective
on the generation. Under this perspective, the emphasis is shifted from nlg
as a mapping problem, to the problem of the automated production of natural
language expressions that satisfy a set of constraints. Such constraints can
pertain to surface properties of the expressions (e.g., their length), but also
to the underlying syntactic properties, and their semantic or even pragmatic
content. The mapping problem can now be seen as just one possible constraint
amongst many, i.e., a constraint which requires the generated expressions to
express no more and no less than some given (semantic) content.

Arguably, the constraint-based perspective is not sufficiently restrictive, since
it also brings summarization, paraphrasing and machine translation (mt) into
the fold: all of these can be conceived of as involving the production of linguis-
tic expressions under a set of constraints. To keep this survey manageable, we
have decided to focus the survey itself on constraint-based nlg that more or
less fits the traditional conception of nlg, i.e., which starts with non-linguistic
representations.

Before we delve further into constraint-based approaches to nlg, let us first
briefly set out the arguments in favour of such approaches. Firstly, as we already

1But see [54] for a good overview of alternative approaches to natural language generation.

3

pointed out, a constraint-based approach liberates nlg from the narrow view
of mapping as its primary concern. It acknowledges that verbatim expression
of some input representation is only one of many requirements that can be
imposed on the output of an nlg system; in many settings it is not even the
most important one (in particular, settings where entertainment rather than
informing is the overarching goal).2 The idea that language generation is more
than simple mapping of information and involves addressing multiple constraints
at once is certainly not new. One of the first to express it very concisely and
work it out in great detail is Appelt ([3]). Although he speaks of ‘goals’ rather
than ‘constraints’, his ideas resonate with the approaches we discuss in this
survey:

“One must constantly bear in mind that language behavior is part
of a coherent plan and is directed toward satisfying the speaker’s
goals. Furthermore, sentences are not straightforward actions that
satisfy only a single goal. The utterances that people produce are
crafted with great sophistication to satisfy multiple goals at different
communicative levels.” (on pages 1–2 of [3])

Secondly, constraints enable a declarative approach to solving generation
problems. The main advantage of this is that we can separate a clear formulation
of optimal solutions to the generation problem from heuristics-based algorithms
for finding solutions. We will return to this point at various places in this paper.

Thirdly, constraints are well-suited for addressing problems that involve in-
teractions between information of different types, granularity and levels of spec-
ification.

Constraint-based nlg is by no means a monolithic entity. If anything, what
this survey shows is that there is variety of approaches and architectures for
constraint-based nlg, each with its own advantages and disadvantages.

2In many generation systems, content determination is an excellent example of generation
which goes beyond straightforward mapping of information: typically content has to be se-
lected based on one or more criteria/constraints. For example, in the dyd system ([58]), which
generates brief informative spoken presentations about music recordings, information about
the age of a composer is only included if it is noteworthy, e.g., if the composer was very young
when s/he composed the music.

4

Section 2

What is a constraint?

Constraints are part of everyday life. Consider the predicament of someone who
wants to organize a birthday party. One constraint which she will need to take
into account when inviting people is that party has to fit into her living room.
Suppose the room can contain ten visitors, and ten invitations have gone out.
Is it wise to send out another invitation? This depends on how many of the
invitations will be accepted. Another constraint may be that the party has to
be pleasant. For example, if Mr. X comes to the party then perhaps it would
be better if Mrs. Y stayed at home.

The problem for the party organizer is to make sure that the actual party
satisfies such a set of constraints. Constraints allow one to differentiate among
party situations: some will be more preferred than others and some might even
be ruled out altogether.

In this example, we have seen that situations and ways of distinguishing
between them are central to the notion of a constraint. In fact, the notion of a
constraint is more general: situations are just one type of object that constraints
can apply to. Other, more tangible, objects include for example artifacts — such
as houses, cities, roads, cars, etc. — which are typically designed with a set of
constraints in mind.

2.1 Formal definition of the notion of a con-
straint

Let us now move to a formal characterization of constraints. Our exposition
roughly follows the formalizations of the notion of a constraint as given in [7]
and [13].

We assume that a universe E of objects is given to which a constraint or set
of constraints applies.

Constraint A constraint c for a universe E is a function from E

into a range S of satisfaction levels, i.e., c : E 7→ S.

5

For classical constraints, S = {1, 0} with 0 < 1. A classical constraint
returns 1 for objects which satisfy it and 0 for objects which do not satisfy it.
In other words, we have two satisfaction levels: satisfaction and no satisfaction.
Combining classical constraints amounts to taking the minimum (min) of the
satisfaction levels assigned by the individual constraints. If we write c1 ⊗ c2

for the combination of the classical constraints c1 and c2, then for all e ∈ E:
c1 ⊗ c2(e) = min(c1(e), c2(e)). Thus, an object e only satisfies two or more
classical constraints if it satisfies (i.e., returns 1) for each one of them. If one of
them returns 0, the minimum of their combination will automatically be 0.

Generally speaking, a Constraint Satisfaction Problem (CSP) consist of a
set of constraints c : E 7→ S, given an instantiation of the following three
components:

1. A universe E. Typically, E is characterized in terms of a sequence
of variables V = X1,X2, . . . ,Xn that range over non-empty domains
D1,D2, . . . ,Dn. Objects of E are then tuples 〈x1, x2, . . . , xn〉 such that
x1 ∈ D1, x2 ∈ D2, . . . , xn ∈ Dn. Such a tuple contains instantiations for
the variables in the sequence V .1

2. A structure S to represent satisfaction levels. Classical constraints
can be modelled using a total ordering over the set {1, 0}, with 0 as the
bottom element and 1 as the top element. They require only two levels:
not satisfied (0) and satisfied (1). Soft or flexible constraints allow for
intermediate levels. Their satisfaction levels can, for example, be repre-
sented by a total ordering on a set that still has 0 as the bottom element
and 1 as the top element, but also other elements representing satisfac-
tion levels between 0 and 1. Levels of satisfaction are also known in the
literature as measures of desirability or levels of feasibility, importance or
preference. They can be related as ratio variables (so that it makes sense
to say that one level is twice as high as another) or mereley as ordinal
variables (where one can only say that one level is higher than another).

3. A combination operation ⊗ for combining multiple constraints into a
single constraint. The satisfaction level that is assigned by a composite
constraint is normally a function of the satisfaction levels assigned by in-
dividual constraints. We have already seen that min is used for classical
constraints. Other functions are, for example, multiplication and weighted
addition. Note that for weighted addition, 0 is typically interpreted as full
satisfaction. Whereas any elements above zero are interpreted as repre-
senting costs.

1Often, in the formulation of CSPs sets of variables and assignments of values to them are
used instead of sequences of variables and tuples. Here we chose for the latter formulation,
because we want our universe E to be a set of objects. Tuples qualify as complex objects,
whereas intuitively assignments are not really objects (they are functions). In most of the
remainder of this section, the exact shape and form of the members of E is not relevant. All
we need is the assumption that there is a set of objects E to which the constraints are applied.

6

A solution to a CSP is an object e ∈ E such that there are no other objects
in E with a higher satisfaction level than e and the satisfaction level of e is not
total non-satisfaction (e.g., when the level of satisfaction is 0 for a classical hard
constraint). Note that e does not need to be unique: a CSP can have multiple
solutions.

Different constraint satisfaction problems can be obtained by varying the
components listed above, for example (based on [4]):

• Fuzzy Constraint Satisfaction Problem 1. Variables ranging over
finite domains. 2. Satisfaction levels are represented as real numbers
between 0 and 1. 3. Constraints are combined using min (c1 ⊗ c2(e) =
min(c1(e), c2(e))).

• Weighted Constraint Satisfaction Problem 1. Variables ranging
over finite domains. 2. Satisfaction levels are represented by non-negative
real numbers. 0 is identified with maximal satisfaction. The higher the
value, the lower the satisfaction level. In other words, the non-negative
real numbers represent costs. 3. Constraints are combined using addition
(c1 ⊗ c2(e) = c1(e) + c2(e)).

The notion of a constraint that we have adopted here follows [7] and [13].
We decided to adopt this approach, because it brings out very clearly the rela-
tionship between optimization and satisfaction of hard constraints: satisfaction
of hard constraints is basically a special case of optimization (which covers both
hard and soft constraints).

An older and more restrictive notion of constraints can be found in, for
example, pages 3–4 of [23]: “Formally, a CSP can be defined in the following
way. Assume the existence of a finite set I of variables {X1,X2, . . . ,Xn}, which
take respectively their values from their finite domains D1,D2, . . . ,Dn and a set
of constraints. A constraint c(Xi1

,Xi2
, . . . ,Xik

) between k variables from I is
a subset of the Cartesian product Di1

×Di2
×Dik

, which specifies which values
of the variables are compatible with each other. In practice this subset does
not need to be given explicitly, but can be defined by equations, inequalities,
or programs whatsoever. A solution to a CSP is an assignment of values to
all variables, which satisfies all the constraints. The task is to find one or all
solutions.”

