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Fingerprints of random flows?
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We consider the patterns formed by small rodlike objects advected by a random flow in two
dimensions. An exact solution indicates that their direction field is nonsingular. However, we find
from simulations that the direction field of the rods does appear to exhibit singularities. First, “scar
lines” emerge where the rods abruptly change direction by 7. Later, these scar lines become so
narrow that they “heal over” and disappear, but their ends remain as point singularities, which are
of the same type as those seen in fingerprints. We give a theoretical explanation for these
observations. © 2009 American Institute of Physics. [DOI: 10.1063/1.3118502]

I. INTRODUCTION

We consider the motion of small rodlike particles sus-
pended in a moving fluid. The suspended particles align with
their neighbors in a manner determined by the strain rate of
the flow. In a turbulent or randomly moving fluid, the direc-
tion vector field of the rods forms complex textures, illus-
trated by Fig. 1. We concentrate on two-dimensional textures
because it is hard to observe the direction field in three di-
mensions. Also, we confine attention to the case of incom-
pressible flow, which is easiest to analyze and which is easily
realized experimentally (by using a suspension of rodlike
particles in a film of water floating upon a denser fluid which
is randomly stirred). The results are of quite general interest
because any asymmetric particles will have a preferred di-
rection determined by the history of the strain tensor of the
field along the trajectory of the particle.

Suspensions of small anisotropic particles called rheo-
scopic fluids are often used for flow visualization." This
uses the principle that the intensity of scattering of light from
a localized source will depend on the orientation of the sus-
pended particles. The information in this visualization can be
enhanced by using light sources with different colors.” In this
paper we show how the colors might be used to reveal infor-
mation about the topology of the textures formed by the
rheoscopic fluid. In Fig. 2 we demonstrate the potential of
this approach for rodlike particles. For illustrative purposes,
we assume that the intensity of scattering from a rod at angle
0 from a source at angle ¢ (relative to a line perpendicular to
the rod) is proportional to cos?(—¢) (this approximation
can be justified when the rods are short compared to the
wavelength of the light). Accordingly, in Fig. 2 we redisplay
the textures in Fig. 1 by plotting a color C which is an ad-
mixture of the primary colors red, green, and blue, denoted
(R,G,B),

C=R cos*(0) + G cos’(0—2m/3) + B cos’(0—4/3).
(1)

(In Fig. 2 the angle 6 of the rods is measured relative to the
horizontal, with 6 increasing in the anticlockwise direction.)
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The physics of scattering or reflection from the rodlike par-
ticles is complex, but this illustration is indicative of what
can be seen with different colored light sources.

The rod direction field is a nonoriented vector field in a
two-dimensional space (by nonoriented, we mean that rod
directions differing by 7 are equivalent). In such a field we
might expect to see point singularities of the direction field
of the type illustrated in Fig. 3, which are also present in
fingerprint patterns5 (where the patterns formed by ridges are
another example of a nonoriented vector field in two dimen-
sions). The actual textures that we observe in simulations do
indeed have structures which resemble the core and delta
singularities of fingerprints, as illustrated by the examples in
Fig. 1. We shall argue that the principles underlying the
structures visible in this picture are quite subtle, and that it is,
in fact, surprising to see such singularities. We remark that
the singularities are characterized by a topological invariant,
termed the Poincaré index, which is illustrated in Fig. 4, and
topological arguments will be central to the discussion. Sin-
gularities with a nonzero Poincaré index could be detected
using the visualization technique illustrated in Fig. 2, by ex-
amining the colors along a closed path. If the colors cycle
through all three primaries as the path is traversed, this path
must contain a singularity of the rod directions. The sign of
the Poincaré index is determined by the order in which the
primary colors cycle (R—G—B or R— B—G).

In Sec. II below we give a simple derivation of the equa-
tion of motion for the rods and present its general solution.
Our equation of motion is a limiting case of that given by
Jeffery6 for the motion of an ellipsoid of revolution in a
viscous fluid at low Reynolds number. He also obtained the
solution for a simple shear flow, showing that ellipsoids with
a finite aspect ratio undergo a tumbling motion (although the
rods which are considered here simply tilt into the shear
plane). In this paper we use a general solution of Jeffery’s
nonlinear equation of motion in terms of a companion linear
equation. The same solution is given by Szeri,” who refers to
earlier works™ which contain related ideas, but not the full
solution. In Sec. IT we discuss a form of the general solution
which is specific to the limiting case of rodlike particles, but
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FIG. 1. Simulations of the orientations of rods advected by a random flow in
two dimensions. These appear to show singularities which are analogous to
those occurring in fingerprint patterns, illustrated in Fig. 3. The simulations
describe a dilute suspension of very small rods: here their sizes are exag-
gerated to make the textures visible. Details of the simulations are specified
in the Appendix.

we remark that the same approach is readily extended to
general axisymmetric bodies and to three-dimensional
flows.’

Several authors have discussed the dynamics of rodlike
objects at low Reynolds number in flows with nonuniform
shear. Szeri’ considered the tumbling motion of ellipsoidal
particles in recirculating flows, making some use of the com-
panion linear equation, but relying mainly upon applying
ideas from dynamical system theory applied to the nonlinear
equation obtained by Jeffery.6 A later paper by Szeri and
Leal'’ made more extensive use of the companion linear
equation. Several other authors have considered chaotic as-
pects of the motion of ellipsoids in more complex flows.!" ™

Section III discusses the extent to which the solution we
describe in Sec. II can exhibit singularities. We start by pre-
senting an argument showing that the direction field cannot
have any singularities. This implies that the Poincaré index
for any curve is zero and is hard to reconcile with the ap-
pearance of Figs. 1 and 2. Throughout most of the plane the
direction field of the rods is asymptotic to the eigenvector
field of the monodromy matrix of the fluid flow. However,
the eigenvector field can have a nonzero Poincaré index im-
plying that the asymptotic correspondence between these
vector fields breaks down somewhere. We show that it fails
along certain lines, which we term scar lines, where the di-
rection vector of the rods abruptly changes by m. The scar
line emerges and sharpens as the two vector fields asymptoti-
cally approach each other. As the scar line (illustrated in Fig.
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5) sharpens, there will be fewer rods which lie in the region
where the direction differs from the asymptotic value. The
result is that the scar line disappears (see Fig. 6). At the ends
of the scar line there remains a point singularity of the type
illustrated in Fig. 3.

