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Abstract
Numerical simulations show that microscopic rod-like bodies suspended in
a turbulent flow tend to align with the vorticity vector, rather than with the
dominant eigenvector of the strain-rate tensor. This paper investigates an
analytically solvable limit of a model for alignment in a random velocity
field with isotropic statistics. The vorticity varies very slowly and the isotropic
random flow is equivalent to a pure strain with statistics which are axisymmetric
about the direction of the vorticity. We analyse the alignment in a weakly
fluctuating uniaxial strain field, as a function of the product of the strain
relaxation time τs and the angular velocity ω about the vorticity axis. We
find that when ωτs � 1, the rods are predominantly either perpendicular or
parallel to the vorticity.

PACS numbers: 05.40.−a, 47.57.E−, 47.52.+j

(Some figures may appear in colour only in the online journal)

1. Introduction

Microscopic rod-like bodies suspended in a fluid flow rotate in response to the velocity gradient
of the flow. This introduces a degree of order in the orientation of a suspension of particles
which can influence its optical or rheological properties. The equation of motion for the
orientation of microscopic ellipsoidal particles was obtained by Jeffery [1]. The implications
of this equation of motion for the orientation have been considered by numerous authors: for
example [2] discusses the motion of general axisymmetric particles, [3] considers the role of
Brownian motion, [4, 5] discuss the alignment fields in (respectively) regular and chaotic flows,
and [6, 7] are recent experimental contributions which give an extensive list of references. There
are, however, still aspects which are not thoroughly understood. One surprising observation
(based upon direct numerical simulation (DNS) studies of Navier–Stokes turbulence) is that
in isotropic fully-developed turbulence, rod-like particles show significant alignment with the
vorticity vector, but negligible alignment with the principal strain axis [8]. This was given a
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qualitative explanation in [8], but it is desirable to have a model for this surprising effect which
can be analysed quantitatively.

This paper considers an exactly solvable model for the alignment of rods with vorticity.
The formulation of this model was motivated by observations about the velocity gradient field
of turbulence. It has been observed that the fluctuations of the vorticity vector decay much
more slowly than fluctuations of the rate of strain: [8] shows evidence that the correlation
functions of strain and vorticity both show approximately exponential decay, with decay
times τs ≈ 2.3τK and τv ≈ 7.2τK respectively, where τK is the Kolmogorov timescale of the
turbulence. Similar results were reported earlier by Girimaji and Pope [9] and Brunk et al [10].
This observation suggests that it may be helpful to consider the limit as τv → ∞, that is the
limit where the vorticity is frozen, in order to explain the observed alignment.

We use an Ornstein–Uhlenbeck process to model fluctuations of the velocity gradient,
and consider the limit where the vorticity evolves very slowly. This model is solved exactly
in the limit where the strain which occurs over the timescale τs is small. The alignment of
the rod direction n and the direction of the vorticity vector eω can be described by computing
the probability density function (PDF) of z = n · eω. We find that in these limits the PDF of
z, denoted by P(z), can be computed exactly. This analytically solvable model has a single
dimensionless parameter, ζ ≡ ωτs, where ω is the angular velocity of rotation about the
vorticity vector. We find that when ζ � 1, the probability density has two sharp peaks, one at
z = ±1 (indicating perfect alignment with vorticity), the other at z = 0 (implying that the rods
are perpendicular to the vorticity). In the limit as ζ → ∞, the peak at z = ±1 is higher than
at z = 0, but it is also narrower, with both peaks containing a finite probability. (Throughout
this paper, 〈X〉 is the expectation value of X , and we use P(X ) to denote its PDF).

Section 2 discusses the model which will be solved: the equations of motion for a
microscopic rod are considered in section 2.1, and the Ornstein–Uhlenbeck model for the
velocity gradient of an isotropic random flow is described in section 2.2. Section 3 discusses
a transformation of the equation of motion in which the isotropic velocity gradient is replaced
by a pure strain field which is axisymmetric about the direction of the vorticity vector, and it
discusses the parametrization of such axisymmetric random strain fields. Section 4 considers
the general solution for alignment of rod-like particles in axisymmetric strain fields, before
specializing to the solution of the model developed in section 3. Section 5 summarizes our
conclusions and discusses the relevance of our model to rods in a turbulent Navier–Stokes
flow. The analysis in section 4 is closely related to recent work by Vincenzi [11], who analysed
the alignment of ellipsoidal particles in an axisymmetric Kraichnan–Batchelor model.