According to this definition, optimization is not included by CSP. CSP is
limited to satisfaction of hard constraints, i.e., constraints that are either satis-
fied or not. We have chosen for a broader definition of CSP (where classical hard
CSP are a special case of optimization). This more general definition of CSP re-
flects better the common theme that underlies the constraint-based approaches
that we discuss in the remainder of this survey.

2.2 Hard constraints and priorities

We have seen that we can view a constraint as imposing an ordering in terms
of satisfaction levels on the universe of objects E. By allowing constraints to

7

assign satisfaction levels different from 0 and 1, it is possible to model situations
in which we need to find a solution that satisfies the constraints to the highest
degree possible, but not perfectly. Thus we can deal with situations where a
perfect solution does not exist and a choice among less than perfect alternatives
needs to be made. Thus we avoid the problem of classical hard constraints, i.e.,
that objects which do not fit all the constraints perfectly are not differentiated;
they are all treated as equally bad.

There are also other ways to circumvent the crispness of classical constraints.
For example, if not all hard constraints can be satisfied, one could simply at-
tempt to find the solutions that satisfy the maximum number of hard con-
straints. Taking this a bit further, one can assign an ordering to constraints, in-
dicating which constraints are more important in some respect than others. The
‘priority’ of a constraint can then influence whether we allow it to be dropped
or not. Thus we obtain the notion of an ordered set of constraints:

A set of ordered constraints consists of a set of classical hard
constraints C and a function π from C to levels of priority P (that
is i : C 7→ P).

There are alternative formalizations for priority levels P and also for the
way the priority level of a constraint influences whether it can be dropped. Two
important instantiations of ordered constraints — optimality theoretic ([51])
and probabilistic — can be characterized as follows:

• Optimality Theory Each constraint c ∈ C is assigned a natural num-
ber representing its position in the priority ranking π(c) (lower num-
bers indicating higher priority). Roughly speaking (i.e., disregarding ties)
e ∈ E is a solution if and only if: ∃c(∀c′.π(c′) ≤ π(c) → c′(e) = 1 and
∀e′.e′ 6= e → ∃c′′.π(c′′) ≤ π(c) & c′′(e′) = 0). Thus, solutions are those
e ∈ E which satisfy all constraints down to a level of importance which is
lower or equal to that for all other e′ ∈ E. Perhaps most striking here is
that numbers of constraint violations are not taken into account (except
when there is a tie between two would-be solutions).

• Probabilistic Constraint Satisfaction Problems (description fol-
lowing [4]) We use π to assign to each constraint c ∈ C its probability
π(c) = p independent from the probability of the other constraints. The
probability is defined as the probability of the class of situations that the
constraint characterizes.

One way to characterize solutions of Probabilistic CSP is in terms of a
comparison of the probability of the sets of constraints that are satisfied.
In particular, for a given situation, we calculate the probability of all the
sets of constraints which the situation satisfies. The probabilities for each
of these sets is obtained by multiplying the probabilities of the constraints
in the set. We then sum the resulting probabilities. The situation that
receives the highest sum is a solution. More precisely, e ∈ E is a solution

8

to a Probabilistic CSP with constraints C and π : C 7→ P if and only if
for all e′ ∈ E:

∑
{
∏
{π(c)|c ∈ S} | S ⊆ C such that ∀c ∈ S : c(e) = 1} ≥∑

{
∏
{π(c)|c ∈ S} | S ⊆ C such that ∀c ∈ S : c(e′) = 1}.2

2.3 Solving Constraint Satisfaction Problems

Let us conclude this section with some pointers to implementations of solvers
for classical and non-classical Constraint Satisfaction Problems.

• Classical CSP: most contemporary ProLog implementations include a li-
brary for solving CSPs. There are also C++ and Java based libraries.
See, e.g., [2] for a list of resources.

• OTSoft for Optimality Theory ([21]).

• Problems involving soft constraints are a form of optimization problems.
A survey of optimization methods can be found in [19]. A particularly rel-
evant field is linear Programming (LP). LP addresses optimization prob-
lems in which the objective function and the constraints are linear ([1]).3

There exist various (integer) linear programming packages and libraries
([46]).

2Given function f and property r, we use the notation
∑

{f(x) | r(x)} to denote the sum

of all f(x) such that r(x)holds. The notation for products (
∏

) works along the same lines.
3A linear programming problem consists of 1. a linear function (e.g., c1x + c2y) that is

to be maximized, 2. a set of constraints, e.g., g1x + h1y ≤ a1 and g2x + h2y ≤ a2., and 3.
the requirement that the variables (x and y) have non-negative values. If the variables are
integers, we speak of an Integer Linear Programming (ILP) problem and if only some of them
need to be integers we have a Mixed Integer Programming (MIP) problem.

9

Section 3

Constraints in NLG:
Approaches and
Architectures

In this section, we summarize the findings of our survey on constraint-based
nlg. A one-by-one description of the papers that we collected for our survey can
found in the next section. The various classifications that we provide are neither
exhaustive nor are the categories always mutually exclusive. Rather, what we
aim to provide is a quick overview of the different approaches to constraint-based
nlg together with pointers to the relevant literature.

3.1 Nature of constraints

Morphological [45]

Lexical Choice [15, 24, 36, 44, 59]

Syntactic [6, 24, 25, 10, 30, 36, 39, 44, 45, 43]

Syntactic (aggregation) [9]

Semantic [10, 12, 57, 16, 39, 45, 43]

Semantic Ambiguity [26]

Punctuation [59]

Discourse [28, 36, 38, 49, 59]

Affect/Opinion [24, 25]

Style [24, 25, 26, 35, 34, 47, 48]

10

Size [52, 48]

Statistical/Probabilistic/Corpus-based [31, 30, 29, 36, 10, 47, 59]

3.2 Units to which constraints apply

Phonetic [35, 34]

Punctuation markers [59]

Words [24, 10, 30, 36, 44, 59]

Mappings from conceptual input to lexical items [15]

Phrases [24, 44, 42, 43]

(Content of) Noun Phrases/Referring expressions [16, 12]

Clauses [9]

Sentences [10, 29, 39, 45, 42, 43]

Syntactic Surface Structure [36, 26]

Trees [6]

Paragraphs [24]

Discourse: Text Structures/RST Trees [28, 36, 38, 49]

Entire text [47, 52]

Dialogue script plan [48]

3.3 Types of constraints

Hard [6, 9, 12, 15, 16, 39, 44, 42, 43]

Soft [10, 57, 29, 35, 34, 38, 47, 48]

Hard and Soft [52, 59, 24, 28, 30, 36, 49, 45]

11

3.4 Approaches for dealing with multiple soft
constraints

Here we list those papers in which the problem of combining multiple soft con-
straints is addressed. Note that some of the papers dealing with soft constraints
listed above only deal with a single constraint. There were also some papers
that do not explicitly state how multiple soft constraints are combined. Below
we provide the means by which the scores assigned by different constraints to
potential solutions are combined (addition versus multiplication) or dealt with
in an incremental approach (always satisfy the constraint that is currently least
satisfied):

Least satisfied precedence [24]

Weighted addition [28, 10, 36, 38, 49]

Multiplication [48]

Bidirectional Superoptimality [57] (based on [8])

3.5 Approaches to satisfying constraints

In this section we organize the papers covered by this survey using a taxonomy.
The taxonomy systematizes a variety of approaches for satisfying constraints
in nlg. The main division is between approaches that guarantee an optimal
solution with respect to the set of constraints that are in force, and those that
can only approximate such solutions. Of course, usually optimization has to
be traded in for efficiency. For example, [38] describe their stochastic search
approaches specifically to address the problem that ‘Constraint satisfaction in
general is intractable, and having weighted constraints seems to make matters
worse.’. Connectionist approaches are missing from our survey. In recent years
they seem to have had few followers in the nlg community. We point this
out because some constraint-based approaches specifically refer to connectionist
models as implementations (Optimality Theory; see [51]).

• Optimal Solutions

– Produce a set of potential solutions and rank these A set of
potential solutions P (or a compact representation thereof) is gen-
erated and these are then ranked (sometimes only the first stage is
implemented). This allows us to guarantee that we find the opti-
mal solution relative to P , because we can compare all members of
P with each other. Thus we have two stages: 1. generation of a
set of (potential) solutions and 2. ranking. In stage 1., we either
apply hard constraints which all solutions will need to satisfy using
CSP satisfaction ([12, 16, 28, 49, 59]) or we use traditional symbolic
generation, rewriting or revision rules to obtain a set of potential

12

solutions ([29, 30, 48]). Typically, there are pre- and post-processing
steps which tailor the input and output of this stage (see [49] on
the problems of directly applying CSP satisfaction to configuration
tasks). In stage 2., the set of potential solutions that has been pro-
duced in stage 1 is ranked according to one or more soft constraints.
Sometimes, step 2 is omitted altogether and solutions are only sub-
ject to a set of hard constraints (e.g., [6, 39]).