In Sec. IV we consider the behavior of our solution of
the equation of motion discussed in Sec. II in the long-time
limit. The solution appears to be incompatible with a statis-
tically stationary limit, but this is shown not to be the case.
We also show that the probability distribution of the gradient
of the angle has an approximately log-normal distribution.
This is consistent with the existence of apparent singularities
in the rod textures, where the angle of the rods changes very
abruptly. Section V summarizes the results and discusses
how the patterns observed at long times can be understood.
The numerical simulations are described in the Appendix.

We stress that in this paper the rodlike particles in the
fluid are assumed to be so small and so dilute that they do
not influence the fluid flow and are unlikely to come into
contact with each other (the sizes of the rods in Fig. 1 have
been grossly exaggerated to make the pattern visible). This
assumption is valid for most applications of rheoscopic sus-
pensions, which reflect light effectively even at very small
volume fractions. A nematic liquid crystal consists of rodlike
molecules (either a pure substance or diluted with a solvent),
and it is natural to consider whether our results have any
relevance to such systems. There appears to be little connec-
tion between the dilute limit which we consider, where the
rod orientation satisfies a differential equation, and the phys-
ics of liquid crystals, where the orientation vector field mini-
mizes an energy functional, known as the Oseen—Frank
j’"m'tctional.15 In addition to static studies of their textures,
there is also an extensive literature on the dynamics of liquid
crystals: see, for example, Ref. 16 and references therein.

Il. EQUATION OF MOTION AND ITS SOLUTION
A. Derivation of the equation of motion

While the equation of motion which we consider is a
limiting case of that derived by Jeffery,6 the general calcula-
tion is quite lengthy and insight is gained from a simple
derivation. Strictly speaking, in the calculation below we
consider the motion of dumbells, that is, pairs of particles
(which are dragged by the fluid) connected by a rigid rod

FIG. 2. (Color) The rod textures
shown in Fig. 1 color coded using Eq.
(1), to illustrate how the textures can
be visualized using colored light
sources.
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FIG. 3. (Color online) The textures illustrated in Fig. 1 have similarities
with fingerprints patterns, such as (a) (taken from Ref. 5). Such patterns
contain two elementary point singularities of nonoriented vector fields in
two dimensions: in fingerprint patterns these are known as the core (b) and
the delta (c), marked by circles (online, in red and green, respectively) in
(a). Examples of these singularities as they appear in rod textures are shown
in (d) and (e), respectively.

(which is not influenced by the flow). However, the equation
of motion we obtain is independent of the length a of the rod
in the limit as a — 0, and by imagining a rod as being formed
by overlaying dumbells of different lengths, we surmise that
our equation describes a short symmetric rod with a general
distribution of its viscous drag along its length. The rods are
advected by a velocity field v(r,t), which is characterized by
a correlation time 7, correlation length &, and typical magni-
tude vy. In a multiscale turbulent flow, it is the correlation
time and correlation length of the smallest eddies which are
relevant here (that is, we identify 7and ¢ with the Kolmog-
orov time and the Kolmogorov length of the turbulence, re-
spectively).

The configuration of the rod can be specified by the po-
sition r(¢) of its midpoint at time 7 and by a unit vector n(z)
aligned with the rod (the binary ambiguity of the evolution is
resolved by requiring continuity). The rods have an initial

FIG. 4. (Color online) Given a nonoriented vector field n(r) in two dimen-
sions and a closed curve C, the Poincaré index N(C) is defined as the number
of multiples of 27 by which the direction of n rotates (in the clockwise
direction) as C is traversed (also clockwise). For a nonoriented vector field,
such as the direction of the rods, the Poincaré index may take half-integer
values. (a) For a field without singularities, N=0. (b) For a curve which
encircles a core, N :%. This singularity can be regarded as having a charge
of N=%. (c) For a curve which encircles a delta, N=—%. (d) For a curve
which encircles more than one singularity, their charges are summed. This
curve encircles a combination of a core and delta which is termed a loop.

For this case N:—%+%:0_

Phys. Fluids 21, 043304 (2009)

FIG. 5. (Color) The direction vector n (black lines) is asymptotic to the
vector field of eigenvectors u, (red lines). The vector field u, is undefined in
gyres, where the normal form of the monodromy matrix is a rotation. The
Poincaré index of the field u, on the boundary of the gyre need not be equal
to zero, whereas the Poincaré index of n is zero. In these cases the field n
rotates by 7 in the vicinity of one or more scar lines (green).

direction nj, which is a smooth function of the position r.
Our aim is to obtain equations of motion for r and n, using
these to understand the vector field n(r,¢) describing the ori-
entation of the rods which have reached position r at time ¢.

We simplify by assuming that the rod length a is very
short compared to the correlation length & a/&<1. The cen-
ter of the rod with position r is therefore assumed to move
according to the advective equation of motion, F=v[r(z),1]
[we neglect small O(a?) corrections]. To obtain the equation
of motion for the direction of the rod, we use a linear ap-
proximation for the velocity difference dv between the cen-
ter of the rod, r, and one of the particles at its ends, at r
+or,

ov(r,t) = A(r,1)dr, (2)

where A(r,?) is the strain-rate matrix (a 2 X2 matrix with
elements A;;=dv;/dr;, which satisfies tif A]=0 because V-v
=0). The line between the two particles has direction speci-
fied by the unit vector n. The equation for force balance on
one of the particles at the end of the rod is #/=v—Tn, where
v and 7 are evaluated at the position of the particle at the end
of the rod and where T is proportional to the tension in the
rod, which keeps the separation of the two particles at its
ends constant. Because F=v at the center of the rod, we
obtain F=dv—-Tn, and the equation of the constraint is
or-n=0. From these we find 7=dv-n. Combining these re-

FIG. 6. (Color) (a) The rod direction (black) is a smooth vector field con-
taining a scar line which ends on the boundary of a gyre. As time increases,
the scar line narrows (b). When the scar line has narrowed to the extent that
it does not include the actual position of any rod, it disappears (c). This
leaves a point singularity at the end of the scar line: in this case a delta. In
practice, the picture is more complex because the positions of the gyre and
the scar line both change as time increases.



