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We show quantitatively how the collision rate of droplets of visible moisture in turbulent air increases
very abruptly as the intensity of the turbulence passes a threshold, due to the formation of fold caustics in
their velocity field. The formation of caustics is an activated process, in which a measure of the intensity
of the turbulence, termed the Stokes number St, is analogous to temperature in a chemical reaction: the
rate of collision contains a factor exp��C=St�. Our results are relevant to the long-standing problem of
explaining the rapid onset of rainfall from convecting clouds. Our theory does not involve spatial
clustering of particles.
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It is common experience that rainfall can commence
very abruptly from cumulus clouds (which form when
the atmosphere is convecting) but has a much slower onset
from stratiform clouds in a stable atmosphere. This can
happen even when no part of the cloud is below the freez-
ing point. It is believed that the difference between con-
vecting and stable clouds arises because the convection
gives rise to small-scale turbulent motion which facilitates
the coalescence of microscopic water droplets (‘‘visible
moisture’’) into raindrops. This idea has a long history [[1]
is a significant contribution containing references to other
early papers], but a satisfying theory has been elusive and
the topic remains a subject of intensive research, reviewed
recently in [2]. Numerical experiments have shown a dra-
matic increase in the rate of collision of suspended parti-
cles when the intensity of turbulence exceeds a certain
threshold. This effect was first described in [3]; see also
[4]. Here we present a simple quantitative theory of this
phenomenon, illustrated in Fig. 1, which shows the colli-
sion rate R of an aerosol as a function of a dimensionless
parameter termed the Stokes number, St, which contains
information about the turbulence intensity, �, and the ra-
dius of the water droplets, a (other symbols in the caption
are defined later). There is a precipitous increase in the
collision rate at a threshold value of St, which was also
observed in [3,4]. The current consensus, represented in
[2–5], is that the increased rate of collision involves spatial
clustering of particles. One exception is [6], which presents
a theory having elements (described later) in common with
our own, but which is more complex in its formulation and
less precise in its conclusions. Spatial clustering plays no
role in our theory.

The properties of clouds are very variable and the sizes
of visible moisture droplets have a large dispersion, but
typically the average of the radius is approximately 10 �m
and the density is n � 108 m�3 [2]. The motion of the
droplets is dominated by viscous forces, so that the equa-
tion for the position r of a droplet is well approximated by

 

�r � ��u�r; t� � _r� (1)

until the particles come into contact [1] [here u�r; t� is the
velocity field of the air and dots denote derivatives with
respect to time]. According to Stokes’s formula for the
viscous drag on a sphere, � � 9�g�=2�fa2 (� being the
kinematic viscosity of air, �f and �g the densities of water
and air, respectively): using the values above we estimate
� � 500 s�1. The turbulent motion is a multiscale flow
with an approximately power-law spectrum of spatial fluc-
tuations of u�r; t� [7]. According to the Kolmogorov theory
of turbulence, the short wavelength cutoff of the power-law
spectrum, � (termed the Kolmogorov length), is a function
of � and of the rate of dissipation per unit mass in the
turbulence, �. Similar considerations apply to the shortest
characteristic time scale, �. Dimensional arguments [7]
then imply

 �� ��3=��1=4; �� ��=��1=2: (2)

The typical velocity difference for points separated by the
Kolmogorov length � will be denoted by u0. The dimen-
sional arguments of the Kolmogorov theory imply that
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FIG. 1 (color online). Particle collision rate as a function of
Stokes number, for three different values of the Kubo number
[defined in Eq. (3)]. In these simulations [described in full below
Eq. (7)] we used n � 103, a � 2:5� 10�4, � � 0:1=�, � � 0:1,
and varied u0 and �: Ku � 1 (�), Ku � 0:2 (	), and Ku � 0:04
(�). The theoretical curves are (7), with actions S obtained from
Fig. 3. The constant Ca in Ra � Cana

du0=� was fitted (see text).
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u0 � �=� for turbulent flow. The dissipation rate � is
highly variable between different clouds. Values of � �
0:1 m3 s�2 are typical [2]; � � 10�5 m2 s�1 for air in the
lower atmosphere, giving � � 3� 10�4 m, � � 10�2 s.

We can form four independent dimensionless parame-
ters describing the microscopic motion of the water drop-
lets: these are

 St � 1=��; Ku � u0�=�; n�d; �=a (3)

(d is the dimensionality of space). The values quoted above
give St � 0:2. The Kubo number Ku cannot be large [8]
and the comments above indicate that it is of order unity for
fully developed turbulence, but small values of Ku occur in
stirred fluids, and this parameter will play a role later. From
the data above we see that n�d 
 1 and �=a� 1 for
water droplets in clouds.

Saffman and Turner [1] only considered the case of
St
 1 in detail, because they believed that St� 1 would
only be realized in the most unstable cumulonimbus
clouds. Later it was understood that fully developed turbu-
lent motion with high Reynolds number can exhibit pro-
nounced intermittency [7]. One consequence is that the rate
of dissipation can fluctuate wildly relative to the mean
value, and measurements in clouds have indicated that �
can have an approximately log-normal distribution [2]. The
notion that intermittency can promote the formation of rain
showers by creating localized regions of very high turbu-
lent intensity is considered in [2,6].