– Integer Linear Programming (ILP) In ILP, hard constraints are
directly integrated with a soft constraints that are expressed in terms
of a linear function which needs to be maximized/minimized (see
section 2.3). This approach has been adopted in [36]. See also [18]
for an application of Linear Programming to Machine Translation.

• Search using Heuristics

– Building a solution A solution is constructed stepwise. The con-
struction can be carried out and controlled in a number of different
ways:

∗ Incremental using monitoring regarding the extent to which var-
ious constraints are being satisfied ([24, 25]).

∗ Construction using a unification-based grammar (e.g., [15, 44]).

∗ Construction as a sequence of decisions, where alternatives for
each decision problem are ranked based on scores which have
been obtained during off-line (corpus-based) training ([47]).

– Searching complete states/revision Here we distinguish between
searching through a sequence of single potential solutions and search-
ing through a sequence of sets of potential solutions. By a complete
state, we mean a complete representation of the expression that is to
be generated on a certain level of abstraction (e.g., this can be the
discourse plan level or the level of lexical realizations, or both).

∗ Single solutions Beginning from of a single complete representa-
tion of a possible solution, we apply revisions sequentially to this
representation to improve it.

· Applying revision operations triggered by their pre-conditions
([9, 26, 45]).

· Estimation: we make local decisions regarding which revi-
sion operation to apply based on estimations of their global
effects ([52]). Estimation is required if the representation is
complete on a certain level (i.e., discourse plan), but not on
levels which it dominates, e.g., lexical realization. For ex-
ample, a discourse plan allows us to estimate the length of
the final document, but the actual length will only be known
after it has been lexically realized.

13

· Full expansion: revisions operate on a representation of the
actual text such that we do not need estimates to choose
between revision operations that are sensitive to details of
the actual realization ([52]).

∗ Multiple solutions We maintain a set of potential solutions and
revise members of this set. For this purpose, stochastic algo-
rithms can be used (e.g., genetic algorithms) to minimize the
chance of getting stuck in local maxima ([38, 35, 34]).

14

Section 4

Papers on Constraints in
NLG

In this section, we describe each of the papers that we collected for our survey
in terms of a list of 9 questions:

1. Name of the constraints (if available).

2. Brief informal description of the constraints.

3. Type of constraints: Hard, soft (e.g., Preferences), or other (specify).

4. Units to which the constraints apply: e.g., sentences, words, entire texts,
dialogue turns, or other (specify).

5. Nature of the constraints: syntactic, stylistic, size, or other (specify).

6. Theoretical work or implemented: Implemented/Partially Implemented/Not
Implemented

7. Approach to addressing constraints in generation: As a classical constraint
satisfaction problem, or other (specify, e.g., revision-based, monitoring,
overgenerate-and-test, ...).

8. Single or many constraints? How are constraints combined?

9. Any other comments on the paper.

For some of the papers that are surveyed below, we obtained answers to these
questions from the authors of the papers. We have used these answers from the
authors verbatim. For all papers, were we used the authors’ answers, this is
stated explicitly at the beginning of list of answers for the paper. Everywhere
else, the answers were filled out by ourselves after careful study of the papers
in question.

15

The heading for each paper contains the author names, references to the
bibliography at the end of this paper, year of main publication and title of main
publication.

4.1 Becker and Lockelt [6], 2000, ‘Liliput: A
Parameterisable Finite-Domain Constraint
Solving Framework and Its Evaluation with
Natural Language Generation Problems’

1. Name of the constraint(s) (if available) –

2. Brief informal description of the constraint(s) This paper describes the
Liliput framework for solving finite-domain hard constraints, and its ap-
plication to syntactic realization and microplanning.

3. Type of constraint(s) Hard.

4. Units to which the constraint applies Tree structures, feature structures,
semantic representations and syntactic dependency structures.

5. Nature of constraint(s) Syntactic.

6. Theoretical work or implemented Implemented in Common lisp.

7. Approach to addressing constraints in generation Propose algorithm for
solving finite-domain hard constraints.

8. Single or many constraints? How are constraints combined? –

9. Any other comments on the paper Beale et al. [5] is a precursor to work
along these lines. They apply a special purpose constraint-directed control
architecture called Hunter-Gatherer (HG) to sentence planning.

4.2 Callaway and Lester [9], 1997, ‘Dynamically
Improving Explanations: A Revision-Based
Approach to Explanation Generation’

1. Name of the constraint(s) (if available) –

2. Brief informal description of the constraint(s) Constraints are used to
reign in the application of revision operators for clause aggregation. For
example, focus constraints are used to prevent inappropriate aggregation
of adjacent clauses. Discourse constraints can prevent reorganization of
discourse plans if the reorganization crosses boundaries (in the organiza-
tional structure of the discourse).

16

3. Type of constraint(s) Hard.

4. Units to which the constraint applies Clauses.

5. Nature of constraint(s) For controlling clause aggregation revisions.

6. Theoretical work or implemented Implemented system called Revisor.

7. Approach to addressing constraints in generation (1) The system produces
an initial draft of a text. (2) Details that are irrelevant for clause aggre-
gation are removed, to obtain an abstract representation of the discourse.
(3) A depth-first exploration of the abstract discourse space is undertaken,
through the iterated application of revision operators (for aggregation and
permutation of clauses). Operators are tried if their preconditions are
satisfied. The result of the application is tested for the satisfaction of
discourse, global, and focus constraints. If one of these is violated an
alternative operator is chosen, or the system backtracks. The process
continues until an acceptable revision has been obtained or all possible
revisions have been exhausted (the notion of an acceptable revision is not
defined in this paper).

8. Single or many constraints? How are constraints combined? See above;
constraints are used as guards on revision operations rather than goals in
themselves.

9. Any other comments on the paper The approach is compared with how
human writers produce text. They refer to [22], who hypothesize that
human writers produce multiple drafts to cope with the complexity of
writing text.

4.3 Dale & Haddock [12], 1991, ‘Content De-
termination in the Generation of Referring
Expressions’

1. Name of the constraints (if available) –

2. Brief informal description of the constraints In this approach to the gener-
ation of relational referring expressions, constraints derive from the prop-
erties and relations ascribed to objects in a referring expression. For exam-
ple, the expression ‘the cup on the table’ corresponds with the constraints
cup(x), on(x,y), table(y), together with a bookkeeping of the remaining
values that each variable can take on the basis of these constraints. For
example, [x=c1, y=b1] expresses that x and y both have a unique value.
Crucially, this uniqueness arises from an inferential combination of the two
constraints, which is something that a simpler approach to GRE would
not be able to do.

17

3. Type of constraints Hard.

4. Units to which the constraints apply Properties and relations expressed in
a referring expression.

5. Nature of the constraints Semantic (i.e., logical).

6. Theoretical work or implemented Implemented (e.g., in the epicure sys-
tem, see [11]).

7. Approach to addressing constraints in generation Classical constraint sat-
isfaction.

8. Single or many constraints? How are constraints combined? Any finite
number of constraints (as expressed in a referring expression). Dale and
Haddock use A.K. Mackworth’s ([32]) notion of consistency in constraint
networks (also applied in Mellish [37]).

9. Any other comments on the paper Essentially the same approach was later
used for the generation of (distributive or collective) references to sets by
Matthew Stone ([56]). Gardent’s ([16]) use of constraints in generation
of referring expressions (GRE) is different because there, the constraints
correspond with general GRE principles.

4.4 van Deemter [57], 2004, ‘Towards a Proba-
bilistic Version of Bidirectional OT Syntax
and Semantics’

1. Name of the constraint(s) (if available) One constraint is called (degree
of) fluency or brevity; the other is called (vicious) ambiguity.

2. Brief informal description of the constraint(s) Fluency can be formalised
in different ways; the simplest way is to define the most fluent formulation
to be the shortest. Ambiguity revolves around the question whether the
intended interpretation of the sentence is “by far” the most plausible of
all its interpretations. If this is not the case then the sentence is viciously
ambiguous. The paper explores how vicious ambiguity might be measured
by making use of statistical parsing.

3. Type of constraint(s) Both fluency and ambiguity are soft constraints, in
the sense that a generator should try to find the best balance between the
two when the most fluent formulation happens to be viciously ambiguous.