043304-4 Wilkinson, Bezuglyy, and Mehlig

sults with Eq. (2) we find an equation of motion for n,
n=An-(n-An)n. (3)

This equation of motion is the same as that obtained by
Jeffery6 for a prolate ellipsoid of rotation, in the limit as the
aspect ratio approaches infinity.

B. Solution of the equation of motion

We now consider how a solution of the equation of mo-
tion (3) may be obtained from the monodromy matrix of the
flow. The solution which we describe below is a special case
of one previously given in Ref. 7, but the very brief deriva-
tion is given below for completeness and in order to establish
notations. The monodromy matrix M describes the evolution
of the infinitesimal separation vector Jr of two points ad-
vected by the flow, F=v(r,1): we write the separation of two
points at time ¢ in the form

or(t) =M[r(z),t,10]or(1o). (4)

Note that M is written as a function of the position r reached
by the rod at time ¢ and of the final and initial times ¢ and ¢,
respectively. The monodromy matrix satisfies the differential
equation

iM =Alr(1),:]M, (3)
dt
where r(z) is the trajectory of the center of the rod. The initial
condition for Eq. (5) is M(r,f,,t,) =1, where I is the identity
matrix for all positions r. Now define ny(r,) as the initial
direction (at time #,) of the rod, expressed as a function of
the initial position r,. Let us consider the vector field

a(t) = M(r,1,1)ny(ry), (6)

where ry(r,1,1,) is the initial position, at time f,, of a rod
which reaches r at time 7. If we write a(7)=a(r)n(z), we find
that n(z) satisfies the equation of motion (3) above. Also, it
satisfies the initial conditions n(z)=ng[r(zy),%y,t,], since
M(r,1,,1,)=1. Thus we can determine the orientation vector
of the rods from the monodromy matrix by normalizing the
vector a(z),

M(r,1,15)ny(rp)

nir.t) = IM(r,2,10)n,(r)|

(7
(where the initial position rq is a function of r, , f).

C. Asymptotic form of the solution

Let N, and u, be, respectively, the eigenvalue of M with
the largest magnitude and the corresponding eigenvector,
normalized to unit length. We term these the dominant eigen-
value and eigenvector. The other eigenvalue and eigenvector
are denoted A_ and u_ and are termed subdominant. We as-
sume that the random flow v(r,7) has a positive Lyapunov
exponent, so that the elements of M(r,¢,z,) tend to increase
exponentially as a function of t—#, (We remark that this
assumption might not be valid in the case of simpler flows
such as a recirculating flow.) Correspondingly |\, /\_| is ex-
pected to increase exponentially (recall that N A_=1). If
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FIG. 7. (Color) Illustrating the correspondence between the rod direction
field n(r,z) (black) and the eigenvector field u,(r,7) (red) at large time.

IN,/\_|>1, applying the matrix M to almost any vector is
expected to result in a vector which is nearly aligned with u,.
In particular, as 1—t,— % we expect that n(r,7) ~u,(r,t) for
almost all points in the plane. This is illustrated by the simu-
lation in Fig. 7.

lll. APPARENT SINGULARITIES
OF THE DIRECTION FIELD

Here we consider whether it is possible for the vector
field n(r,7) to have singularities, where n changes discon-
tinuously as a function of r. First we show (Sec. IIT A) that it
is not possible for n(r,z) to have singularities in a strict
sense. It is, however, possible that the field could approach a
singularity in some asymptotic sense. Accordingly, we also
consider (Sec. III B) whether the eigenvector field u_(r,1), to
which n(r,) is asymptotic, has any singularities. Although
u.(r,1) does not have singularities, we show that it can have
a nontrivial topology. There are regions where the mono-
dromy matrix M is elliptic (with conjugate eigenvalues on
the unit circle) so that the dominant eigenvector u, is not
defined. We term these regions of rotational flow gyres. We
find that the Poincaré index of the eigenvector u, around the
boundary of a gyre can be nonzero. In Secs. III C and III D
we consider how the smooth field n(r,7) can be asymptotic
to the topologically nontrivial field u,(r,?).

A. Absence of singularities

For any finite value of 7—t,, the monodromy matrix
M(r,t,1,) is a smooth function of the final position of the
trajectory, r. The solution (7) can therefore only be discon-
tinuous if the initial direction field is discontinuous or if the
denominator [Mny| is equal to zero, which is only possible if
there are points where det(M)=0. This is not possible since
we consider area-preserving flows, where det(M)=1. If the
initial direction vector field ny(r) is nonsingular, we therefore
conclude that the direction field n(r,7) remains nonsingular
for all times. Because the vector field generated by Eq. (7) is
smooth, the Poincaré index of this field is zero for any closed
curve, in apparent contradiction to the simulations shown in
Fig. 1.
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FIG. 8. (Color) Eigenvector field u_(r,) (red) and rod direction field n(r, 1)
(black) at small time 7—1,. The regions where there are no red vectors arise
because the eigenvector field of the dominant eigenvalue of the monodromy
matrix M(r,7,7,) is undefined in regions (which we term gyres) where
M(r,t,1,) is elliptic. Note that at small £—1,, the gyres occupy a large fraction
of the area and have simple boundaries. In this figure it can be seen that two
of the gyres have nonzero Poincaré index.