2. Equations of motion

2.1. Nonlinear and linear equations of motion for rods

We consider microscopic objects advected in a fluid with velocity field u(r, t). The objects are
assumed to be neutrally buoyant, and smaller than any lengthscale characterizing the fluid, but
sufficiently large that their Brownian motion need not be considered. The motion of the body
is described by the position of its centre, r(t), and the direction of a unit vector aligned with
its axis, n(t). The centre of the body is assumed to be advected by the fluid flow: ṙ = u(r, t).
The motion of the unit vector n defining the axis of symmetry is determined by elements of
the velocity gradient tensor, evaluated at the centre of the body:

Ai j(t) = ∂ui

∂r j
(r(t), t) (1)
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where r(t) is the advected particle trajectory. The equation of motion of the director vector of
a microscopic rod-like body is [1]

dn
dt

= A(t)n − (n · A(t)n)n. (2)

We assume the flow is incompressible, so that
∑3

i=1 Aii = 0. This tensor can be decomposed
into a symmetric part S, which is termed the strain rate, and an antisymmetric part �, which
is the vorticity tensor:

A = S + � ST = S �T = −�. (3)

If the velocity gradient matrix were constant in time, the equation of motion (2) would
imply that the vector n would become aligned with the eigenvector corresponding to its
largest eigenvalue. However, numerical simulations of equation (2) for velocity fields of fully
developed turbulence show a different, and unexpected, phenomenon [8]. It is found that the
direction vector n has negligible correlation with the dominant strain eigenvector, but that it
does have a quite pronounced correlation with the vorticity vector, ω.

Our analysis of the alignment due to the motion (2) will use an observation due to Szeri
[12]: the nonlinear equation (2) can be solved by considering a companion linear equation for
a vector x(t), which evolves under the action of a monodromy matrix M(t):

x(t) = M(t)x(0),
dM
dt

= A(t)M (4)

where the initial conditions are M(0) = I (the identity matrix) and x(0) = n(0). The solution
to (2) is obtained by normalizing the solution of (4):

n(t) = x(t)

|x(t)| . (5)

The advantage of this approach is that it is easier to solve the linear equation (4) than the
nonlinear equation (2).

2.2. Ornstein–Uhlenbeck model for velocity gradients in isotropic flows

In this section we describe a simple stochastic model for the matrix A(t) in isotropic random
flows. A version of this model was used by Vincenzi et al [13], and its structure is suggested by
the observations in [10]. The model was also considered in [8], which gave a detailed account
of its implementation. Here we give a brief summary.

It is known that the elements of S and � fluctuate randomly about zero, with different
timescales τs and τv respectively. Their correlation functions are well approximated by
exponential functions. This suggests modelling the elements of S and � by Ornstein–
Uhlenbeck processes [14, 15]. The three independent components of the vorticity will be
modelled by:

�̇i j = − 1

τv
�i j +

√
2 Dvηi j(t) (6)

where the ηi j(t) (with i > j) are independent white-noise signals, satisfying

〈η(t)〉 = 0, 〈η(t)i jη(t ′)i′ j′ 〉 = δii′δ j j′δ(t − t ′). (7)

This model predicts that the correlation function of �i j is exponential [14, 15]:

〈�i j(t1)�i j(t2)〉 = Dvτv exp(−|t1 − t2|/τv). (8)

The components of the strain-rate matrix are generated by a further six Ornstein–Uhlenbeck
processes, with a different correlation time τs. The off-diagonal elements of the strain are

3
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generated by a process of the same form as (6), with the diffusion coefficient in (7) replaced
by Ds, driven by an independent set of white-noise signals satisfying (7) (those with j > i).
The diagonal elements of the strain-rate matrix must satisfy

∑3
i=1 Sii = 0, which is the

incompressibility condition, ∇ · u = 0. This constraint is satisfied by the solution of the
following Ornstein–Uhlenbeck equations

Ṡii = − 1

τs
Sii +

√
2 Dd

⎡
⎣ηii(t) − 1

3

3∑
j=1

η j j(t)

⎤
⎦ . (9)

The elements �i j and Si j generated by these processes are statistically independent, apart
from the constraint that

∑
i Sii = 0. The variances of the off-diagonal, diagonal and vorticity

elements are respectively denoted 〈S2
o〉, 〈S2

d〉 and 〈�2〉, and are related to the relaxation times
and diffusion rates by 〈S2

o〉 = Dsτs, 〈S2
d〉 = 2

3 Ddτs and 〈�2〉 = Dvτv. The requirement that
the statistics of the model are invariant under rotations (so that it describes a velocity gradient
with isotropic statistics) gives Dd = 2Ds, so that this model has four parameters: τs, τv, Ds

and Dv. Note that the diffusion coefficients have dimension [D] = T −3, implying that the
model has three independent dimensionless parameters. In the following we consider the limit
as τv/τs → ∞, so that the vorticity is frozen, with angular velocity ω. We also assume that
Dsτ

3
s 
 1, so that the strain fluctuations are small. This leaves one dimensionless parameter,

which we will take to be ζ = ωτs. In this paper we consider the statistics of rod alignment at
finite values of ζ . Because we consider the limit as τs → 0, this implies that we are considering
large values of the vorticity, whereas in Navier–Stokes turbulence the magnitudes of vorticity
and strain are comparable. We return to this point in the concluding section.