4. Units to which the constraint applies In principle, these constraints can
apply to any of these levels.

18

5. Nature of constraint(s) The constraints are relevant for selecting the ‘best’
among a number of possible (i.e., grammatically correct) formulations.
Fluency can be viewed as a stylistic constraint (possibly involving the
length of the generated sentence). Ambiguity is a semantic constraint.

6. Theoretical work or implemented Theoretical. Efforts to implement a sim-
ple version of the idea (involving either lexical choice or referring expres-
sions generation) are at an early stage.

7. Approach to addressing constraints in generation Overgenerate-and-test.
The starting point of the paper is bidirectional superoptimality (Blutner-
style, [8]), but various changes to this concept are necessary.

8. Single or many constraints? How are constraints combined? If a formu-
lation exists that is optimal for both constraints then this formulation is
chosen. If not then a formulation may be chosen that is optimally fluent
but viciously ambiguous (i.e., nice but unclear), or one that is neither
optimally fluent nor viciously ambiguous (i.e., ugly but clear).

9. Any other comments on the paper This paper asks how bidirectional Opti-
mality Theory can be applied to NLP, focussing primarily on the question
of avoidance of ambiguity in NLG (as earlier addressed by e.g., [26] and
[45]). It is a programmatic paper in which a number of possible approaches
are discussed and compared. The general outlook aspires to be neutral
between generation and interpretation.

4.5 Elhadad, McKeown and Robin [15], 1997,
‘Floating Constraints in Lexical Choice’

1. Name of the constraint(s) (if available) –

2. Brief informal description of the constraint(s) Floating constraints are
addressed. These are basically parts of the conceptual input structure
to a generator for which there is no straightforward mapping to lexical
items. Rather, they can appear at various places in the resulting linguistic
structure. Examples for the constraints time and manner are given on page
197 of [15]:

(a) Wall street indexes opened strongly. (time in verb, manner as
adverb)

(b) Stock indexes surged at the start of the trading day. (time as
PP, manner in verb)

3. Type of constraint(s) Hard.

4. Units to which the constraint applies Mappings from conceptual input to
lexical items.

19

5. Nature of constraint(s) Constraints on lexical choice.

6. Theoretical work or implemented Implemented in advisor-ii system using
the fuf/surge package ([14]).

7. Approach to addressing constraints in generation fuf ([14]) Unification
based top-down control regime with dependency-directed mechanism to
make processing of floating constraints efficient.

8. Single or many constraints? How are constraints combined? Multiple
constraints. See above.

9. Any other comments on the paper –

4.6 Gardent [16], 2002, ‘Generating Minimal Def-
inite Descriptions’

1. Name of the constraints (if available) No names provided. The algorithm
focuses on the content determination aspect of Generation of referring
Expressions. The algorithm builds a description (conceived as a set of
positive and negative properties) of a target set. Here we concentrate on
the simple case where disjunctions (as in ‘the cat and the dog’) are not
used.

2. Brief informal description of the constraints The first constraint (1) says
that the positive properties in the generated description must be true of
all the elements of the target set. The second constraint (2) says that the
negative properties in de description must be false of all the elements of
the target set. The third constraint (3) says that every distractor (i.e.,
every domain element not in the target set) must be excluded by one of the
(positive or negative) properties in the description. (This is what makes
the description distinguishing.)

3. Type of constraints Hard.

4. Units to which the constraints apply Noun Phrases. More precisely (be-
cause the program focusses on the content of the NP): sets of properties
to be expressed in a referring expression.

5. Nature of the constraints Semantic.

6. Theoretical work or implemented Implemented using the generator InDi-
Gen ([17]) which uses the concurrent constraint programming language
Oz.

7. Approach to addressing constraints in generation Classical constraint sat-
isfaction.

20

8. Single or many constraints? How are constraints combined? Three con-
straints, which must all be fulfilled. The system (basically by using a
version of Dale’s Full Brevity algorithm) finds the shortest distinguishing
description if a distinguishing description of the target set exists.

9. Any other comments on the paper. –

4.7 Hovy [24, 25], 1988, ‘Generating Natural
Language under Pragmatic Constraints’

1. Name of the constraint(s) (if available) –

2. Brief informal description of the constraint(s) Hovy proposes that there
are three levels at which constraints operate in generation. At the top level
there are interpersonal communicative goals and other pragmatic aspects
of the situation. [25] provides the following example (on page 156):

• Time: some.

• Tone of interaction: informal.

• Speaker’s opinion’s: neutral.

• Depth of acquaintance: strangers.

• Goal to affect hearer’s opinion’s: none.

At the bottom level there are syntactic decisions which the generator has
to take. He proposes to bring the two together through an intermediate
level of rhetorical goals. He groups the latter into two categories: rhetorical
goals of opinion that are achieved through topic collection, grouping and
the use of marked and slanted phrases and words, and rhetorical goals of
style including formality, simplicity, haste, etc.

3. Type of constraint(s) Hard and soft.

4. Units to which the constraint applies Paragraphs, phrases, words.

5. Nature of constraint(s) Affect/opinion, style, syntax and lexical.

6. Theoretical work or implemented Implemented as the Pauline system in
Lisp.

7. Approach to addressing constraints in generation Hovy advocates a plan-
ning approach to generation. He distinguishes between prescriptive and
restrictive planning. ‘Prescriptive strategies are formative: they control
the construction and placement of parts in the paragraph and the sentence;
that is they make some commitment to the final form of the text [...] Re-
strictive strategies are selective: they decide among alternatives that were
left open (such as, for example, the possibility of including additional

21

topics under certain conditions, or the specific form of each sentence. A
restrictive planner cannot simply plan for, it is constrained to plan with:
the options it has to select from are presented to it by the realizer)’ ([25] p.
167). Hovy focuses on how to deal with restrictive planning. He proposes
a (execution) monitoring approach. It continually keeps track of the sat-
isfaction status of the various restrictive goals. When making decisions,
for each option it calculates which goals are advanced by each option and
which are not. A heuristic is used to compute the relative priority of the
goals. Hovy points out that there exist various alternative heuristics ([25]
on page 168):

(a) Prefer common subgoals of various goals;

(b) Prefer goals that are easier to achieve/cheaper;

(c) Prefer goals that most clearly indicate their long-term promise;

(d) Prefer satisfaction of goals that are least satisfied (so far);

(e) Prefer goals that have been satisfied the longest time ago;

(f) A combination of the latter two strategies.

Hovy opts for strategy 4. The system keeps track of the number of times
each goal was satisfied by the choice for a particular option. In case
there are multiple conflicting options, it goes for the option that addresses
the least satisfied goal. Hovy gives various examples of conflicting goals
including the following:

Rhetorical goal: simplicity = high ⇒ don’t passivize.
Rhetorical goal: partiality = high ⇒ suppress contentious parts,
e.g., through passivization.

8. Single or many constraints? How are constraints combined? Many con-
straints/goals. See above.

9. Any other comments on the paper –

4.8 Inui, Tokunaga and Tanaka [26], 1992, ‘Text
Revision: A Model and Its Implementation’

1. Name of the constraint(s) (if available) –

2. Brief informal description of the constraint(s) A revision-based approach
to enforcing constraints on structural ambiguity and sentence complex-
ity is described. Sentence complexity includes lower and upper bounds
for sentence length, depth of clause embeddings, depth of modification
relation in NP and depth of center embedding.

22

3. Type of constraint(s) Soft: it seems possible to drop constraints if it is not
possible to satisfy them. The paper, does, however, not specify in detail
when a constraint is given up apart from saying that ‘Our model repeats
the revision cycle until we produce an acceptable text’ (p.7 of [26]).

4. Units to which the constraint applies Syntactic surface structure of sen-
tences.

5. Nature of constraint(s) Semantic (ambiguity) and stylistic (sentence com-
plexity).

6. Theoretical work or implemented Implemented in the weiveR system.

7. Approach to addressing constraints in generation See below.

8. Single or many constraints? How are constraints combined? Initial gen-
eration followed by a cycle of evaluation, revision planning, surface gen-
eration of changes, etc. The evaluator checks whether any constraints
have been violated. If so, the revision planner tries to find changes which
address these violations. A record is kept of previous revisions and depen-
dencies to avoid infinite loops.

9. Any other comments on the paper –

4.9 Kibble and Power [28], 2004, ‘Optimizing
Referential Coherence in Text’

1. Name of the constraint(s) (if available) Constraints are reformulations of
well-known rules from Centering Theory ([20]). The named constraints
are: cohesion, salience, cheapness and continuity.

2. Brief informal description of the constraint(s) Centering theory is used to
inform generation of coherent text and choice of referring expressions.