B. Topology of the eigenvector field

We have shown that the direction field n(r,r) is
asymptotic to the field of eigenvectors, u,(r,7). We shall see
that the latter field has a nontrivial topology.

The only type of singularity of the eigenvector field
which is possible is where the monodromy matrix is equal to
the identity matrix. It is a codimension three condition for
the monodromy matrix to have this form, so it is nongeneric
in the two-dimensional problem which we consider. There is,
however, another way in which the eigenvector field u_(r,?)
can have nontrivial topology.

In an area-preserving flow there will be regions of the
plane where the eigenvalues are complex and have the same
magnitude, so that u, is undefined. We refer to these regions
where the normal form of M(r,7) is a rotation as gyres. Each
gyre is surrounded by a boundary. We find that the Poincaré
index of the field u, on the boundary of a gyre may not be
equal to zero (two examples are illustrated in Fig. 8). This
appears to contradict the result that n is asymptotic to u,
because we have seen that the Poincaré index of n is always
ZEerO0.

C. Asymptotic singularities of the direction field

We have seen that n(r,z) is nonsingular, but that it is
asymptotic to a vector field u,(r,7) which may be topologi-
cally nontrivial. One way to resolve this contradiction is to
assume that the field u,(r,7) has become trivial by the time
n(r,7) approaches it due to gyres with opposite topological
charges coalescing. Our numerical studies show that this is
not a sufficient explanation.

There is, however, another route to resolving this appar-
ent contradiction which is both more interesting and which
does lead to an explanation of the textures seen in Fig. 1. Let
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us consider the set of points where n need not be asymptotic
to u,. There are two ways in which this can occur. Both lead
to structures which we term scar lines.

We write the initial direction field as

npy=au, +aoau._. (8)

The vector n is proportional to M np=a A, u,+a_\_u_. The
assumption that the Lyapunov exponent v is positive implies
that at most positions the ratio of eigenvalues, N,/A_
~exp(29t—1y|), grows exponentially as t—t, increases. We
therefore expect that n aligns increasingly closely with u,.
There are two ways in which this alignment can break down,

leading to two types of scar lines.

1. Type I scar lines

The direction field n need not approach u, when a, is
sufficiently small. The locus where a, =0 forms a set of lines
in the plane, and as we cross these lines the direction of n
rotates by *m. We term these lines type I scar lines. The
vector n differs significantly from u, when |a,|exp(27]t
—1])=0(1). This region where the direction flips therefore
becomes vanishingly small at r—#,— . Accordingly, we can
think of the scars lines as “healing over,” that is, becoming
invisible.

These scar lines must terminate at gyres. Figure 5 is a
schematic illustration the fields n and u, in the vicinity of a
charged gyre and its associated scar line. Figure 9 shows
type I scar lines in our numerical simulations.

2. Type Il scar lines

Our argument that n aligns with u_ also fails if the ei-
genvalue ratio |\,/\_| does not increase. The eigenvalue ra-
tio is small in the vicinity of the gyres. The area of the gyres
must decrease exponentially as 7r—#, increases. Generically,
the gyres will be stretched and folded, as well as decreasing
in area. In the long-time limit, the gyres occur in the form of
very narrow strips where |tr(M)|=2. Upon crossing this
strip, the sign of A, changes, and correspondingly the vector
M n, smoothly reverses direction. This implies that the di-
rection of n reverses on crossing these narrow gyres: these
are the type II scar lines.

D. Disappearance of scar lines and emergence
of point singularities

As noted in Sec. III C above, the width of the region
around a scar line where the fields n and u, are significantly
misaligned shrinks as #—f,— . As this region shrinks, even-
tually there is a small probability that any rod actually lies in
the region where these vectors are misaligned. In this case,
for all practical purposes the scar line has disappeared. Con-
sider a loop which encircles the end of a scar line. Initially
the Poincaré index of m about this loop is zero. When the
angle change of = associated with crossing the scar line
disappears, the Poincaré index of the circuit becomes N
== % The disappearance of the scar line is therefore associ-
ated with the emergence of a point singularity at the posi-
tions where the ends of this line were located. This is illus-
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trated schematically in Fig. 6, and by the numerical
simulations in Fig. 10. This effect gives rise to the apparent
singularities seen in Fig. 1.

E. A remark about eigenvector directions

We conclude this section by remarking that the eigen-
vectors u, and u_ become colinear on the boundary of the
gyre. This observation can be understood using the following
argument. On the boundary of the gyre, the matrix M only
has one eigenvalue (which may be +1 or —1). The set of 2
X 2 matrices satisfying det M =1 has three parameters, and if
the eigenvalues are constrained to be A=1 (say), it becomes
a two-parameter family of matrices. We now identify a pa-
rameterization of this family. Consider the eigenvalue equa-
tion, Fu=MA\u, for matrices of the Jordan form,

Flx) = (é ’1‘) )

These are a one-parameter family of matrices which have
only one eigenvector, #=(1,0), and one eigenvalue, A=1. If
R is a rotation matrix

cos # sin 0)
—sin @ cos 0/’
we see that we can generate a two-parameter family of 2
X 2 matrices M(6, k)=R™'(6)F(x)R(6) which have only one
eigenvalue, A\=1. By construction of the matrix M(6, k), we

can show that this two-parameter family spans the set of 2
X 2 matrices with only one eigenvalue, A=1. But we have

R(0)=( (10)

0.1
0.07

0.24

0211l 0.04
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FIG. 9. (Color) Numerical examples
of type I scar lines. The rod directions
n are shown in black, eigenvector u,
is shown in red, and the position of the
scar line is indicated by a sampling of
points where |a,| <1072 (green). The
direction of the rods is seen to flip
around, rotating by approximately r,
in the vicinity of the scar line.

seen that these matrices have only one eigenvector, namely,
u=R(6)(1,0)T. We conclude that as we approach the bound-
ary of a gyre from the outside, the two eigenvectors u, and
u_ become colinear. This implies that «, and «_ both diverge
as we approach the boundary of the gyre.