3. Transformation to an axisymmetric pure strain model

3.1. The frozen vorticity limit

In this section we consider the alignment of rod-like particles in an isotropic flow, where there
is a non-zero vorticity which is slowly varying. The approach is to transform the equation
of motion to a reference frame which rotates around the axis of vorticity. In this coordinate
system, the strain field oscillates in directions which are perpendicular to the vorticity vector,
in addition to having random temporal fluctuations. The effect of these oscillations is to reduce
the effective intensity of the random strain field in directions perpendicular to the vorticity
vector, so that an isotropic problem with vorticity is transformed to an axisymmetric model
with a velocity gradient which is a pure strain. This reduction was also discussed in [8], but is
included here for the convenience of the reader.

In order to isolate the effect of the vorticity in the equation of motion for the monodromy
matrix, M, we introduce another monodromy matrix M0 which evolves under the vorticity
alone:

Ṁ = (S + �)M, Ṁ0 = � M0. (10)

Note that M0(t) is just a rotation matrix, describing rotation about an axis in the direction of
the vorticity vector ω. The two monodromy matrices may be related by writing

M(t) = M0(t)K(t) (11)

where K(t) is an evolution matrix which describes the effect of the shear. An elementary
calculation shows that K has the equation of motion

K̇ = σ(t)K (12)

4



J. Phys. A: Math. Theor. 45 (2012) 455502 M Wilkinson and H R Kennard

where

σ = M−1
0 SM0 (13)

is obtained from S by applying a time-dependent rotation. Consider the form of the matrix σ.
In the case where the vorticity vector is frozen, and equal to �0, the matrix M0 is a rotation
matrix: M0 = exp(�0 t). Without loss of generality we can consider the case where the
vorticity is aligned with the z-axis, with magnitude � = 2ω, where ω is the rotational angular
velocity, so that M0 is a rotation matrix of the form

M0 = exp(�0t) = R(ωt) =
⎛
⎝cos ωt − sin ωt 0

sin ωt cos ωt 0
0 0 1

⎞
⎠ ≡

⎛
⎝c −s 0

s c 0
0 0 1

⎞
⎠ . (14)

If the elements of S are Si j, the elements of σ are

σ =
⎛
⎝ c2S11 + s2S22 + 2csS12 (c2 − s2)S12 + cs(S22 − S11) cS13 + sS23

(c2 − s2)S12 + cs(S22 − S11) s2S11 + c2S22 − 2csS12 cS23 − sS13

cS13 + sS23 cS23 − sS13 S33

⎞
⎠ . (15)

Note that all of the off-diagonal components oscillate with angular frequency ω or 2ω. The
diagonal component in the direction of the vorticity vector does not oscillate, but the other
diagonal elements contain both oscillatory terms and non-oscillatory terms.

3.2. Limit of short correlation time for strain rate

Now consider the case where the strain rate S is sufficiently small that the strain which
accumulates over its correlation time τs is very small. In this case the evolution of the matrix
K (defined by equation (12)) can be described by a diffusive process. Specifically, we consider
the evolution of (12) over a time period δt which is large compared to the correlation time of
the strain field τs, but still sufficiently small that the strain which accumulates over this time
interval is small. We write

K(t + δt) = (I + δ�(δt, t)) K(t) (16)

where the δ� are small and may be assumed to be random matrices, chosen independently at
each timestep. We characterize the evolution (12) by computing the statistics of the random
strain increments δ�, which are in turn obtained from the random strain S(t) using (12)
and (15). The advantage of considering the small elements δ� is that they are small random
increments which are applied independently at each timestep. This enables their effect to be
analysed using a Fokker–Planck equation. First consider the relation between the elements of
the matrices δ� and σ. By integrating (12) and using the definition (16) we obtain

δ�(δt, t) =
∫ t+δt

t
dt ′ σ(t ′)(I + δ�(t ′ − t, t)). (17)

Iterating this expression, taking t = 0, and suppressing the initial time t in the arguments of
δ� we obtain

δ�(δt) =
∫ δt

0
dt1 σ(t1) +

∫ δt

0
dt1

∫ t1

0
dt2 σ(t1)σ(t2) + O(σ 3). (18)

Using the fact that the correlation time is assumed to satisfy δt � τs, we can approximate the
second term by its mean value, and write

δ�(δt) =
∫ δt

0
dt σ(t) + δt

2

∫ ∞

−∞
dt 〈σ(t)σ(0)〉 + O(δt3/2). (19)

5
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The first of term is a random variable with mean zero and size O(δt1/2), giving rise to a
diffusion term in a Fokker–Planck equation. The second term represents a drift at a velocity
which is well-defined in the limit as δt → 0. The remaining terms may be neglected. In order
to formulate the Fokker–Planck equation, we must determine the statistics of the increments
δ
i j(δt).