3. Type of constraint(s) Hard and Soft.

4. Units to which the constraint applies Text structures.

5. Nature of constraint(s) Discourse level (Centering Theory).

6. Theoretical work or implemented Implemented as an extension of the
Iconoclast text planner ([49]; [50]).

7. Approach to addressing constraints in generation The text planner, de-
scribed in [49], generates a number of text structures. For each text struc-
ture alternative realizations in terms of Centering Theory are computed.
The realizations vary primarily in the realization of relations (e.g., ‘The
FDA approves Elixir’ versus ‘Elixir is approved by the FDA’). This in turn
determines subject and object positions for referring expressions. There

23

is one hard centering constraint which all realizations need to satisfy:
The backward-looking centre of an utterance should be the most salient
forward-looking centre of the preceding sentence. In Centering Theory,
subjects are more salient than objects and the backward-looking centre
is the entity that is most likely to be pronominalized. Soft constraints
regarding Centering (there are also other soft text planning constraints,
see [49]) are implemented in terms of a cost function which assigns to each
realization its cost, depending on the (weighted) number of violations of
various constraints (e.g., any utterance with no backward looking centre,
except for the first utterance, is penalized). Weighted costs are summed
and realizations are ordered in terms of their summed weighted costs.

8. Single or many constraints? How are constraints combined? Many con-
straints. See above.

9. Any other comments on the paper –

4.10 Langkilde-Geary [30], 2004, ‘An Exploratory
Application of Constraint Optimization in
Mozart to Probabilistic Natural Language
Processing’

For this paper ([30]), answers to our questions were provided by the author
(Irene Langkilde-Geary). Our comments have been added in square brackets.

1. Name of the constraint(s) (if available) None.

2. Brief informal description of the constraint(s) –

3. Type of constraint(s) Both (hard and soft constraints).

4. Units to which the constraint applies Words. Actually, to sets of features
associated with individual words.

5. Nature of constraint(s) Syntactic.

6. Theoretical work or implemented Implemented. [Uses the Mozart/Oz pro-
gramming language environment which has built-in Concurrent Constraint
Programming (CCP)]

7. Approach to addressing constraints in generation CSP.

8. Single or many constraints? How are constraints combined? They are
combined in the framework of concurrent constraint programming, and
all constraints must be satisfied. The probabilistic constraints are used
as part of a cost function, where the program optimizes for the best cost
sentence given the input and the constraints. [The hard constraints are

24

on domains for representing word features, and on relationships between
features of words, e.g., regulating the position of heads.]

9. Any other comments on the paper None.

4.11 Langkilde and Knight [29, 31], 1998, ‘Gen-
eration that Exploits Corpus-based Statis-
tical Knowledge’

1. Name of the constraint(s) (if available) –

2. Brief informal description of the constraint(s) See below.

3. Type of constraint(s) Soft/preferences.

4. Units to which the constraint applies Sentences.

5. Nature of constraint(s) n-gram language model.

6. Theoretical work or implemented Implemented in Nitrogen and its succes-
sor HALogen.

7. Approach to addressing constraints in generation Input (typically semanti-
cally underspecified) is mapped (using symolic rules) to a forest of possible
expressions. The N most likely outputs are obtained from this using an
n-gram word frequency model.

8. Single or many constraints? How are constraints combined? Single soft
constraint.

9. Any other comments on the paper

4.12 Manurung, Ritchie and Thompson [35, 34],
2000, ‘Towards a Computational Model of
Poetry Generation’

1. Name of the constraint(s) (if available) –

2. Brief informal description of the constraint(s) The application is poetry
generation. One constraint is specified as a target phonetic form of a par-
ticular metrical configuration. The other constraint is specified in terms
of the input semantics.

3. Type of constraint(s) Soft.

25

4. Units to which the constraint applies The implemented constraint is pho-
netic (metre), but other constraints are also described including syntactic
(rhyme, alliteration), and semantic ones.

5. Nature of constraint(s) Implemented constraint concerns metre.

6. Theoretical work or implemented Significant part implemented in Java.

7. Approach to addressing constraints in generation As a state search prob-
lem. A state is a text with its underlying representation and a move can
occur on all levels. Search is executed by stochastic hillclimbing. An
evolutionary algorithm is used. It starts with initialization: a number of
texts are produced that minimally realize the input semantics. The in-
put also contains a target phonetic form. Next, the following two phases
are repeated several times: evaluation and evolution of an ordered set of
candidate solutions. The approach is similar to [38]. For evaluation of
phonetics and semantics a score-relative-to-target approach has been im-
plemented. An alternative approach is also discussed that keeps a tally
of the times a feature is encountered. Evaluation functions can be pa-
rameterized such that users can set coefficients and assign weights. For
evolution, they suggest three (non-monotonic) operators: add, delete and
change. These operate on LTAG ([27]) derivation trees with a flat seman-
tics. Only candidates that had a high score according to the evaluation
function are mutated (in fact, they spawn identical children to which the
operators are applied). The resulting individuals replace lower scoring
individuals.

8. Single or many constraints? How are constraints combined? At the time
the paper was written only an evaluator for rhythm had been implemented.
The semantics is always subsumed by the target semantics and no evalu-
ator existed yet at the time the paper was written.

9. Any other comments on the paper –

4.13 Marciniak & Strube [36], 2005, ‘Beyond
the Pipeline: Discrete Optimization in NLP’

1. Name of the constraint(s) (if available) Not applicable. The constraints
are mainly non-linguistic. They are used to formalize the problem of
aggregating the outcomes of a set of classifiers in terms of integer linear
programming (ILP; e.g., [41]). For example, there is a constraint which
requires that each classifier assigns exactly one label. The constraints are
on the variables of the ILP target function. This function itself can be seen
as a soft constraint. Marciniak and Strube’s target function minimizes cost
of label assignment of individual labels to individual classification tasks
and pairs of labels to related classification tasks. Costs of assignment are

26

computed from the probability distribution of individual labels and prior
joint probability of pairs of labels in the annotated corpus.

2. Brief informal description of the constraint(s) The application concerns
planning of route instructions. The input is a vector of discourse unit
meanings, in terms of semantic frame and aspectual category. There is a
set of classifiers which is applied to this input to realize a vector repre-
sentation of the form of the output text. The classifiers include ones for
ordering discourse units, choice of discourse connective, syntactic form of
the sentence realizing a discourse unit, verb lexicalization of the main verb
realizing a discourse unit, etc.

3. Type of constraint(s) The main soft constraint is realized as the ILP tar-
get function. Further hard constraints characterize classification tasks in
general .

4. Units to which the constraint applies Discourse level, syntactic structure
and lexical items.

5. Nature of constraint(s) Soft and hard.

6. Theoretical work or implemented Implemented and evaluated system (eval-
uation consists of comparison with pipeline systems). To solve ILP prob-
lems lp solve is used.1 For constructing the classifiers a the Naive Bayes
algorithm was used as implemented in the Weka machine learning software
package ([60]).

7. Approach to addressing constraints in generation Use of Integer Linear
Programming (ILP).

8. Single or many constraints? How are constraints combined? Multiple
constraints dealt with through ILP. The main linguistic constraint is for-
mulated as the target function. This function operates on the costs for
assignments of labels to individual objects and pairs of labels for related
objects. Overall Cost is calculated through summation of the cost for
tasks and pairs of related tasks. The cost of assigning label l is defined as
−log2(p(l)), where p(l) is the probability that label l is selected (from some
given task). For pairs of tasks −log2 is taken of the prior joint probability
of a pair of labels from the pair of tasks.

9. Any other comments on the paper –

4.14 Mellish, Knott, Oberlander and O’Donnell
[38], 1998, ‘Experiments Using Stochastic
Search for Text Planning’

1. Name of the constraint(s) (if available) –

1http://www.geocities.com/lpsolve/

27

2. Brief informal description of the constraint(s) The goals is build the “best”
legal Rhetorical Structure Theory (RST) tree ([33]) for a set of facts and
relations between these facts (not all relations need to be included in the
tree). Constraints are formalized as scores that are assigned to based on
the properties of RST trees. For instance, -10 for trees whose top nucleus
does not mention the subject of the text, and -4 for each fact that textually
separates a satellite and its nucleus.

3. Type of constraint(s) Soft.

4. Units to which the constraint applies RST Trees.

5. Nature of constraint(s) Discourse level.

6. Theoretical work or implemented Partly implemented. Building on imple-
mentation and data structures of the ILEX system.2

7. Approach to addressing constraints in generation Mellish et al. propose
stochastic search to address constraint satisfaction. It is a heuristic seach
(i.e., an optimal solution is not guaranteed) that can be divided into the
following steps:

(a) A set of random candidate solutions CS1 is constructed.

(b) The following steps are repeated until some time limit is reached:

i. At random, one or more items from the set CS1 is selected (pre-
ferring items with the best “scores”) to build a set CS2.

ii. CS2 is used to produce further random variations that are col-
lected in set CS3.

iii. Items in CS3 are added to CS1, possibly at the same time re-
moving from CS1 items with a low score.