IV. THE LONG-TIME LIMIT
A. Sensitivity to final position

If we assume that the velocity field v(r,7) is statistically
stationary, we expect that at long time the patterns formed by
the rods also become statistically stationary (so that at long
times it becomes impossible to estimate the time from the
statistics of a realization of the rod positions). This property
is, however, not manifest in the solution (7). As t—t,— , the
norm of the monodromy matrix grows. Also, while its ele-
ments are everywhere a smooth function of the initial posi-
tion, the elements of M(r,1,t,) do become ever more sensi-
tive to the position r as r—#y,— 0. These observations suggest
that as time increases the vector field n(r,7) should vary
increasingly rapidly as a function of r, the final position of
the rods. We argue below that this is not the case, and that
n(r,1) does reach a statistically stationary state.

If the eigenvector u,(r,t) corresponding to the largest
eigenvalue is less sensitive to the final position r than the
matrix M(r,z,1,) itself, then the apparent contradiction dis-
cussed above can be resolved. We now argue that this is, in
fact, the case.

Let us consider a 2 X 2 random matrix M(z,#,) generated

FIG. 10. (Color) Simulation showing
healed scar lines. The rods are shown
in black, and the eigenvector field is
shown in red. The points in green
show positions of rods where |a,]
<1072 (and are therefore very close to
scar lines). In these examples, because
the scar line has become very narrow,
the direction of the rods is not seen to
flip around in the vicinity of the scar
line, and the end of the scar line is
marked by an apparent point singular-
ity, namely, a loop (a) or a delta (b).
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by an equation of motion M=A(7)M [that is, by Eq. (5)],
where A(r) is a traceless 2 X 2 matrix generated by a station-
ary random process. We apply the initial condition
M(1y, 1) =L, where I is the unit matrix. The time dependence
of the matrix M has a positive Lyapunov exponent y describ-
ing exponential growth of the largest eigenvalue A, as a
function of |t—1|. Our discussion of the sensitivity of the
solution will use an observation about the subdominat eigen-
vector u_, corresponding to the smallest eigenvalue A\_. We
start by showing that this eigenvector approaches a constant
direction, which depends on the initial realization of A in the
first few multiples of the Lyapunov time y~'. (The direction
of the other eigenvector u, continues to fluctuate randomly.)

To demonstrate this result, we consider the change in
this eigenvector u_(r) during a small timestep ot. Let X(r) be
a matrix formed using the eigenvectors of M(r), such that
D=XMX"'=diag(A+,\_) is the diagonal matrix formed
from the eigenvalues of M(7). In the transformed basis, the
matrix at time ¢+ ot is

M’ =XM(t+ )X ' =X[I+AsMX ™!
=[I+A’(t)&]D, (11)

where A’=XAX"!. We write the eigenvalue equation for the
subdominant eigenvalue of the matrix M, with subdominant

eigenvector u_,
(1+A;15t Alybt )(x 0)<5ui)
M'u_= ,
1+A%0t/)\0 N 1

- Al 6t

_(x+(1+A;15t) N_Al, ot )(5:4:)
T\ NARS N (1+ARen /N T
ou!
=()\_+ 5)\_)( 1 ) (12)

Neglecting terms of higher order in o, the first element of
this eigenvalue equation gives

Sul = — ———
N, — N

! A, 6. (13)
In the limit as r—  the eigenvalues satisfy |\,/\_| — o and
éu' 1 5t—0. We therefore conclude that the eigenvector of
the subdominant eigenvalue approaches a constant direction.
Writing the eigenvector of the dominant eigenvalue of M’ as

u,=(1,6u}), the corresponding expression is
oul, =A},ét. (14)

Here the coefficient of &t does not approach zero as r— ,
and we conclude that the dominant eigenvector continues to
rotate in the large time limit.

Now, given the orientations of the rods at time ¢, let us
consider their orientations at the earlier time #,. This map is
determined by a time-reversed version of Eq. (3). Its solution
is constructed by analogy with Eq. (7), replacing M with
M~!. The eigenvector of M(t,t,) corresponding to its largest
eigenvalue is also the eigenvector of M~!(z,¢,) correspond-
ing to its smallest eigenvalue. Using the result discussed
above, the eigenvector corresponding to the smallest eigen-
value of M~'(¢,%,) becomes insensitive to #, when y|t—1t|
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> 1 (where v is the Lyapunov exponent of the flow). Corre-
spondingly, the eigenvector of M(z,7,) corresponding to the
largest eigenvalue becomes insensitive to 7,. We conclude
that although the matrix M(z, ,) has an increasingly sensitive
dependence on position as r—#y,— o, the eigenvector u_ does
not become increasingly sensitive. Because the rod direc-
tions are asymptotic to these vectors, the rod directions do
not become increasingly sensitive to the position r as time
increases, except in the vicinity of gyres.

There are regions where the matrix M is not hyperbolic,
so that there is no largest eigenvalue and consequently u, is
not defined. However, as |t—t,| — %, the norm of M increases
almost everywhere, and the fraction of the area of the plane
occupied by regions where u, is not defined approaches zero.

We conclude that as t—f,— 0, the vector field n(r,z) is
statistically stationary, approaching the vector field u,(r,7)
almost everywhere.

B. Distribution of angle gradients

We have seen that the rod directions do not become in-
creasingly sensitive to position as time increases. It is desir-
able to quantify the sensitivity to position. We have seen that
the textures formed by the rod orientations show regions
where the rod direction varies very rapidly with position,
relative to other regions. Earlier, we described how the exis-
tence of scar lines explains the structures seen in specific
realizations of the patterns. In this section we consider the
probability distribution of the angle gradient, showing that
the distribution is very broad, being well approximated by a
log-normal distribution. This very broad distribution of the
angle gradient is consistent with the existence of the struc-
tures described in Sec. III.

