Computing Cooperation in
Annotated Dialogues

Brian Pliiss

This document describes the algorithms for automatically computing con-
versational cooperation of a dialogue, given an annotated transcript and a
dialogue game.

Linguistic cooperation of a dialogue participant with respect to a conver-
sational setting equates to the participant following the rules of the dialogue
game for that conversational setting. From this perspective, each turn in a
dialogue is associated with an amount of cooperation and an amount of non-
cooperation, given by the number of dialogue rules, respectively, conformed
with and violated in the turn. The instances in which rules are conformed
with are called cooperative features and those in which rules are broken
are called non-cooperative features:

Participants can break the rules of the game in two ways: (a)
by performing a conversational action that is not allowed for their
role and (b) by failing to perform an action they were obliged
to perform. Instances of (a) are violations of static obligations,
which we call static non-cooperative features. Instances of
(b) are violations of dynamic obligations, which we call dynamic
non-cooperative features. An analogous distinction is made
for cooperative features, called, respectively, static cooperat-
ive features and dynamic cooperative features. The de-
gree of cooperation of each dialogue participant is thus the
ratio between the number of cooperative features — static and
dynamic — and the total number of features of that participant.
In general, this value can be obtained for the entire conversation
and for any continuous fragments.

In the rest of the section, we revisit the formalisation of these concepts
and describe a method to compute the dynamic obligations of participants in
each turn of a dialogue. We also explain how to compute static and dynamic
cooperative and non-cooperative features and the degree of non-cooperation.

Computing Dynamic Obligations

Formally, for a dialogue D = (t1;...;t,), where each t; is a turn, we represent
dynamic obligations as two sequences POp = (POpo; POp1;...;POp)
and DOp = (DOp.1;...;DOp,), where each element is a list (o1,...,0)

of the obligations pending after and discharged in turn ¢;, respectively.
POp, is also a list with the obligations pending before the dialogue starts.
As in Chapter ??, each obligation is a pair o; = (s;,1;), where s; is a speaker
and [; is an action label.

Obligations are updated in each turn of the dialogue. This means that,
for each turn t;, POp; and DOp,; are computed based on POp ;_1) by
discharging existing obligations and introducing new pending ones':

e A pending obligation o = (s,l) € POp,;—1 is discharged in turn
ti = (si, Li) if s = s; and [; > [for some label [; € L;. The resulting
list of pending obligations POp; is POp;—1 — (0). The obligation
is added to the list of discharged obligations for the turn so DOp
becomes DOp; o (0). To discharge several obligations in the same
turn, we generalise this definition in the obvious way.

e An obligation o is introduced in turn t; = (s;, L;) if there is a rule
[(s,1) ~ o] in the game such that s = s; and [; > [, for some label [; €
L; (meaning that obligations are introduced by implicitly performed
actions). After the update, the list of pending obligations is (0)oPOp ;.
The list of discharged obligations remains unchanged. To introduce
several obligations in the same turn, we generalise this definition in
the obvious way.

Those obligations in POp ;_1) that are not discharged in turn ¢; are
carried over to POp ;).

Algorithm 1 describes the procedure for automatically computing the
sequences POp = (POp,1;...; POpy) and DOp = (DOp 1;...;DOp.,) of
pending and discharged dynamic obligations for a dialogue D and starting
obligations POp, given dialogue game G. The implementation of this al-
gorithm is actually more complicated as it requires that responsive implicitly
performed actions, such as acceptances and rejections, be matched to the
actions they refer to. The criterion we followed considers any actions that
need be accepted or rejected by the current speaker and for which the cor-
responding obligations were introduced in the turn immediately preceding
the current one. The implicit action performed with respect to such actions
is then determined by the rules in the set Discharge of the dialogue game?.

In the definition below, recall that the implicit performance relation > is reflexive,
so for any label [it is I > [. Also, in the rest of the presentation, we assume that
list structures support operations for indexing (denoted as [[i]), concatenation (I; o l2),
subtraction (I; — l2) and those inherited from sets, such as element membership (z €)
and cardinality (]I|).

2Explicitly discharged obligations are straightforward to deal with by following the
unification-like binding of variables and constants discussed earlier and bearing in mind
that the performance relation, =, is reflexive.

Algorithm 1 Computing dynamic obligations for dialogue D, initial
pending obligations POp|[0] and dialogue game G.

for i in {1...length(D)} do [for each turn in the dialogue...]
(speakenlabels) — D[Z] [take actions in current turn]
pending-obligations < POp [Z - 1] [take previous pending obligations]

[introduce new obligations]

for label in labels do [for each action in the turn...]
for rule in G(2) do [for each rule in the set Introduce...]
[(rule-speaker, rule-label) ~» obligation] + rule
if (speaker = rule-speaker) A (label > rule-label) then
pending-obligations < (obligation) o pending-obligations
end if
end for
end for

[discharge obligations met in turn]

discharged-obligations < ()
for label in labels do [for each action in the turn...]
for obligation in pending-obligations do
(obligation-speaker, obligation-label) < obligation
if (speaker = obligation-speaker) A (label = obligation-label) then
pending-obligations < pending-obligations — (obligation)
discharged-obligations < discharged-obligations o (obligation)

end if
end for
end for
POp [Z} <+ pending-obligations [set obligations pending after turn]
DOp [Z] — dz’scharged—obligations [set obligations discharged in turn]

end for

Computing Cooperative and Non-Cooperative Features

As introduced in the previous chapter, cooperative and non-cooperative fea-
tures are instances of, respectively, observed and neglected static and dy-
namic obligations:

Static cooperative features: actions performed by the speaker that
are allowed for by his or her role in the dialogue.