There are a number of parameters in this abstract algorithm:

• Scores: There needs to be a scoring function to score items. In this
paper, constraints are described which assign scores to RST trees
depending on the properties of those trees. E.g., a tree which contains
a fact that mentions no previously introduced fact is assigned score
-9. The total score of a tree is obtained by summing the scores that
individual constraints assign to that tree.

• Initialization. A method for producing initial candidate solutions
needs to be chosen. Typically, there are some hard constraints on
these initial solutions.

• Production of further random variations. Mellish et al. explore three
approaches: swapping of random subtrees and two genetic algorithm
approaches. The genetic algorithm approaches both use mutation

2See www.sfu.ca/rst/04text generation/ilex.html.

28

and crossover on sequences of tree leaves to obtain random varia-
tions. Mutation is a unary operation: it maps an input to an output
sequence. Crossover is binary: it takes two sequences and creates
a new one from them. Two different internal representations of se-
quences are explored which give rise to different crossover and muta-
tion operations.

8. Single or many constraints? How are constraints combined? Multiple
constraints; see above.

9. Any other comments on the paper –

4.15 Moriceau and Saint-Dizier [39], 2004, ‘A
Constraint-Based Model for Preposition Choice
in Natural Language’

1. Name of the constraint(s) (if available) –

2. Brief informal description of the constraint(s) Constraints for modelling
of preposition lexicalization.

3. Type of constraint(s) Hard.

4. Units to which the constraint applies Sentences.

5. Nature of constraint(s) Syntactic and semantic.

6. Theoretical work or implemented Theoretical.

7. Approach to addressing constraints in generation –

8. Single or many constraints? How are constraints combined? Multiple
hard constraints.

9. Any other comments on the paper –

4.16 Neumann and collaborators (1990–1998) on
constraint-based grammars, reversible gram-
mars and revision

Neumann and Finkler [44], 1990, ‘A Head-Driven Approach to Incre-
mental and Parallel Generation of Syntactic Structures’

The first author of this paper ([44]), Günter Neumann, provided us with answers
to our questions.

1. Name of the constraint(s) (if available) –

29

2. Brief informal description of the constraint(s)

• lexical constraints for lexical choice

• syntactic constraints based on head/modifier relationship; distin-
guish syntactic hierarchy and linearization

• feedback with conceptual component to request missing constraints
for local syntactic realization

3. Type of constraint(s) hard constraints.

4. Units to which the constraint applies mainly lexical and phrasal.

5. Nature of constraint(s) See 2.

6. Theoretical work or implemented fully implemented prototype fully em-
bedded in a Dialog-System.

7. Approach to addressing constraints in generation unification-based gram-
mar formalism based on constraint-based dependency grammar

8. Single or many constraints? How are constraints combined? used for
realization in incremental and parallel manner, feedback with conceptual
component

9. Any other comments on the paper –

Neumann and van Noord [45], 1992, ‘Self-Monitoring with Reversible
Grammars’

The first author of this paper ([45]), Günter Neumann, provided the following
answers regarding the constraints dealt with in the paper:

1. Name of the constraint(s) (if available) self-monitoring.

2. Brief informal description of the constraint(s) When the semantic and
syntactic structure of a sentence has been generated, it is parsed to check,
whether there are alternative semantic readings; this is tested by compar-
ing the semantic expression of both grammatical derivation trees.

3. Type of constraint(s) Mainly hard constraints, some preferences are built
in as special cases

4. Units to which the constraint applies Sentence level.

5. Nature of constraint(s) Grammatical in the sense of modern constraint-
based grammar theory, i.e, semantic, syntactic, morphological.

6. Theoretical work or implemented Prototype implemented using a large
Dutch unification-based grammar.

30

7. Approach to addressing constraints in generation revision-based; integra-
tion of generation and parsing on basis of reversible unification-based
grammar.

8. Single or many constraints? How are constraints combined? –

9. Any other comments on the paper –

Neumann [42], 1997, ‘Applying Explanation-based Learning to Con-
trol and Speeding-up Natural Language Generation’

Information on [42] was provided by Günter Neumann.

1. Name of the constraint(s) (if available) Data-driven.

2. Brief informal description of the constraint(s) Based on nlg competence
grammar & available corpus of annotated grammatical structures (disam-
biguated semantic/syntactic feature structures), a generation subgrammar
is automatically extracted using Explanation-based Learning; the sub-
grammar automatically filters out all constraints not applicable for that
domain.

3. Type of constraint(s) The remaining constraints are hard.

4. Units to which the constraint applies Phrasal, sentence.

5. Nature of constraint(s) –

6. Theoretical work or implemented –

7. Approach to addressing constraints in generation Explanation-based Learn-
ing of subgrammars for unification-based grammars.

8. Single or many constraints? How are constraints combined? –

9. Any other comments on the paper –

Neumann [43], 1998, ‘Interleaving Natural Language Parsing and
Generation Through Uniform Processing’

The following information on [43] was provided by Günter Neumann.

1. Name of the constraint(s) (if available) Revision on basis of integrated
generation and parsing as part of realization component.

2. Brief informal description of the constraint(s) During realization with
constraint-based grammar, parsing can be used to obtain “parsing-based
constraints” which are then used to check, whether just generated forms
should better be revised/reformulated or just canceled.

3. Type of constraint(s) hard constraints.

31

4. Units to which the constraints apply lexical, phrasal.

5. Nature of constraint(s) semantic and syntactic.

6. Theoretical work or implemented implemented for Dutch and German
small constraint-based grammars.

7. Approach to addressing constraints in generation same chart-based al-
gorithm for generation and parsing; item-sharing; revision-based; self-
monitoring.

8. Single or many constraints? How are constraints combined? –

9. Any other comments on the paper –

4.17 Paiva and Evans [47], 2004, ‘A Framework
for Stylistically Controlled Generation’

1. Name of the constraint(s) (if available) –

2. Brief informal description of the constraint(s) Two factors obtained from
a corpus-based factor analysis. The user can select target scores for the
factors. The two factors roughly correspond with degree of reader in-
volvement and style of referring expressions (pronominal to full nomimal
reference).

3. Type of constraint(s) Soft.

4. Units to which the constraints apply Entire texts.

5. Nature of constraint(s) Stylistic.

6. Theoretical work or implemented Implemented.

7. Approach to addressing constraints in generation Individual generator de-
cisions are correlated with surface stylistic features. The correlations are
obtained by applying factor analysis to a corpus of texts to obtain stylis-
tic factors. The generator is run in free mode and the output is scored in
terms of the factors from the corpus study. Next, correlation equations are
derived, using multivariate linear regression, relating generator decisions
with factor scores.

Using this information, we can then run the generator on new input with
some target factor scores. At each decision point, all possible choices are
enumerated and their score for both factors is computed. The decisions
are ordered in terms of their distance to the target scores. The paper does
not specify how the distance is precisely calculated.

8. Single or many constraints? How are constraints combined? Two con-
straints. See above.

9. Any other comments on the paper –

32

4.18 Piwek and Van Deemter [48], 2003, ‘Dia-
logue as Discourse: Controlling Global Prop-
erties of Scripted Dialogue’

1. Name of the constraint(s) (if available) ‘Number of turns’ and ‘degree of
emphasis’.

2. Brief informal description of the constraint(s) Number of turns in which
some content should be expressed (settings: min and max) and degree of
marking information (through subdialogues) for emphasis (settings: min
and max).

3. Type of constraint(s) Soft.

4. Units to which the constraints apply Scripted dialogue (script of a dialogue
that is typically produced by a single author, i.e., a playwright).

5. Nature of constraint(s) Size and style.

6. Theoretical work or implemented Partly implemented.

7. Approach to addressing constraints in generation A dialogue planner pro-
duces an initial dialogue plan. Revision operations (adjacency pair aggre-
gation and adjacency pair insertion) are performed exhaustively to obtain
a set of revised dialogue plans. Each plan is scored in terms of its satisfac-
tion of the turn and emphasis constraints. The plans are ranked in terms
of the product of the scores. Multiplication is proposed as a fair way of
comparing scores, following Nash’s [40] work in Game Theory (known as
the Nash arbitration plan).

8. Single or many constraints? How are constraints combined? Two soft
constraints. See above.

9. Any other comments on the paper –

4.19 Power [49], 2000, ‘Planning text by con-
straint satisfaction’

1. Name of the constraint(s) (if available) Constraint names include root
domination, parental domination, argument order, multiple text-clauses,
rhetorical grouping, etc.

2. Brief informal description of the constraint(s) The hard constraints char-
acterize the set of text structures which represent rhetorical structure trees
([33]) and exclude fatal stylistic flaws in text structures. Soft constraints
allow an ordering of text structures in terms of their number of non-fatal
stylistic flaws.