We now consider how to calculate the angle gradient g
=V 6. In the following, we obtain an expression for one com-
ponent, g, of g. We obtain an equation for g,, Eq. (18),
which is easily argued to be log-normally distributed. It is,
however, less clear that this formula for g; gives results
which are well defined. We discuss this point in some detail
after deriving Eq. (18), before finally presenting a brief ar-
gument that g; is approximately log-normally distributed at
the end of this section.

Consider the difference between the eigenvector direc-
tion between two monodromy matrices evaluated along
neighboring trajectories. The reference trajectory has mono-
dromy matrix M(7) and the neighboring trajectory has mono-
dromy matrix M(z) + SM(z). We have seen that the subdomi-
nant eigenvector #_ of each monodromy matrix approaches a
constant direction as r— o, so the angle between them, 86(),
must approach a constant value, that is, 86(t)— 86, as t
— oo, Let SM(7) be the change in the monodromy matrix due
to shifting the end point of the trajectory at time ¢ from r
=(ry,rp) to r+r=(r;,ry)+(5r;,0). The first component of g
is g;=limg, o 60/ ory.

We introduce an orthonormal basis u;, u, satisfying
u;-u;= 38, where uy=u_(t) is the subdominant eigenvector of
M(z). The elements of M in this basis are M£j=ui-M(t)uj,
which form the matrix
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. (M, 0
M =| . (15)
M}, A

When the end point of the rod trajectory is shifted by a
distance &r=(6r;,0), the matrix M’ is perturbed to M’
+6M’, and the angle of the subdominant eigenvector u_
changes by a small amount &6, which can be obtained by
solving the eigenvalue equation

Mi, + My, M1, 06 06
, , , =(A_+ ) .
My + My N_+ M),/ \ 1 1
(16)

Using the first line of this equation to solve for 6, retaining
leading order terms we obtain

M,

8= — ——12
M) -\

(17)
Note that when ¢ is large, so that A,/\_> 1, we may drop the
term A_ from the denominator and approximate the first ele-
ment of the gradient vector by

IM(1)
u- u,
. o0 (9"1
g = lim — ~— ——— L (18)
§r14>05r1 ul M(t)ul

The angle gradient must approach a definite value as r— o,
but it is not immediately clear that this expression ap-
proaches a constant value. We must look at Eq. (18) more
carefully to see why this is, in fact, true.

It is desirable to have an explicit expression for the co-
efficients M/ j(t). Note that the monodromy matrix M(r) sat-
isfying dM/dt=A(r)M can be approximated by a product

Int(#/ 5t)
M(@)=lim [ [I+A(onar. (19)

=0 =]

Writing B=JA/dr|, the monodromy matrix for the displaced
trajectory is
Int(#/ 5t)

M(t) + SM(7) = lim [ [T+ A(jo0) 8t +B(jdt)or, 6]

ot—0

J=1

Int(#/ ) Int((t—t")/ 1)

=6r, lim >, ]I

ot—0 j=] Jj=1

Int(¢'/61)
X[I+A(t' +jor)orBkon o []

j=1

X[I+A(jdr) o]+ O(B?). (20)
We find
%(t) = ftdt’M(t,t’)B(t’)M(t’,O). (21)
ry 0

Having obtained an expression for M, we return to consid-
ering why g, given by Eq. (18), is independent of ¢ in the
limit as r— . Let us introduce the initial time in the argu-
ments of the monodromy matrix, writing the monodromy
matrix giving displacements at time ¢ in terms of those at
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time #, as M(t,7,). Consider the vectors v,=M(z,0)u; and
v,=6M(z,0)u,, where u,, u, are two arbitrary vectors. We
will show that the vectors v;,v, almost always become
colinear as t— 0. First choose a time f; such that (1—1,)y
> 1. Note that we can write M(¢,7))=M(z,1,)M(t;,1,). The
direction of the vector v,=M(t,y)u, is almost always nearly
colinear with the direction of the dominant eigenvector of
M(¢,1,), independent of the vector u;. In the case of the
vector v,=6M(t,1y)u,, note that we can write

1
SM(t, 1) = 5r1M(t,t1)f di'M(t,1")B(t")M(t' o)
I

t
+ 5r1f dt' M(t,t")B(t )M(t',1,)
5

=M(1,1,) M(t1,10)[1 + O((t — 1,)/1)], (22)
so that to leading order v, is also colinear with the dominant
eigenvector of M(z,7;). We conclude that the vectors v, and
v, are almost always colinear, provided y(t—r1,)> 1.

Let us consider the evaluation of Eq. (18) in the case
where

M = M(t,1)) = M(t,' )M(¢',1y) = M,M,, (23)

where M;=M(t',t,), M,=M(z,1’,).
glecting terms of order 5r%, we have

5M=M25M1 + 51V[2M1. (24)

Correspondingly, ne-

We consider the case where y(t—t,)> 1, with t>¢">1,. In
order to establish that the angle 66 becomes asymptotically
independent of time, we must show that §6=56,, where 66 is
given by Eq. (18) and where 86, is the expression obtained
by replacing M, M with 6M;, M. Thus [in view of Eq.
(23) and (24)] we must demonstrate that

u- 5M]u2 _ u,- M25M]u2 _ u- 51\/[2M1u2
u; - MoMu, w - MyMu, -
(25)

59=—

u-Mu,

The second term on the right-hand side of the equality is
negligible because M u,=N_u_ and A\_—0 as t—. In the
first term the additional factor of M, makes no difference to
the value of &6 only if the vectors oM u, and Mu; are
colinear. But we argued above that these vectors are asymp-
totically colinear in the limit as y(¢—#,) — . Thus we con-
clude that the angle J6 between two subdominant eigenvec-
tors u_ in forward-time propagation does become
independent of time as r— oo, justifying Eq. (18). We can
now use the arguments of Sec. IV A to draw conclusions
about the dependence of the reverse-time propagation of the
dominant eigenvectors u,, which determine the rod direc-
tion. In particular, we conclude that the angle gradient at
time ¢ does become independent of the initial time #, as ¢
—ty— 0.

