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Abstract – We obtain an implicit equation for the correlation dimensionD2 of dynamical systems
in terms of an integral over a propagator. We illustrate the utility of this approach by evaluating
D2 for inertial particles suspended in a random flow. In the limit where the correlation time of
the flow field approaches zero, taking the short-time limit of the propagator enables D2 to be
determined from the solution of a partial differential equation. We develop the solution as a power
series in a dimensionless parameter which represents the strength of inertial effects.
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The behaviour of small particles moving independently
in complex flows is a fundamental problem in fluid
mechanics, which has applications in understanding
rainfall [1], planet formation [2] and many areas of
technology and environmental science. It is known that
when the inertia of the particles is significant, clustering
may occur [3], which can lead to an increase in the rate
of collision or aggregation of the particles, and which can
also affect the scattering of electromagnetic radiation.
In developing a description of these processes the most
natural way to quantify the clustering is to consider the
number of particles N inside a ball of radius δr centred
on any given particle. If N ∼ δrD2 for small δr (with D2
less than the dimension of space, d), the particles cluster
onto a fractal attractor. The quantity D2 is termed the
correlation dimension [4] (recall that the radial factor
in the volume of a sphere in D dimensions is δrD). The
clustering process is in fact found to approach a fractal
attractor [5].
The clustering effect has been ascribed to particles

(assumed here to be much denser than the fluid) being
centrifuged away from vortices [3], but other expla-
nations are possible. In particular, a model with a
short-time–correlated velocity field, analysed in [6], gives
good agreement with a numerical determination of the
Lyapunov dimension DL of particles in a Navier-Stokes
turbulent flow, reported in [7]. (The Lyapunov dimension
was introduced in [8], and is discussed in [4].) Calculating
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the more physically interesting dimension D2 by analyti-
cal methods has appeared to be intractable, but we show
that D2 is obtained more easily than DL. We give a
general method for calculating the correlation dimension,
which can also be applied to other types of dynamical
system. When the turbulent velocity is modelled by a
random vector field with a short correlation time (that is,
for the model analysed in [6]), this leads to an expansion
of D2 as a power series in a dimensionless measure of the
inertia of the particles (denoted by ǫ). The coefficients
of this series may be obtained exactly to arbitrarily high
order. We show how convergent results are obtained using
a conformal Borel summation.
The correlation dimension D2 may be defined in terms

of the expected number N (δr) of particles inside a ball of
radius δr surrounding a test particle:

D2 = lim
δr→0

ln[〈N (δr)〉]

ln(δr)
(1)

(where 〈X〉 denotes an average of X), provided this
satisfies D2 � d, where d is the dimensionality of space.
While D2 has fundamental importance, it is difficult to
calculate analytically. It can be expressed in terms of
the large deviation statistics of the finite-time Lyapunov
exponents, σ(t) [4,9–11]. These statistics are very difficult
to calculate by means other than numerical simulations
(although they have been evaluated for the Kraichnan
model for advection in short-time–correlated flows [11]).
Most earlier studies of D2 for particles with significant
inertia have been numerical evaluations [12,13], however
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the first two coefficients of a series expansion of D2
were obtained by Bec et al. [14]. It is difficult to extend
the method used in that paper to give higher-order
terms.
We consider the motion of small, dense particles

suspended in a turbulent fluid with velocity field u(r, t).
The motion of a particle at position r moving with
velocity v is determined by viscous damping of the
particle relative to the fluid. The equations of motion
are

ṙ= v, v̇=−γ[v−u(r(t), t)], (2)

where Ẋ =dX/dt and γ is a damping rate proportional to
the viscosity. We shall extract information about D2 from
a quantity Z1(t) which is the logarithmic derivative of the
separation δr between two particles: δṙ/δr=Z1(t).
An equation of motion for Z1 which is valid when δr is

sufficiently small may be obtained from the linearisation
of (2) as discussed below: Z1(t) may be coupled to one
or more additional variables Z2(t), . . ., but the equations
for the Zi are independent of δr provided that quantity is
sufficiently small. We also consider the variable

Y (t) = ln δr(t), (3)

which is related to Z1 by Ẏ =Z1. Note that Y is related
to the finite-time Lyapunov exponent σ(t) at time t:
we have Y (t)−Y (0) = tσ(t) (provided δr is everywhere
sufficiently small). We shall discuss the two-dimensional
case where Z1 is coupled to one additional variable Z2.
We consider the joint probability density ρ(Y,Z1, Z2) of
Y , Z1 and Z2. Because the equation of motion of Z1
and Z2 is independent of Y = ln δr when the linearised
equation is valid, in the steady state the joint distribution
factorises, with the distribution of Y being in a form which
reflects the translational invariance in Y . Because the
eigenfunctions of translations are exponential functions,
the steady-state joint distribution of Y , Z1, Z2 is