If ωτs 
 1, the effect of the oscillatory terms in equation (15) is negligible. Let us
consider how to treat the problem when ωτs is not small. To simplify the discussion, consider
the quantity

δF =
∫ δt

0
dt f (t) cos(ωt) (20)

where δt/τs � 1, and where f (t) is a random function which satisfies

〈 f (t)〉 = 0, 〈 f (t) f (t ′)〉 = C(t − t ′). (21)

The spectral intensity I(ν) of the fluctuations of f (t) is defined by

I(ν) =
∫ ∞

−∞
dt exp( iνt)C(t) (22)

and we shall assume that C(−t) = C(t), so that I(−ω) = I(ω). The expectation value of δF
is equal to zero. Its variance is

〈δF2〉 =
∫ δt

0
dt1

∫ δt

0
dt2 〈 f (t1) f (t2)〉 cos(ωt1) cos(ωt2)

= 1

2

∫ δt

0
dt1

∫ δt

0
dt2 C(t1 − t2)[cos(ω(t1 − t2)) + cos(ω(t1 + t2))]

= 1

2
δt

∫ ∞

−∞
ds C(s) cos(ωs) + O(δt2)

= 1

4
δt[I(ω) + I(−ω)] + O(δt2) = 1

2
δt I(ω) + O(δt2). (23)

The third steps assumes that ωδt � 1, as well as δt/τs � 1.
Now consider the effect of the random strain model defined by (6)–(9) in the limit where

the timescale τs of the fluctuations of Si j(t) is very small. We assume that the functional
form of the spectral intensity of each component Si j is the same, but that their variances are
different, so that the spectral intensity of Si j(t) is 〈S2

i j〉I(ν), implying that the intensity function
is normalized so that I(0) = 1. We represent the effect of the randomly fluctuating strain field
described by (15) by an effective strain field with diffusive fluctuations. Note that δt is assumed
to satisfy δt/τs � 1, despite being ‘small’. By applying (23), variance of δ
11 is

〈δ
2
11〉=

∫ δt

0
dt1

∫ δt

0
dt2

〈[
1

2
(1 + cos 2ωt1)S11(t1)+ 1

2
(1 − cos 2ωt2)S22(t1)+ sin 2ωt1S12(t1)

]

×
[

1

2
(1 + cos 2ωt2)S11(t2) + 1

2
(1 − cos 2ωt2)S22(t2) + sin 2ωt2S12(t2)

]〉

= δt
∫ ∞

−∞
dτ

1

8
[2 + cos 2ωτ ] 〈S11(τ )S11(0)〉 + 1

8
[2 + cos 2ωτ ] 〈S22(τ )S22(0)〉

+1

2
cos(2ωτ ) 〈S12(τ )S12(0)〉 + 1

4
[2 − cos(2ωτ )]〈S11(τ )S22(0)〉 + O(δt2)

= δt

8
[2 + I(2ω)]〈S2

11〉 + δt

8
[2 + I(2ω)]〈S2

22〉 + δt

2
I(2ω)〈S2

12〉

+δt

4
[2 − I(2ω)]〈S11S22〉 + O(δt2). (24)

6
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Using the same approach, the full set of non-zero covariances of δ
i j is

〈δ
2
11〉 = 〈δ
2

22〉 = δt

4

[
(2 + I(2ω))〈S2

11〉 + (2 − I(2ω))〈S11S22〉 + 2I(2ω)〈S2
12〉

]
〈δ
11δ
22〉 = δt

4

[
(2 − I(2ω))〈S2

11〉 + (2 + I(2ω))〈S11S22〉 − 2I(2ω)〈S2
12〉

]
〈δ
2

12〉 = δt

4

[
I(2ω)〈S2

11〉 − I(2ω)〈S11S22〉 + 2I(2ω)〈S2
12〉

]
〈δ
2

33〉 = δt I(0)
[〈2S2

11〉 + 2〈S11S22〉
]

〈
2
13〉 = 〈
2

23〉 = δtI(ω)〈S2
13〉. (25)

Finally, we must consider the mean values of the increments δ
i j(δt). As an example, consider
the evaluation of 〈δ
11〉. From the second term in the right hand side of (19), we have

〈δ
11〉 = δt

2

∫ ∞

−∞
dt

3∑
j=1

〈σ1 j(t)σ j1(0)〉

= δt

2

∫ ∞

−∞
dt c2〈S11(t)S11(0)〉 + s2〈S11(t)S22(0)〉

+(c2 − s2)〈S12(t)S12(0)〉 + c〈S13(t)S13(0)〉
= δt

4
[(1 + I(2ω))〈S2

11〉 + (I − I(2ω))〈S11S22〉 + 2I(2ω)〈S2
12〉 + 2I(ω)〈S2

13〉] (26)

where c = cos(ωt) and s = sin(ωt).
Only the diagonal elements of δ� have a non-zero contribution to the mean at O(δt): we

define velocity coefficients μ j as follows

〈δ
11〉 = μ1δt = δt

4
[(1 + I(2ω))〈S2

11〉 + (1 − I(2ω))〈S11S22〉 + 2I(2ω)〈S2
12〉 + 2I(ω)〈S2

13〉]
〈δ
22〉 = μ2δt = μ1δt

〈δ
33〉 = μ3δt = δt

4

[
4〈S2

11〉 + 4〈S11S22〉 + 4I(ω)〈S2
13〉

]
. (27)

3.3. Uniaxial random strain in three dimensions

In sections 3.1 and 3.2 we showed how an isotropic model with frozen vorticity and rapidly
fluctuating strain can be represented by an axisymmetric model where the velocity gradient is a
pure strain σ. In the limit where the strain which occurs over the correlation time τs is small, the
effect of this strain is represented by a product of matrices I + δ�, where the small increments
δ� are independently distributed at each timestep of size δt. They have diffusive fluctuations,
so that δ� = O(δt1/2). The matrix σ is traceless, representing the fact that the velocity field is
incompressible. The matrix δ� need not, however, satisfy tr(δ�) = 0, although it is clear that
the leading order term in (19) is traceless. In this section we discuss how to parametrize such
axisymmetric strain fields.