33

3. Type of constraint(s) Hard and soft constraints.

4. Units to which the constraints apply partial text structures that are paired
with rhetorical structure trees.

5. Nature of constraint(s) Constraints on text-structure formation, structural
compatibility and style of text structure.

6. Theoretical work or implemented Implemented in the Iconoclast system
using the Eclipse logic programming environment.3

7. Approach to addressing constraints in generation Constraint Satisfaction
Problem (CSP) solver yields a set of text structures. Weighted soft con-
straints induce a preference order on this set (precise details of how the
ordering is obtained are not given in this paper).

8. Single or many constraints? How are constraints combined? Multiple
hard constraints are addressed using a CSP solver. The following steps
are identified: 1. Creation of solution variables. This amounts to adding
text level and order variables to nodes in the input rhetorical structure
tree. 2. Assignment of domains to the variables. This can, for example,
determine that the tree should be realized as a paragraph. 3. Application
of constraints. 4. Enumeration of solutions. 5 Computation of complete
text structures. Power points out that it is difficult formulate a config-
uration task as a CSP, because it is not known in advance how many
variables are needed. It is, however, possible to use CSP to produce part
of the required output text structure and have a subsequent deterministic
phase that supplies the missing structure.

9. Any other comments on the paper –

4.20 Reiter [52], 2000, ‘Pipelines and Size Con-
straints’

1. Name of the constraint(s) (if available) Size constraint.

2. Brief informal description of the constraint(s) Generation of personalized
leaflets for smoking-cessation. The leaflets have to fit on a fixed number
of pages, and these pages should be used optimally to present as much
information as possible.

3. Type of constraint(s) Hard (the document must fit on four A5 pages),
and soft (communicate as much information as possible; i.e., try to use as
much of the four A5 pages as possible).

4. Units to which the constraints apply Entire text.

3See http://www-icparc.doc.ic.ac.uk/eclipse/.

34

5. Nature of constraint(s) Size constraint.

6. Theoretical work or implemented Implemented in the STOP system.

7. Approach to addressing constraints in generation Three alternative ap-
proaches were explored:

(a) Single solution pipeline: The document planner produces an initial
document plan. A heuristic size estimation function then assesses
whether the document fits the page limit, if not a trimmer identifies
the least important message and remove it. This is repeated until the
document plan is predicted by the size estimator to fit the page limit.
Then the document plan is passed to the microplanning module,
which in turn passes its output to the realization component.

(b) Multiple solution pipeline: The document planner runs several times,
each time it is set to overestimate the size of the document to a dif-
ferent degree. This results in a set of documents differing slightly in
how close they are to exactly using the amount of space allowed by
the page limit. All document plans are processed by the microplan-
ning and realization modules. A choice module selects from the final
documents the one which is within the page limit and has the highest
word count.

(c) Extension with a revision module: A complete document is gener-
ated by the system. The exact size of the document is then obtained
(number of pages and word count). A revision module then goes
through a cycle adding and deleting messages until it finds the doc-
ument with the highest word count that still satisfies the hard size
constraint.

8. Single or many constraints? How are constraints combined? A hard con-
straint in combination with a soft one.

9. Any other comments on the paper –

4.21 Thiam Chye [10], 2005, ‘Multi-document
Summarization by Generation’

This is a master’s thesis. The thesis advisor, Min Yen Kan, provided us with
answers to our list of questions.

1. Name of the constraint(s) (if available) None.

2. Brief informal description of the constraint(s) A set of constraints are
identified, which decide the word, phrase and sytactic choices (e.g. Ac-
tive/Passive form).

3. Type of constraint(s) Preferences (Soft constraints).

35

4. Units to which the constraint applies Words and sentences.

5. Nature of constraint(s) Both syntactic and semantic (where a set of similar
words/phrases are constrained).

6. Theoretical work or implemented Partially implemented (prototype sys-
tem).

7. Approach to addressing constraints in generation The constraints are ad-
dressed via classification using supervised learning.

8. Single or many constraints? How are constraints combined? Yes, there
are several sets of inter-dependent linguistic choices which need to be clas-
sified. The approach, which the author termed as Opportunistic Classifi-
cation, is similar to a constraint satisfaction problem, in which linguistic
decisions are mapped to a constraint graph, and the decisions are itera-
tively classified until a best solution to the set of constraints is achieved.

9. Any other comments on the paper The paper focused on answering ques-
tion 8, dealing with the algorithm in solving inter-dependent linguistic
choices.

4.22 Williams [59], 2003, ‘Language choice mod-
els for microplanning and readability’

1. Name of the constraint(s) (if available) –

2. Brief informal description of the constraint(s) The constraints derive from
a corpus. For each discourse relation we have six attributes (length of first
text span, length of second text span, ordering of text spans, Position(s)
of discourse cue phrase(s), between-text-span-punctuation and discourse
cue phrases) and data on pairwise legal combinations of these. Given a
specific discourse relation as input and the reader model, optimal values
for the six attributes are sought. The corpus-based pairwise constraints
can be tightened when reader model says that the reader is a poor reader.
In particular, Williams tightens the constraints to obtain solutions that
have cue phrases, especially common ones, and use punctuation between
spans. Williams references a number of empirical studies which suggest
that such features are beneficial for poor readers.

3. Type of constraint(s) Hard and soft.

4. Units to which the constraints apply Cue phrases, text spans and punctu-
ation.

5. Nature of constraint(s) Discourse level, layout (ordering of text spans,
punctuation).

36

6. Theoretical work or implemented Implemented in Java. Paper describes
GIRL (Generator for Individual Reading Levels).

7. Approach to addressing constraints in generation The input is a model of
the user’s reading ability and a document plan (consisting of discourse
relation trees). Two phases: 1. Constraint Satisfaction Problem (CSP)
satisfier; 2. Filter: ‘picks most frequently occurring one for good readers
and the one with overall shortest sentences for poor readers’ ([59], p.17).

8. Single or many constraints? How are constraints combined? Yes. Multiple
hard constraints are managed by CSP solver. Soft constraints are applied
as filters on solutions from the CSP solver.

9. Any other comments on the paper

37

Acknowledgements

We would like to thank our colleagues in the nlg community for helping us to
identify relevant papers on constraint-based nlg. In particular, thanks go to
Anja Belz, Chris Mellish, Min-Yen Kan, Imtiaz Khan, Irene Langkilde Geary,
Tomasz Marciniak, Günter Neumann, Richard Power, Ehud Reiter, Graeme
Ritchie and Sandra Williams.

38

Bibliography

[1] Wikipedia linear programming. http://en.wikipedia.org/wiki/

Linear programming. Consulted December 2005.

[2] Wikipedia constraint programming. http://en.wikipedia.org/wiki

/Constraint programming, 2005. Consulted December 2005.

[3] D.E. Appelt. Planning English sentences. Cambridge University Press,
Cambridge, 1985.

[4] R. Barták. On-Line Guide to Constraint Programming.
http://kti.ms.mff.cuni.cz/ bartak/constraints/index.html,
1998. Consulted 12 December 2005.

[5] S. Beale, S. Nirenburg, E. Viegas, and L. Wanner. De-Constraining Text
Generation. In Proceedings of the Ninth Workshop on Natural Language
Generation, Niagara-on-the-lake, Ontario, 1998.

[6] T. Becker and M. Lockelt. Liliput: a parameterizable finite-domain con-
straint solving framework and its evaluation with natural language gen-
eration problems. In TRICS: Techniques foR Implementing Constraint
programming Systems, a CP 2000 Workshop, Singapore, 2000.

[7] S. Bistarelli. Soft Constraint Solving and programming: a general frame-
work. PhD thesis, Dipartimento di Informatica, University of Pisa, 2001.

[8] R. Blutner. Some Aspects of Optimality in Natural Language Interpreta-
tion. Journal of Semantics, 17(3):189–216, 2000.

[9] C. Callaway and J. Lester. Dynamically improving explanations: a revision-
based approach to explanation generation. In Proceedings of IJCAI97 con-
ference, Nagoya, Japan, 1997.

[10] Lee Thiam Chye. Multi-document Summarization by Generation. Master’s
thesis, School of Computing, National University of Singapore, 2005.

[11] R. Dale. Generating Recipes: An Overview of epicure. In R. Dale, C. Mel-
lish, and M. Zock, editors, Current Research in Natural Language Genera-
tion. Academic Press, London, 1990.

39

[12] R. Dale and N. Haddock. Content Determination in the Generation of
Referring Expressions. Compututational Intelligence, 7(4):252–265, 1991.

[13] D. Dubois, H. Fargier, and H. Prade. Possibility theory in constraint sat-
isfaction problems: Handling priority, preference and uncertainty. Applied
Intelligence, 6:287–309, 1996.