ρ(Y,Z1, Z2) = exp(αY )ρZ(Z1, Z2) (4)

for some constant α. This form is not normalisable,
but (4) is only valid when δr is sufficiently small. In
the case where α> 0, the form (4) can be matched to
a distribution which is valid for large δr to make a
normalisable solution, whereas α< 0 is not allowed. The
distribution (4) implies that Y has a probability element
dP = exp(αY )dY = δrα−1dδr. Equation (1) then implies
that the probability for the separation to be in an interval
dδr is dP = δrD2−1dδr, so that D2 = α.
The condition for determining D2 = α is that this

distribution (4) should be invariant under time evolution.
This is expressed in terms of a propagator for the
time-evolution of Y and Z = (Z1, Z2). Specifically, this
propagator K(ΔY,Z,Z′,Δt) is defined to be the proba-
bility density for Y to change by ΔY and for Z = (Z1, Z2)

to change from Z′ to Z in time Δt. Stationarity of the
distribution (4) then leads to

ρZ(Z1, Z2) =

∫

∞

−∞

dΔY

∫

∞

−∞

dZ ′1

∫

∞

−∞

dZ ′2

× exp(−αΔY )K(ΔY,Z,Z′,Δt) ρZ(Z
′

1, Z
′

2),

(5)

which is satisfied for all Δt. In the case Δt→∞, the
propagator K is related to the large-deviation probability
density function for the finite-time Lyapunov exponent.
This leads to a formulation (to be discussed in a later
paper) which is equivalent to some earlier theories for
determining D2 [4,9,11]. Here, however, we concentrate
upon the short-time limit, Δt→ 0. We shall see that
this leads to an analysis of D2 in terms of a differential
equation, which is much more analytically tractable.
To make further progress we need to consider the

equation of motion for the variables Z1, Z2 in the two-
dimensional case. Parts of the calculation follow [15], but
here we use a simpler operator algebra. The linearised
equations of motion corresponding to (2) are δṙ= δv
and δv̇=−γδv+ γE(t)δr where E(t) is a 2× 2 matrix
with elements Eij(t) = ∂ui/∂rj(r(t), t). We write δr=
δrnθ and δv=Z1δrnθ +Z2δrnθ+π/2, where nθ is unit
vector in direction θ. Expressing the linearised equa-
tions of motion in terms of the variables δr, Z1, Z2 we
obtain [15]

Ż1 =−γZ1+(Z22 −Z
2
1 )+ γEd(t),

Ż2 =−γZ2− 2Z1Z2+ γEo(t),
(6)

where Ed(t) = nθ ·E(t)nθ and Eo(t) = nθ+π/2 ·E(t)nθ,

and δṙ=Z1δr, θ̇=Z2. It might be expected that the
distribution of (Z1, Z2) obtained from the long-time limit
of the evolution of eq. (6), which we term ρ0(Z1, Z2), is
the same as the distribution ρZ(Z1, Z2) in (5). However,
ρZ differs from ρ0 because it is conditioned upon being
at a particular value of Y . If α> 0, particles reaching
a negative value of Z1 arrive from a larger value of Y ,
where the probability density is larger. This implies that
the distributions ρ0 and ρZ are different, and that ρZ has
a smaller mean value of Z1 than ρ0.
Next we must specify a model for the two-dimensional

velocity field u(r, t). We allow this to be partially
compressible by writing u=∇Φ+∇∧Ψe3. In order to
use statistical techniques we consider the stream function
Ψ(r, t) and potential Φ(r, t) to be random scalar fields
with specified correlation functions. We shall assume that
〈Φ(r, t)Φ(r′, t′)〉=C(|r− r′|, |t− t′|), where C(R, t) has
support ξ (the correlation length) and τ (the correlation
time) in R and t, respectively. Also, we assume that
Φ and Ψ are uncorrelated and that the correlation
function of Ψ is proportional to that of Φ, such that
〈Ψ2〉/〈Φ2〉= β2 for some number β. Furthermore, in
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this paper we consider the limit where the correlation
time τ is sufficiently small that the randomly fluctuating
terms in (6), Ed(t) and Eo(t), can be treated as white
noise. In this case the equations of motion for Z1, Z2
become a pair of coupled Langevin equations, and the
probability density ρ0(Z1, Z2) generated by eq. (6) is
the steady state of a diffusion equation, which can be
written as ∂ρ0/∂t= F̂0ρ0 where F̂0 is a Fokker-Planck
operator:

F̂0ρ0 =
∂

∂Z1
[(γZ1+Z

2
1 −Z

2
2 )ρ0] +D11

∂2ρ0
∂Z21

+
∂

∂Z2
[(γZ2+2Z1Z2)ρ0] +D22

∂2ρ0
∂Z22

. (7)

Here the diffusion coefficients are expressed in terms of
correlation functions of the velocity gradients:

Dii =
1

2
γ2
∫

∞

−∞

dt 〈Ei1(t)Ei1(0)〉. (8)

Now we consider how eq. (7) is used to construct
the short-time propagator in (5). For small Δt, Y evolves
ballistically, with velocity Z1 ∼Z ′1. In the short-time limit,
the action of the propagator K(ΔY,Z,Z′,Δt) in (5) on
a function f(Y,Z1, Z2) can therefore be written as
fK(Y,Z1, Z2)=f(Y −Z1Δt, Z1, Z2)+Δt F̂0 f(Y,Z1, Z2)+
O(Δt2). Equation (5) determining self-reproduction of
ρZ(Z1, Z2) therefore becomes ρZ(Z1, Z2)= exp(−αZ1Δt)×
ρZ(Z1, Z2)+Δt F̂0 ρZ(Z1, Z2)+O(Δt2). Extracting the
O(Δt) term gives the differential equation

αZ1ρZ(Z1, Z2)−F̂0ρZ(Z1, Z2) = 0. (9)

Upon integrating over space, and using the fact that the
operator F̂0 is a divergence, we have

∫

∞

−∞

dZ1

∫

∞

−∞

dZ2 Z1 ρZ(Z1, Z2) = 〈Z1〉= 0. (10)

The value of D2 is determined by finding the value of α for
which a normalisable solution of (9) can be obtained for
which the mean value of Z1 is zero. Equations (9) and (10)
constitute an exact method for determining D2 = α. Their
extension to three dimensions is straightforward.
It is useful to make a change of variable from (Z1, Z2)

to scaled variables (x1, x2) defined by xi =
√

γ/DiiZi, and
to use a dimensionless time t′ = γt. We also introduce
two dimensionless parameters, ǫ, which measures the
importance of inertial effects, and Γ, which is a convenient
measure of the relative magnitudes of Ψ and Φ:

ǫ=

√

D11
γ3
, Γ=

D22
D11
=
1+3β2

3+β2
. (11)

Using these new variables (9) becomes an equation for the
joint probability density P (x1, x2) of x1, x2:

F̂ P = 0=
∂

∂x1
[(x1+ ǫ(x

2
1−Γx

2
2))P ]

+
∂

∂x2
[(x2+2ǫx1x2)P ] +

∂2P

∂x21
+
∂2P

∂x22
− ǫαx1P

(12)

(which defines the differential operator F̂ (ǫ, α,Γ)).
Equation (12) is solved with the condition 〈x1〉= 0,
which obtains for isolated values of α. Our solution below
obtains one unique value of α, which is D2.
We now develop the solution as a series expansion in
ǫ, using a system of annihilation and creation operators
which are analogous to those used in quantum mechanics.
We use a notation similar to the Dirac notation, whereby
a function f(x1, x2) is denoted by a vector |f). We expand
both the solution |P ) of (12) and the value of α for which
the solution of this equation exists and satisfies 〈x1〉= 0
as power series in ǫ:

|P ) =
∞
∑

k=0

ǫk |Pk), D2 = α=
∞
∑

k=0

ǫk αk. (13)

We write the Fokker-Planck operator in (12) as

F̂ = F̂0+ ǫ(Ĝ−αx̂1) (14)

(thereby defining operators F̂0, Ĝ ). The unperturbed
steady-state |P0) satisfying F̂0|P0) = 0 is P0(x1, x2) =
exp[−(x21+x

2
2)/2]/2π, and other eigenfunctions of F̂0

are generated by creation operators âi and annihilation
operators b̂i:

âi =−∂xi , b̂i = ∂xi +xi. (15)

These operators generate eigenfunctions satisfying
F̂0|φnm) =−(n+m)|φnm), according to the rules

â1|φn,m) = |φn+1,m), b̂1|φn,m) = n|φn−1,m),

â2|φn,m) = |φn,m+1), b̂2|φn,m) =m|φn,m−1),
(16)

with |φ00) = |P0), which is normalised as a probability
density. The states |Pk) in (13) will be expressed as linear
combinations of the eigenfunctions |φnm):

|Pk) =
∞
∑

n=0

∞
∑

m=0

p(k)nm |φnm). (17)

In general the eigenfunctions |φnm) are neither normalised,
nor do they form an orthogonal set, but those properties
are not required in the following arguments. We first
consider the implications of the requirement that 〈x1〉= 0.
Using (15) and (16), by an inductive argument involving
repeated integration by parts we have

∫

∞

−∞

dx1

∫

∞

−∞

dx2 φnm(x1, x2)x1 = δn1δm0, (18)
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so that the condition 〈x1〉= 0 is satisfied by requiring that

p
(k)
10 = 0 in (17) for all k. Substituting (13) into (12) gives
|Pn) in terms of all of the preceding terms: the term of
order ǫn is

0 = F̂0|Pn)+ [Ĝ−α0(â1+ b̂1)] |Pn−1) . . .