We take this axis of rotational symmetry to be e3; the general case is obtained from this
one by applying rotation matrices. The strain is described by a 3 × 3 matrix δ�, which we
write in the form

δ� =
⎛
⎝δA δC δD

δC δB δE
δD δE −(δA + δB)

⎞
⎠ +

⎛
⎝μ1δt 0 0

0 μ1δt 0
0 0 μ3δt

⎞
⎠ (28)

where δA, δB, δC, δD and δE are random variables with mean value zero, and diffusive
fluctuations: 〈δA〉 = 0 and 〈δA2〉 = 2DAAδt, 〈δAδB〉 = 2DABδt, etc.

7
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Applying a rotation about the e3 axis by angle θ to the random component of δ� gives a
transformed matrix, with elements δA′, δB′, δC′, δD′ and δE ′, given by

δA′ = cos2 θδA + sin2 θδB + 2 cos θ sin θδC

δB′ = sin2 θδA + cos2 θδB − 2 cos θ sin θδC

δC′ = (cos2 θ − sin2 θ )δC + cos θ sin θ (δB − δA)

δD′ = cos θδD + sin θδE

δE ′ = cos θδE − sin θδD. (29)

The non-random diagonal component is invariant under rotation about e3. Note that δA′+δB′ =
δA + δB, so that the element δ
33 is invariant under rotation.

We require that the statistics of the elements are invariant under the rotation angle θ . It
is clear that δA and δB must have the same variance, as must δD and δE. Without loss of
generality, we can consider a model with 〈δA2〉 = 2δt. We therefore characterize the model
by the following statistics, where α, β, γ are three constants:

〈δA2〉 = 〈δB2〉 = 2δt 〈δAδB〉 = 2αδt

〈δC2〉 = 2βδt 〈δD2〉 = 〈δE2〉 = 2γ δt. (30)

Other covariances, such as 〈δBδE〉, are equal to zero. The requirement that the statistics of the
rotated matrix are independent of θ leads to the equations

〈δA′2〉 = 2[c4 + s4 + 2c2s2α + 4c2s2β]δt = 2δt

〈δA′δB′〉 = 2[−4c2s2β + 2c2s2 + (c4 + s4)α]δt = 2αδt

〈δC′2〉 = 2[(c4 + s4 − 2c2s2)β + c2s2(2 − 2α)]δt = 2βδt (31)

where c = cos θ and s = sin θ .
Rotational invariance therefore leads to an equation which must the satisfied by α and β:

α + 2β = 1 (32)

so that the model for a uniaxial random strain has four independent parameters, which we can
take to be α, γ , μ1 and μ3.

For a special choice of these parameters the model is isotropic. Clearly this requires
μ1 = μ3, and 〈δC2〉 = 〈δD2〉 = 〈δE2〉, implying γ = β. Also, requiring 〈(δA + δB)2〉 =
〈δA2〉 = 〈δB2〉 gives 2 + 2α = 1. Solving these equations we find that the covariances of the
random terms are fixed in the isotropic case

α = − 1
2 , β = γ = 3

4 , μ3 = μ1. (33)

Another notable limit of the model is the case where the matrix is diagonal: this model is
β = γ = 0, implying α = 1.

4. Alignment in random strain fields

4.1. General solution in a diffusive axisymmetric strain

In section 3 we described the construction of a model for the alignment of microscopic rods
with vorticity, in which the velocity gradient is represented as a strain field with diffusive
fluctuations, axisymmetric about the direction of the vorticity. First we consider the alignment
of rod-like particles under a succession of independent random shears I + δ�, which satisfy
the conditions derived in section 3.3 for the shear statistics to be uniaxial, before discussing
the specific model for rod alignment in section 4.2.

8
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Using the approach summarized by equations (4) and (5), the direction vector n of a
rod-like particle evolves according to the linear equation

(I + δ�)n(t) = (1 + δR)n(t + δt) (34)

where δ� is the infinitesimal strain in time δt, previously introduced in equation (17), and
δR is the fractional change in length of the vector under the linear evolution equation. Write
n(t + δt) = n(t) + δn + O(δn2), where δn · n = 0. Because of rotational symmetry about the
z-axis, we can assume without loss of generality that the y component of n is equal to zero.
We therefore consider the following orthogonal basis of unit vectors

n = (sin θ, 0, cos θ ) = (x, 0, z) m = (− cos θ, 0, sin θ ) = (−z, 0, x)

k = (0, 1, 0). (35)

where θ is the polar angle, and z = cos θ . Writing δn = δXm + δY k, we have

n(t + δt) = n + δXm + δY k − 1
2 (δX2 + δY 2)n + O(δn3). (36)