Static non-cooperative features: actions performed by the speaker
that are disallowed for by his or her role in the dialogue.

Dynamic cooperative features: obligations on the speaker that
were discharged in the current turn.

Dynamic non-cooperative features: obligations on the speaker
that were not discharged in the current turn.

Formally, for a dialogue D = (t;;...;t,) features will be grouped in two
sequences, SFp = (sfi;...;sfn) and DFp = (df1;...;dfy), of static and
dynamic features, respectively. The elements in both sequences are triples
(si, Ci, NC;) where s; is the speaker in turn ¢;, C; is the list of cooperative
features and NC; is the list of non-cooperative features (static for sf; and
dynamic for df;). In the rest of the section we show how compute these
features.

Computing Static Features. In each turn, we check whether the actions
performed by the speaker are allowed for his or her role as specified in the
dialogue game. If an action is in the the speaker’s set of allowed actions,
then it constitutes a static cooperative feature, otherwise it becomes a static
non-cooperative feature. Formally, this means that in turn ¢; = (s;, L;), for
each | € L; we check whether [€ L, with [s; : L] a dialogue game rule in
G(1) = Allow. If this is the case, then [is added to C; in sf; = (s;, C;, NC}).
Otherwise, [is added to NCj. Algorithm 2 shows the procedure for com-
puting static features in a dialogue D given a dialogue game G.

Computing Dynamic Features. In each turn, we look at the speaker’s
obligations pending after and discharged in that turn. If an obligation on
the speaker has been discharged within the turn, then it constitutes a dy-
namic cooperative feature, otherwise it becomes a dynamic non-cooperative
feature. Formally, this means that for turn t; = (s;,L;), an obligation
0 = (80,1,) € DOp,; discharged in the current turn for which s, = s; is the
current speaker is a dynamic cooperative feature. The action label [, is thus
added to the list C; of dynamic cooperative features in df; = (s;, Ci, NC}).
On the other hand, a pending obligation o = (s,,[,) € POp ;, not discharged
in the current turn for which s, = s; is the turn speaker is a dynamic non-
cooperative feature. The action label [, is thus added to NC; of dynamic
non-cooperative features in df; = (s;, C;, NC;). Algorithm 3 shows a proced-
ure for computing dynamic features in dialogue D, given pending dynamic
obligations POp and discharged dynamic obligations DOp.

Computing the Degree of Non-Cooperation

Once we have computed the static and dynamic features for each turn, we
can regard the proportion of these that are cooperative as an indicator of
the extent to which each participant acted within the rules of the game.
This is the degree of cooperation of a dialogue participant with respect
to a dialogue game. Formally, for speaker s and dialogue D = (t1;...;t,)

Algorithm 2 Computing static features for dialogue D and game G.

for i in {1...length(D)} do [for each turn in the dialogue...]

(speaker,labels) < D] [take current turn]

[collect actions allowed for the speaker]

allowed-actions < {}
for rule in G(l) do [for each rule in the set Allow...]
[rule-speaker : rule-labels] + rule
if speaker = rule-speaker then
allowed-actions < allowed-actions U rule-labels
end if
end for

[compute static features for current turn]

cooperative < ()
non-cooperative < ()
for label in labels do [for each action in the turn...]
if label.name € allowed-actions then
cooperative < cooperative o (label)
else
non-cooperative < non-cooperative o (label)
end if
end for

[set static features for current turn]

SFpli] «+ (speaker, cooperative, non-cooperative)
end for

this is:
dCD _ ch,s
o CfD,s + anD,s
where cfp s is the number of cooperative features — both static and dynamic
— of participant s and ncfp s is the analogous for non-cooperative features.
This is*:
n
cfps =Y |sfi(2)| + |df;(2)]
i=1

[si=s]

n

nefps= Y [sfi(3) + |dfi(3)]

i=1

[s;=s]

3Recall that the elements in the sequences of both static and dynamic features SFp =
(sf1;...;8fn) and DFp = (df1;...;dfn) are triples (s;,C;, NC;), where s; is the speaker
in turn t;, and C; and NC; are the associated sequences of, respectively, cooperative and
non-cooperative features.

Note that, although these definitions are here expressed for the complete
dialogue, the same applies to any contiguous subsequences of turns.
The degree of non-cooperation of a dialogue participant s in dialogue
D is:
o nch,s
CfD,s + anD,s

Algorithm 3 Computing dynamic features for dialogue D, given pending
dynamic obligations POp and discharged dynamic obligations DOp.

for ¢ in {1. .. Iength(D)} do [for each turn in the dialogue...]

(speakenlabel) — D[l] [take speaker of current turn]

[compute dynamic features for current turn]

cooperative < ()
non-cooperative < ()

[collect obligations on speaker met in current turn]

met-obligations < DOpli]

for obligation in met-obligations do
(obligation-speaker, obligation-label) <+ obligation
cooperative < cooperative o {obligation-label))

end for

[collect obligations on speaker pending after current turn]

unmet-obligations < POpli]
for obligation in unmet-obligations do
(obligation-speaker, obligation-label) <+ obligation
if obligation-speaker = speaker then
non-cooperative < non-cooperative o {obligation-label)
end if
end for

[set dynamic features for current turn]

DFpli] + (speaker, cooperative, non-cooperative)
end for