We have seen that the angle gradient of the orientation
field of the rods remains finite in the long-time limit. It is of
interest to consider the probability distribution of the angle
gradient. We shall argue that this quantity has an approxi-
mately log-normal distribution. We note that the monodromy
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FIG. 11. (Color online) Histogram of the probability density of the angle
gradient, showing that this has an approximately log-normal distribution.
The parameter values of the simulation are the same as for the other figures.

matrix may be expressed as a product of a large number of
independent random factors. It is clear that when y#> 1, the
distributions of the matrix elements of both M and M are
log normal. The distribution of their ratio is also log normal.
We conclude that the distribution of the angle gradient, given
by Eq. (18), is therefore also log normal at large times, pro-
vided the correlation time 7 is short compared to the
Lyapunov time y~'. In Fig. 11 this result is illustrated by a
histogram of the distribution of the logarithm of the angle
gradient for the same parameter values as used in the other
numerical simulations. A Gaussian fit matches the histogram
very closely.

V. DISCUSSION OF THE ROD TEXTURES
IN THE LONG-TIME LIMIT

We have shown that the rod textures seen on Fig. 1 may
be understood in terms of concepts introduced in Sec. I1I. We
showed that the direction field n(r,7) is asymptotic to the
vector field of the dominant eigenvector u.(r,7) of the mono-
dromy matrix M(r,7). However, we observed that n has a
simple topology, whereas u, has a nonzero Poincaré index
upon traversing boundaries of some of its gyres. In order to
reconcile the different topologies of these fields, we noted
that this asymptotic correspondence breaks down on scar
lines, where the direction vector n rotates abruptly by 7. We
showed that the size of the region where the direction re-
verses can decrease as the norm of the monodromy matrix
increases, so that these scar lines can heal over when they
become sufficiently narrow that it is unlikely that a rod lies
in the region of the scar line. When the scar line has healed,
there appears to be a point singularity with nontrivial topol-
ogy at each of its ends.

In the long-time limit, the application of these concepts
requires careful consideration. This is because, at very large
times, the monodromy matrix M(r,¢) becomes increasingly
sensitive to the final position of the rods, r. As -1, increases
the gyres may shrink in area, their boundaries may stretch,
and they may merge together. Also, gyres with a zero
Poincaré index may disappear. We expect that at very large
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times, the gyres are extended into lines where tr(M) changes
sign. These lines are expected to become ever more closely
spaced as t—t,— o, with typical spacing &exp(—\|t—to)).
Following the reasoning presented in Sec. III, at large 7—¢,
we expect that u, fluctuates on a lengthscale &, independent
of #—t,. The definition of the type I scar lines depends on the
initial direction field, and these structures are therefore ex-
pected to become irrelevant at very large times.

In order to discuss the long-time limit, we consider an
expression for the direction field n(r,7) in terms of the domi-
nant eigenvector field. Let M(r,¢,z,) be the monodromy ma-
trix for a trajectory reaching r at time ¢, starting at time ¢,
and let u,(r,t,1,) be the corresponding dominant eigenvec-
tor. As t—t,— o we expect that n(r,r) ~u,(r,t) for almost
all points in the plane. We can therefore construct the vector
field n(r,7) from the dominant eigenvector u,(r,t,1,) as fol-
lows:

n(r,7) = lim wu,(r,z1). (26)

tg——®

Let us consider the way in which this limit is approached,
keeping ¢ fixed and letting #,— —o, starting from a time ¢,
=t— Ot which is very close to t. We know that there exist
gyres which shrink, stretch, and fold as #,— —c¢, and that the
Poincaré index of u, about the boundary of these gyres may
be nonzero. The observation that the field u,(r,1,,?) is topo-
logically nontrivial begs the question as to how Eq. (26) can
be correct, if n(r,) has no singularities. There are two pos-
sibilities for the manner in which the limit r—¢,— % is ap-
proached. The first possibility is that gyres with opposite
topological charges combine, so that in the limit the field
u,(r,t,ty) becomes topologically trivial. Numerical experi-
ments indicate that this case is not realized in practice. The
other possibility is that as the gyres shrink the field n(r,?)
can develop singularities which shrink in size and which
cause no abrupt changes in their direction except in the vi-
cinity of the gyres. We have seen that there exist type II scar
lines where the direction of n(r,7) changes by 7 on crossing
a narrow gyre.

As ty——o, the gyres become narrower and the scar
lines heal over, that is, there is unlikely to be any particle
close to the gyre, so that the gyres therefore have no visible
effect on the field n(r, 7). Consider a loop which encircles the
end of a type II scar line. Initially the Poincaré index of
n(r,1) about this loop is zero. When the angle change of =
associated with crossing, the scar line disappears as the scar
line heals over, the Poincaré index of the circuit becomes
N==* % The disappearance of the scar line is therefore asso-
ciated with the emergence of a point singularity at the posi-
tions where the ends of this line were located.

What can we say about the rod textures at long times?
We have shown in this section that the patterns formed by
the eigenvector field u,(r,1,1,) are statistically stationary for
long times because the direction of the dominant eigenvector
is determined only by the recent history of the monodromy
matrix, over a few multiples of its Lyapunov time, y~!. This
is true despite the fact that the elements of M(r,z,,) have
unbounded growth and become increasingly sensitive to r as
t—ty— . We have also presented an argument showing how
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the direction field n(r,f) and its apparent singularities are
obtained from the dominant eigenvector field using Eq. (26).
We conclude that the textures of the direction field are also
statistically stationary in the long-time limit.