By taking the dot product of (34) in turn with n, m and k, we find, respectively to leading
order

δR ∼ n · δ� n ≡ δ
nn (37)

and

m · δn(1 + δR) ∼ m · δ� n ≡ δ
mn k · δn(1 + δR) ∼ k · δ� n ≡ δ
kn. (38)

Let us characterize the evolution of n through the evolution of its projection onto the e3 axis,
namely

z = e3 · n. (39)

This is a convenient choice because z will have a uniform PDF for an isotropic strain field.
Using (36), we find that

z + δz ≡ e3 · n(t + δt) = cos θ + sin θδX − 1
2 cos θ (δX2 + δY 2). (40)

We define the drift velocity vz and diffusion coefficient Dz of z by

〈δz〉 = vzδt, 〈δz2〉 = 2Dzδt. (41)

Using (41) and (37), (38) we obtain

vzδt = x〈δ
mn − δ
nnδ
mn〉 − z

2
〈δS2

mn + δ
2
kn〉 + O(δt3/2) (42)

and

Dzδt = 1
2 (1 − z2)〈δ
2

mn〉 + O(δt3/2). (43)

Now consider that statistics of the fluctuations of z for the uniaxial strain model. For the model
defined in section 3.3, we have

δ
nn = δAx2 + 2δDxz − (δA + δB)z2 + μ1x2δt + μ3z2δt

δ
mn = δD(x2 − z2) − (2δA + δB)xz + (μ3 − μ1)xzδt

δ
kn = δCx + δEz (44)

where x = √
1 − z2. We can combine these relations with (42) and (43) to determine Dz and

vz:

Dzδt = 1 − z2

2
〈[δD(1 − 2z2) − (2δA + δB)xz]2〉

vzδt = −x〈[δA(1 − 2z2) − δBz2 + 2δDxz][δD(1 − 2z2) − (2δA + δB)xz]〉
− z

2
〈[δD(1 − 2z2) − (2δA + δB)xz]2〉 − z

2
〈[δCx + δEz]2〉 + �μx2zδt (45)

9
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where �μ = μ3 −μ1. Using the statistics of the elements δA, δB, δC, δD and δE, and ordering
the resulting expressions as polynomials in z, we have:

Dz = 1
2 (1 − z2)[γ + (5 + 4α − 4γ )z2 − (5 + 4α − 4γ )z4]

vz = (
7
4 + 5

4α − 5
2γ + �μ

)
z + (− 37

4 − 29
4 α + 15

2 γ − �μ
)
z3 + (

15
2 + 6α − 6γ

)
z5. (46)

The steady-state probability density for z, namely P(z), satisfies

vz(z)P(z) = d

dz
(Dz(z)P(z)) . (47)

In the isotropic case, we have α = −1/2 and γ = 3/4. In this case we find

Dz = 3
8 (1 − z2), vz = − 3

4 z, (isotropic case) (48)

and the normalized solution is P(z) = 1
2 for −1 � z � 1.

In the general case, we find that (1 − z2) is a factor of vz − D′
z, and the differential

equation (47) is

1

P

dP

dz
= −z[6(5 + 4α − 4γ )z2 − 13 − 11α + 10γ + 4�μ]

4[γ + (5 + 4α − 4γ )z2 − (5 + 4α − 4γ )z4]
(49)

it us useful to change the variable to u = z2. In terms of u, the differential equation (49) may
be written

1

P

dP

du
= −6(5 + 4α − 4γ )u − 13 − 11α + 10γ + 4�μ

8[γ + (5 + 4α − 4γ )u − (5 + 4α − 4γ )u2]
. (50)

Representing the right-hand-side using partial fractions, we obtain
1

P

dP

du
= c+

u+ − u
+ c−

u − u−
(51)

where u± are the roots of the denominator on the right-hand-side of (50)

u± = 1

2
± 1

2

√
1 + 4γ

5 + 4α − 4γ
(52)

and where the coefficients are

c± = (4�μ − 2α + γ − 2)u± − 13 − 11α − 2γ − 4�μ

4(5 + 4α)
. (53)

The probability density expressed in terms of z is then

P(z) = C (z2 − u−)c− (z2 − u+)c+ (54)

where C is a normalization constant.