[14] M. Elhadad. Using Argumentation to Control Lexical Choice: A
Unification-based Implementation. PhD thesis, Computer Science Depart-
ment, Columbia University, New York, 1993.

[15] M. Elhadad, K. McKeown, and J. Robin. Floating constraints in lexical
choice. Computational Linguistics, 23(2):195–239, 1997.

[16] C. Gardent. Generating minimal definite descriptions. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics
(ACL), Philadelphia, 2002.

[17] C. Gardent and S. Thater. Generating with a grammar based on tree de-
scriptions: a constraint-based approach. In Proceedings of the 39th Annual
Meeting of the Association for Computational Linguistics (ACL), Toulouse,
2001.

[18] U. Germann, M. Jahr, K. Knight, D. Marcu, and K. Yamada. Fast Decod-
ing and Optimal Decoding for Machine Translation. In Proc. of the 39th
Conference of the Association for Computational Linguistics (ACL), pages
228–235, Toulouse, France, 2001.

[19] P. Gray, W. Hart, L. Painton, C. Phillips, M. Trahan, and
J. Wagner. A Survey of Global Optimization Methods.
http://www.cs.sandia.gov/opt/survey/main.html, 1997. Consulted
December 2005.

[20] B. Grosz, A. Joshi, and S. Weinstein. Centering: A framework for modelling
the local coherence of discourse. Computational Linguistics, 21(2):203–225,
1995.

[21] Bruce Hayes. OTSoft: Optimality Theory Software.
http://www.linguistics.ucla.edu/people/hayes/otsoft/, 2004.
Accessed December 2005.

[22] J. Hayes and L. Flower. Writing research and the writer. American Psy-
chologist, 41:1106–1113, 1986.

[23] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. The
MIT Press, Cambridge, Massachusetts, 1989.

[24] E. Hovy. Generating Natural Language Under Pragmatic Constraints.
Lawrence Erlbaum, Hillsdale, New Jersey, 1988.

40

[25] E. Hovy. Pragmatics and Natural Language Generation. Artificial Intelli-
gence, 43:153–197, 1990.

[26] K. Inui, T. Tokunaga, and H. Tanaka. Text revision: A model and its
implementation. In R. Dale et al., editor, Aspects of Automated Natural
Language Generation: Proceedings of the Sixth International Natural Lan-
guage Generation Workshop, pages 215–230. Springer Verlag, 1992.

[27] A. Joshi and Y. Schabes. Tree adjoining grammars and lexicalized gram-
mars. In Tree Automata and Languages. Elsevier Science, 1992.

[28] R. Kibble and R. Power. Optimizing Referential Coherence in Text Gen-
eration. Computational Linguistics, 30(4):401–416, 2004.

[29] I. Langkilde and S. Knight. The practical value of n-grams in generation.
In Proceedings of the Ninth International Workshop on Natural Language
Generation, Niagara-on-the-lake, Ontario, 1998.

[30] I. Langkilde-Geary. An Exploratory Application of Constraint Optimiza-
tion in Mozart to Probabilistic Natural Language Processing. In Interna-
tional Workshop on Constraint Solving and Language Processing – CSLP
2004. Roskilde University, September 2004.

[31] I. Langkilde-Geary and K. Knight. Halogen statistical sentence generator.
In Proceedings of the ACL-02 Demonstrations Session, Philadelphia, 2002.
Association for Computational Linguistics.

[32] A.K. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8(1):99–118, 1977.

[33] W. Mann and S. Thompson. Rhetoretical structure theory: towards a
functional theory of text organization. Text, 8(3):243–281, 1988.

[34] Hisar Maruli Manurung, Graeme Ritchie, and Henry Thompson. A flex-
ible integrated architecture for generating poetic texts. In Proc of the
Fourth Symposium on Natural Language Processing (SNLP 2000), pages
7–22, Chiang Mai, Thailand, 2000.

[35] Hisar Maruli Manurung, Graeme Ritchie, and Henry Thompson. Towards
a computational model of poetry generation. In Geraint A. Wiggins, edi-
tor, Proc of the AISB 00 Symposium on Creative & Cultural Aspects and
Applications of AI & Cognitive Science, pages 79–86. Society for the Study
of Artificial Intelligence and Simulation of Behaviour, 2000.

[36] T. Marciniak and M. Strube. Discrete optimization as an alternative to
sequential processing in nlg. In Proceedings of the 10th European Workshop
on Natural Language Generation (ENLG 2005), Aberdeen, UK, August
2005.

41

[37] C. Mellish. Computer interpretation of natural language descriptions. Ellis
Horwood, Chichester, UK, 1985.

[38] C. Mellish, A. Knott, J. Oberlander, and M. O’Donnell. Experiments us-
ing stochastic search for text planning. In Proceedings of the Ninth Inter-
national Workshop on Natural Language Generation, Niagara-on-the-lake,
Ontario, 1998.

[39] V. Moriceau and P. Saint-Dizier. A constraint-based model for preposition
choice in natural language generation. In International Workshop on Con-
straint Solving and Language Processing – CSLP 2004. Roskilde University,
September 2004.

[40] J. Nash. The Bargaining Problem. Econometrica, 18(155–162), 1950.

[41] G. Nemhauser and L. Wolsey. Integer and combinatorial optimization. Wi-
ley, New York, NY, 1999.

[42] G. Neumann. Applying explanation-based learning to control and speeding-
up natural language generation. In Proceedings of ACL/EACL-97, Madrid,
1997.

[43] G. Neumann. Interleaving natural language parsing and generation through
uniform processing. Artificial Intelligence, 99:121–163, 1998.

[44] G. Neumann and W. Finkler. A Head-Driven Approach to Incremental
and Parallel Generation of Syntactic Structures. In COLING-90, Helsinki,
1990.

[45] G. Neumann and G.J. van Noord. Self-Monitoring with Reversible Gram-
mars. In Proceedings of the 14th International Conference on Computa-
tional Linguistics (COLING), Nantes, 1992.

[46] Linear Programming Packages. http://www.ici.ro/camo/hlp.htm, 2004.
Consulted December 2005.

[47] D. Paiva and R. Evans. A framework for stylistically controlled generation.
In R. Evans A. Belz and P. Piwek, editors, Natural Language Generation:
Third International Conference (INLG 2004), volume 3123 of LNCS, pages
120–129, Berlin, 2004. Springer.

[48] P. Piwek and K. van Deemter. Dialogue as Discourse: Controlling Global
Properties of Scripted Dialogue. In Reva Freedman and Charles Callaway,
editors, Natural Language Generation in Spoken and Written Dialogue: Pa-
pers from the 2003 AAAI Spring Symposium, pages 118–124. AAAI Press,
2003.

[49] R. Power. Planning texts by constraint satisfaction. In Proceedings of
COLING 2000, pages 642–648, Saarbrücken, Germany, 2000.

42

[50] R. Power, D. Scott, and N. Bouayad-Agha. Document structure. Compu-
tational Linguistics, 29(2):211–260, 2003.

[51] A. Prince and P. Smolensky. Notes on connectionism and Harmony Theory
in linguistics. Technical Report CU–CS–533-91, Dept. of Computer Science,
University of Colorado, Boulder, 1991.

[52] E. Reiter. Pipelines and Size Constraints. Computational Linguistics,
26:251–259, 2000.

[53] E. Reiter and R. Dale. Building Natural Language Generation Systems.
Cambridge University Press, Cambridge, 2000.

[54] K. De Smedt, H. Horacek, and M. Zock. Architectures for natural gen-
eration: Problems and perspectives. In G. Adorni and M. Zock, editors,
Trends in natural language generation: An artificial intelligence perspec-
tive, volume 1036 of LNAI, pages 17–46, Berlin, 1996. Springer.

[55] O. Stock and M. Zancanaro, editors. Multimodal Intelligent Informa-
tion Presentation, volume 27 of Text, Speech and Language Technology.
Springer, Dordrecht, 2005.

[56] M. Stone. On Identifying Sets. In Proceedings of INLG-2000, Mitzpe
Ramon, 2000.

[57] K. van Deemter. Towards a Probabilistic Version of Bidirectional OT Syn-
tax and Semantics. Journal of Semantics, 21(3), 2004.

[58] K. van Deemter and J. Odijk. Context modeling and the generation of
spoken discourse. Speech Communication, 21(1/2):101–121, 1997.

[59] S. Williams. Language choice models for microplanning and readability. In
Proceedings of the Student Workshop of the Human Language Technology
and North American Chapter of the Association for Computational Lin-
guistics Conference, pages 13–18, Edmonton, 2003.

[60] I. Witten and E. Frank. Data Mining – Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, San Fran-
cisco, California, 2000.

43