−αj(â1+ b̂1)|Pn−1−j) . . .−αn−1(â1+ b̂1)|P0).

(19)

There are two unknowns in this equation, |Pn) and αn−1;
all of the other |Pj) and αj are assumed to have been
determined at previous iterations. For any value of αn−1,
eq. (19) can be solved formally for |Pn) by multiply-
ing by F̂−10 . For a state |Q) with coefficients qnm we

have F̂−10 |Q) =−
∑

∞

n=0

∑

∞

m=0
1

n+mqnm|φnm). The action

of F̂−10 upon a general state |Q) is therefore undefined
unless the coefficient q00 is equal to zero. At each order
we can solve (19) for |Pn) choosing the value of αn−1 so

that p
(n)
10 = 0. Note that the operator Ĝ contains creation

operators as left factors, so that F̂−10 Ĝ|f) exists for any
state |f). However, because there is a lowering opera-

tor b̂1 acting on the states |Pk), the action of multiply-
ing the terms in (19) by F̂−10 is only defined if all of

the |Pk) are chosen so that p
(k)
10 = 0. However, we have

already seen that this is precisely the condition to ensure
that the solution satisfies 〈x1〉= 0, that is, the solvabil-
ity condition upon (19) coincides with the condition (10).
The generation of the series (13) was automated using an
algebraic manipulation program. Iterating (19) using the
initial condition |P0) = |φ00) leads to the following series
expansion:

D2 = Γ− 1−Γ(Γ
2− 1)ǫ2

+Γ(Γ2− 1)(3Γ2+2Γ− 11)ǫ4+O(ǫ6). (20)

All αj with odd j are equal to zero, and all the coef-
ficients are zero when Γ= 1. For Γ= 3 (so that ∇ ·u=
0) the first few non-vanishing coefficients are 2, −24,
528, −28800, 1654848, −128860416, so that the series is
clearly divergent with alternating signs. It is interesting to
consider whether this series contains a complete descrip-
tion of D2(ǫ). We investigated its evaluation by means of
a Borel summation technique described in [16]. The Borel
transform B(z) =

∑

∞

k=0(αk/k!)z
k of D2(ǫ) is convergent

inside a disc (of radius 1/12), but inversion of B(z) to
yield D2(ǫ) requires its Laplace transform, which is an
integral over z ∈ (0,∞). This is facilitated by making a
conformal transformation to a new variable u, defined by
z = 2νu/s(1−u)ν (where ν, s are constants), so that the
positive z-axis is mapped to the interval u∈ (0, 1). We find
that the expansion of B(z) as a series in u has decreas-
ing coefficients when ν = 14 and s= 25 (indicating that
B(z) is analytic in the image of the disc |u|< 1). Perform-
ing the integral in the u variable gives a summation of
the series which converged as the number of terms, kmax,
was increased. Figure 1 illustrates the results for Γ = 3.

10
-2

10
-1

10
0

1.25

1.5

1.75

2

ǫ

D
2

Fig. 1: (Colour on-line) Correlation dimension D2 of the
model (2), as a function of the inertia parameter ǫ, defined
by (11). Here Γ= 3 (incompressible flow) and τ → 0 (rapidly
fluctuating flow field). Numerical data (◦) are compared to
the quadratic approximation of (20) (dashed curve) and the
Borel summation of the series (19) (solid line, red online). The
summation used the method in [16], with the conformal map
z = 2uν/s(1−u)ν and ν = 1/4, s= 25. The results converge as
the number of terms, kmax, increases: the curves for kmax = 10,
20, 30, 40, 50 lie on top of each other.

For small ǫ there is excellent convergence to a numerical
evaluation of D2(ǫ). For large ǫ, however, while the Borel
summation converges as kmax is increased, it diverges from
the numerical evaluation. This indicates that there is a
component of D2(ǫ) which has no representation as an
analytic function. Non-perturbative approaches to eq. (9)
are required to describe this non-analytic contribution.
We remark that arguments in [14,17] suggest that when

the correlation time is non-zero, D2 may have a quadratic
dependence upon the Stokes number. The approach devel-
oped here can be extended to finite correlation times. The
results will be discussed in a later paper.
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