VI. THREE-DIMENSIONAL FLOWS

Thus far, we have considered textures in two-
dimensional flows. We conclude by considering what addi-
tional structures might arise when the flow is three dimen-
sional. The principal difference is that in a three-dimensional
flow the direction vector n(r,z) covers a sphere rather than a
circle (it remains nonoriented), but the equation of motion
(3) and its solution (7) have the same form. In three dimen-
sions, there are many new questions which can be addressed,
and some of the implications of the solution (7) for three-
dimensional flows have been considered in Refs. 7 and 10.
Here we confine ourselves to a discussion of those aspects
which are relevant to the experiment discussed in Sec. I,
where we showed how a rheoscopic fluid can be studied
using illumination by colored lights. In the three-dimensional
case, the interpretation of experimental results is most
straightforward if the rheoscopic agent is sufficiently concen-
trated that the reflected light comes from the surface layer of
the liquid (that is, if the optical depth is small compared to
the characteristic scale of the flow). We confine our discus-
sion to this case.

For the problem which we consider, the color of the
scattered light is determined solely by the direction of the
projection of n(r,¢) in the plane of the fluid surface, evalu-
ated at a point on the fluid surface. This projected vector
field, n,(r,7), can have singularities if there are positions
where the rods point out of the surface of the liquid. The
projected vector field n,(r,?) then has a simple zero, which
has Poincaré index +1, as well as the fingerprintlike singu-
larities which we discuss above.

Our explanation for the occurrence of apparent singulari-
ties with Poincaré index =1 depends on the existence of
gyres, where there is no dominant eigenvalue, and where the
eigenvector has a nonzero Poincaré index on traversing the
boundary. In the three-dimensional case, we must consider
how these concepts are modified.

In three-dimensional volume preserving flow, the mono-
dromy matrix satisfies det(M)=1. Apart from degenerate
cases the monodromy matrix M has three possible spectral

types.

(1) Eigenvalues real and distinct, with at least one of them
greater than unity. The axis of the particle aligns with
the eigenvector u, corresponding to the largest eigen-
value, A,.

(2) There may be a real eigenvalue \,>1 and a complex
pair with modulus less than unity. In this case the axis
also aligns with u,.

(3) There may be two complex-conjugate eigenvalues hav-
ing modulus greater than unity, with complex-conjugate
eigenvectors. When these two eigenvectors are com-
bined with complex-conjugate coefficients, the resulting
real vector lies in a plane.
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FIG. 12. Projected orientations of rods suspended in a three-dimensional
flow. Only rods in a thin layer (with depth much smaller than the correlation
length of the velocity field) are shown. These textures may have singularities
due to the rods becoming perpendicular to the plane [(a) and (b)], as well as
fingerprintlike singularities (c).

In three dimensions, we define the gyres as the regions
where the spectrum is of type 3. These regions occupy a
finite volume in a three-dimensional space. The arguments
deployed in Sec. III are extended to the three-dimensional
case by considering the projected vector n,,(r,?) in the plane
of the fluid surface. This vector is asymptotic to the projec-
tion of the dominant eigenvector in the plane of the fluid
surface, u,,(r,). The arguments of Sec. III remain valid pro-
vided the Poincaré index of u+p(r,t) around the curve where
the gyre intersects the fluid surface is nonzero for some of
the gyres. Numerical experiments have shown that this con-
dition is satisfied, so that on the surface of a three-
dimensional flow the field n,(r,7) does contain fingerprint-
like textures, as well as simple singularities which have
integer Poincaré index.

We remark that this observation has an interesting con-
sequence for the three-dimensional structure of the gyres. If
the plane is moved down through the fluid, the curve repre-
senting the intersection of the gyre with this plane will de-
form. If this curve shrinks to a point, by continuity the
Poincaré index associated with u+,,(r,t) must be zero. A
curve can be shrunk to a point on a surface with the topology
of a sphere, but a surface with nonzero genus g can contain
curves which cannot be shrunk to a point. It follows that the
three-dimensional gyres include examples which are multi-
ply connected (for example, a torus has g=1).

We conclude that if the flow is three dimensional, the
fingerprint like textures still appear on the free surface, but
that there are also points where the projected orientation vec-
tor field n,(r,?) has simple zeros, with Poincaré index +1,
due to rods aligning perpendicular to the surface. Figure 12
shows examples of the orientations of rodlike objects in a
thin layer within a three-dimensional random flow, projected
onto the plane of the paper. This figure shows the occurrence
of singularities with Poincaré index +1 where the rods point
out of the plane, as well as the continued existence of finger-
printlike textures in three-dimensional flows.
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APPENDIX: MODEL VELOCITY FIELD

Our numerical simulations used a synthetic velocity field
v(x,y,t) which was periodic in x, y (with period L) and in #
(with period T), generated from a random stream function
Jl(x,y,1): the components of the velocity field are v,
=9l dy, vy=—3i/ dx. The stream function is written in terms
of its Fourier decomposition,

Yx,y,1) = 2 2 E A(kx,ky,w)el(k*x+kyy+wt),
k

kya)

(A1)

X

where k,, k, are integer multiples of 277/ L and where w is an
integer multiple of 27/T. The coefficients A(k,,k,,w) are
random Gaussian variables with the following properties:

<A(kx7ky’ w)) = 07

(Al ey 0)A*(KL K ')

2y 2 ET

= kak)’c‘skyk)’_‘sww’(vog) (2m) T
K&+ I8 + 0’7

Xexp(_ f_f_w |

A(kx’ ky’ (J)) =A*(_ kx’_ kya_ (J)) . (AZ)

In the limits where L— and 7T— % where many Fourier
coefficients contribute to the sums, the correlation function
of ¥(x,y,r) approaches a Gaussian form,

(Px,y, ) px",y",1"))
= (Uof)2

Xexp| —

(x—x’>2+<y—y'>2] [ (t—r'>2]
28 PIT T2
(A3)

The fast Fourier transform was used to calculate Fourier
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components at discrete time steps #,=not. In the simulations
we used 7=0.1, £=0.1, vy=1.0.

In all of the simulations the rods were all initially in the
same direction, that is, ny was independent of r. The color
mapping of Fig. 2 was produced using MATLAB.
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