4.2. Solution of rod alignment model

Now we apply the solution obtained in section 4.1 to the model for alignment of microscopic
rods, as developed in sections 2 and 3. In section 2.2 we introduced the Ornstein–Uhlenbeck
model for a random, isotropic velocity gradient field. The theory in section 3 made two
assumptions. In section 3.1 it was assumed that the vorticity varies slowly, and section 3.2
made a further assumption that the strain field is small. Let us consider the implications of
these assumptions for the parameters of the model. The assumption that the vorticity varies
slowly implies that τv is large compared to other timescales in the system of equations. The
typical strain rate |S| =

√
〈tr(S2)〉 and the correlation time τs should satisfy |S|τs 
 1. The

solution of the Ornstein–Uhlenbeck process implies

〈tr(S2)〉 = 10Dsτs (55)

10
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so that the criterion for the strain to be small is simply Dsτ
3
s 
 1. The angular velocity ω is

related to the magnitude of the vorticity � by � = 2ω. The magnitude of the vorticity vector
is estimated by its variance, which is − 1

2 tr〈(�2)〉 = 3Dvτv. The rotation rate ω has a Gaussian
distribution, with variance

σ 2 = 〈ω2〉 = 3
4 Dvτv. (56)

Because the Ornstein–Uhlenbeck model has an exponential decay of correlations, given by
equation (8), the spectral intensity of the strain fluctuations is a Lorentzian function:

I(ν) = 1

1 + ν2τ 2
s

. (57)

In order to apply the results in section 4.1 we must specify the covariances of the
fluctuations of the axisymmetric effective strain tensor. If, in accord with the notation of
section 3.3, we normalize the variances so that 〈S2

11〉 = 1, 〈S11S22〉 = α, 〈S2
12〉 = β, 〈S2

13〉 = γ ,
the non-zero covariances and expectation values of δ
i j are

〈δ
2
11〉 = 〈δ
2

22〉 = δt

[
I(0)

(
1

2
+ α

2

)
+ I(2ω)

(
1

4
− α

4
+ β

2

)]

〈δ
11δ
22〉 = δt

[
I(0)

(
1

2
+ α

2

)
− I(2ω)

(
1

4
− α

4
+ β

2

)]

〈δ
2
12〉 = δt

[
I(2ω)

(
1

4
− α

4
+ β

2

)]
〈
2

13〉 = 〈
2
23〉 = δtI(ω)γ

〈δ
2
33〉 = 2 δt I(0) (1 + α)

〈δ
11〉 = 〈δ
22〉 = δt

[
I(0)

(
1

4
+ α

4

)
+ I(ω)

γ

2
+ I(2ω)

(
1

4
− α

4
+ β

2

)]
〈δ
33〉 = δt [I(0)(1 + α) + I(ω)γ ] . (58)

We use the assumption that the original random strain field Si j is isotropic, so that the statistics
of these elements satisfy (33). Using (58) we obtain

〈δ
2
11〉 = 〈δ
2

22〉 = δt

4
[1 + 3I(2ω)]

〈δ
11δ
22〉 = δt

4
[1 − 3I(2ω)]

〈δ
2
12〉 = δt

4
3I(2ω)

〈δ
2
13〉 = 〈δ
2

23〉 = δt

4
3I(ω)

〈δ
2
33〉 = δt

〈δ
11〉 = 〈δ
22〉 = δt

8
[1 + 3I(ω) + 6I(2ω)]

〈δ
33〉 = δt

4
[2 + 3I(ω)] . (59)

Normalizing these by dividing by 〈δ
2
11〉, the anisotropy of the strain field induced by the

vorticity is characterized by modified forms for the parameters defined in (30) and a scaled
value of the parameter �μ appearing in (46):

α = 1 − 3I(2ω)

1 + 3I(2ω)
β = 3I(2ω)

1 + 3I(2ω)

γ = 3I(ω)

1 + 3I(2ω)
�μ = 3

2

1 + I(ω) − 2I(2ω)

1 + 3I(2ω)
. (60)

11
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Figure 1. Comparison between PDF of z = n · e3 obtained by simulation of Jeffery’s equation of
motion for the random strain model, and the theoretical prediction, equations (52)–(54) and (60).
In these simulations the vorticity is frozen so that ζ = ωτs = 1, 3, 5, 7.

Note that α + 2β = 1, as expected from (32). Because I(0) = 1, when the vorticity is zero,
we have α = −1/2, β = γ = 3/4, so that we recover the statistics of an isotropic strain field.
In the limit as ω → ∞ we expect I(2ω) 
 I(ω) 
 1, so that to leading order we may set
α = 1, β = 0, �μ = 3

2 and regard γ as a small parameter.
Let us consider how to evaluate the PDF of z = n · eω in the limit where ωτs � 1. The

general expression for the probability density is equation (54). In this limiting case, we may
approximate the coefficients α and γ by

α ∼ 1, γ ∼ 3

1 + ω2τ 2
s

, �μ ∼ 3

2
. (61)

When γ 
 1, the poles u± of the PDF and the coefficients c± in (54) are approximated by

u− ∼ −γ

9
u+ ∼ 1 + γ

9
c− ∼ −1

2
c+ ∼ −1 (62)

so that the PDF is approximated by

Pω(z) ∼ C
(

z2 + γ

9

)−1/2 (
1 + γ

9
− z2

)−1
(63)

where C is a normalization constant, and where the subscript ω is a reminder that this
distribution is evaluated for a fixed value of ω.

We verified this relation by simulating the orientation of rod-like particles using
equations (4) and (5), using the Ornstein–Uhlenbeck model for the velocity gradients.
The components of the vorticity were frozen, so that the only non-zero elements are
�12 = −�21 ≡ ω. The PDF of z = n · e3 is plotted in figure 1 for ζ = ωτs = 1, 3, 5, 7,
showing good agreement with the theoretical prediction, equations (60) and (52)–(54). The

12
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Figure 2. Theoretical PDF of z = n ·e3 for the model where the vorticity is frozen, with magnitude
� = 2ω. The distribution (63) is plotted for three values of ζ = ωτs, namely ζ = 1, 3, 10. By
comparison we have also plotted the exact probability density obtained from equations (52)–(54)
and (60). At ζ = 10 the different plots are indistinguishable.

numerical simulations used τs = 1, Ds = 10−2, and the timestep of the numerical integration
was dt = 10−5 or smaller.

In figure 2 we plot the theoretical PDF of z for three different values of the dimensionless
variable ζ = ωτs, comparing (63) with the exact expression obtained from using (60) in
equations (52)–(54). For ωτs = 10 plots of the exact and approximate PDF lie on top of
each other. We observe that as ωτs → ∞ the distribution becomes concentrated around
z = ±1 (rods perfectly aligned with the vorticity) and around z = 0 (rods aligned perfectly
perpendicular to the vorticity vector). The peak at z = ±1 is seen to be higher but narrower.
In figure 3 we plot 〈|z|〉 and 〈z2〉. Both of these statistics approach 1

2 in the limit as ζ → ∞,
indicating that in this limit both peaks carry half of the probability.

In practice the magnitude of the vorticity, ω, is not frozen but fluctuates slowly. It has
a Gaussian distribution, with a variance σ 2 ≡ 〈ω2〉 = 3

4 Dvτv. Our final estimate for the
probability density of z is, therefore, the result on integrating the normalized PDF given by
(63) over a Gaussian distribution of ω:

P(z) = 2√
2πσ

∫ ∞

0
dω exp(−ω2/2σ 2)Pω(z). (64)

This PDF depends upon a single dimensionless parameter ξ = στs. The functions obtained
by numerical evaluation of the integral in (64) are plotted in figure 4 for three different values
of ξ = στs. We used the exact formulae for Pω(z), equations (52)–(54) and (60), because the
integral includes the region where ωτs is small.

13
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Figure 3. Moments 〈|z|〉 and 〈z2〉 as a function of ζ = ωτs.

Figure 4. Theoretical PDF of z = n · e3, averaging over the slowly varying vorticity parameter ω,
which is Gaussian distributed with variance σ 2 = 3

4 Dvτv. The distribution (61) is plotted for four
values of ξ = στs, namely ξ = 1, 3, 5, 7.
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5. Discussion

We have determined the distribution of z = n · eω analytically for a model of microscopic
rods in a random velocity field with isotropic statistics. The PDF shows a maximum at z = 1
corresponding to alignment parallel to the vorticity, similar to findings of DNS studies of
Navier–Stokes turbulence [8].

We conclude by making a few remarks about the relationship between the regime which
we have analysed and the velocity gradient statistics for Navier–Stokes turbulence. The model
for the velocity gradient of an isotropic flow which was introduced in section 2.2 has four
parameters, namely τv, τs, Dv and Ds, all of which have dimensions which depend only upon
time. There are, therefore, three dimensionless parameters. In our analysis the vorticity was
frozen, so that τv → ∞. The magnitude of the vorticity, which is of order ω ∼ √

Dvτv was
chosen so that ζ = ωτs is finite. The diffusion coefficient Ds was assumed to be very small,
so that the fluctuations of the strain are very small and may be treated using a Fokker–Planck
equation.

In fact the form of the Navier–Stokes equation restricts the choice of parameters in the
Ornstein–Uhlenbeck model for the velocity gradient: it is well known that tr(�2)+ tr(S2) = 0
[16], which gives a further relation between Ds and Dv. The Navier–Stokes equation also
implies that the rate of dissipation per unit mass is E = νtr(ATA), which enables the norm of
the velocity gradient to be expressed in terms of the Kolmogorov time, τK = √

ν/E . These
results imply the following relations, which determine the ratio of the diffusion coefficients
Ds and Dv (see [8]):

Ds = 1

20τ 2
Kτs

, Dv = 1

12τ 2
Kτv

. (65)

Numerical studies indicate that the exponential correlation function is a reasonable model for
the statistics of fully developed turbulence, with the parameters τs and τv satisfying τs ≈ 2.3τK

and τv ≈ 7.2τK (these are the values quoted in [8], which discusses earlier work on the
velocity gradient correlation functions). This justifies the assumption that the vorticity is slowly
varying, and the variance of the vorticity parameter is estimated to be σ 2 = 〈ω2〉 = 3

4 Dvτv,
so σ = 1/(4τK), implying that ξ is of order unity (setting τs = 2.3τK gives ξ = στs ≈ 0.58).
There is a qualitative but not quantitative agreement between the curve in figure 4 for ξ = 1
and the results of DNS simulations in figure 2 of [8]: both show a peak in the PDF at z = 1,
but this peak is more pronounced in the DNS data. We conclude that our model should be
understood as a laboratory for understanding alignment of microscopic rods with vorticity,
rather than providing a quantitative description.
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