Aerosol particles in a turbulent flow may exhibit a
degree of clustering: mechanisms for this process were
proposed in [5,6,9] and Ref. [8] describes recent advances.
Most of the recent literature on the initiation of rainfall by
turbulence assumes that the mechanism involves clustering
[2–5]; however, this theory is unsatisfactory for two rea-
sons. First, the widely accepted view is that clustering is
due to particles being centrifuged away from regions of
high vorticity. It is argued that this effect is strongest when
St is close to unity: it does not occur when the particle
motion is highly damped (St
 1), or when the vortices
are too short lived (St� 1). Figure 1 shows, however, that
the collision rate rises abruptly at a threshold value of St
(which depends upon Ku) and remains high for St� 1:
this is equally true for simulations of single-scale flows,
such as Fig. 1, and multiscale flows, such as those in [3].
The other difficulty is that the clustering can only occur for
particle separations smaller than �, but in a cloud the
density of particles is so low that there is unlikely to be
more than one particle in a cube of length �.

In our theory, the dramatic increase in the collision rate
is a consequence of the formation of ‘‘caustics,’’ illustrated
schematically in Fig. 2. Here the velocity of the water
droplets as a function of position is initially single valued
[curve (a)] but droplets with a large velocity overtake
slower-moving particles, so that at a later time the droplet
velocity is multivalued [curve (b)]. The region where the

velocity is a multivalued function is bounded by two fold
caustics. The caustics have two effects which could en-
hance the collision rate of water droplets. First, at the
caustic lines themselves there can be a divergence in the
density of particles. This effect is discussed in [6,10]: it is
analogous to the divergence of light intensity on optical
caustics [11], but we argue that it is not relevant to colli-
sions between microscopic water droplets in clouds, where
n�3 
 1. The other effect of the caustics is that when the
velocity field is multivalued, droplets at the same position
are moving with differing velocity, and their relative mo-
tion produces collisions. This has no analogue in optical
caustics. The importance of this effect was previously
emphasized in [6].

Our theory must consider the rate of collision between
droplets both with and without caustics, and the rate at
which caustics are formed. Saffman and Turner [1] dis-
cussed the collision (due to shearing motion) of droplets
which are advected with the air: this approximation is valid
in the limit as St! 0; we term this advective collision rate
Ra. At large Stokes numbers a theory due to Abrahamson
[12] treats the water droplets as a gas of particles with
random and uncorrelated motion and calculates the colli-
sion rate Rg by gas-kinetic theory. This theory is widely
regarded as being applicable only at very large Stokes
numbers, and indeed the two theories give results which
differ by a factor of order �=a at St � 1. This might be
taken as evidence that at least one of these theories does not
work when the Stokes number is of order unity. However,
we shall argue that the gas-kinetic model is applicable as
soon as caustics have formed and that the collision rate is
well approximated by R � Ra � f�St;Ku�Rg, where
f�St;Ku� is the fraction of the coordinate space for which
the velocity field has become multivalued due to the for-
mation of caustics.

First we consider the rate of production of caustics in
more depth. In earlier works [10,13], two of the present
authors described the formation of caustics in the limit
where Ku
 1. In the one-dimensional case, we consid-
ered the linearization of Eq. (1), describing the small
separation in space 	x and velocity 	v for two nearby

x

ẋ

(a) t = t0

(b) t > t0

FIG. 2 (color online). Schematic showing the formation of a
caustic. (a) Initial configuration, showing droplet velocity as a
function of position along an arbitrary line. (b) This manifold has
developed fold caustics. The velocity field is multivalued be-
tween the folds.
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droplets. The equation of motion for X � 	v=	x is [14]

 

dX
dt
� ��X� X2 �

@u
@x
�x�t�; t� (4)

which is a stochastic differential equation, in which the
velocity gradient acts as a random forcing term. The drop-
lets encounter a caustic whenever 	x passes through zero,
implying that X goes to infinity in one direction, then
jumps instantaneously to the reflected point at infinity.
When fluctuations drive X to a sufficiently negative value,
it will almost certainly escape to �1 in a finite time. In
[13], Eq. (4) was considered in the limit St! 1, Ku! 0,
where the dynamics of X can be approximated by a
Langevin process. The associated Fokker-Planck equation
was solved exactly, giving the rate J at which any one
droplet passes through caustics. Similar results were ob-
tained in two [10] and three [8] spatial dimensions. They
are expressed in terms of a dimensionless parameter I
defined in terms of the strain-rate correlation function

 I �
1

2�

Z 1
�1

dt
�
@u1

@x1
�r�t�; t�

@u1

@x1
�r�0�; 0�

�
(5)

(we use angular brackets to indicate averages). In the limit
as I ! 0, we find that the rate of caustic formation is
determined by the rate of escape due to diffusion of the
coordinate X from an attractive fixed point at X � 0. The
escape rate is asymptotic to

 J � J0 exp��S=I� (6)

(for some constant J0), where in S can be obtained as the
action of a trajectory of a Hamiltonian function [15,16].
Note that we can write I � Ku2St, so that (6) is consistent
with the alternative form quoted in the abstract. In one
dimension we extract S � 1=6 from our exact expression
for J, obtained in [13]; further results for one dimension are
given in [17]. In two and three dimensions, one obtains
S � 0:14 [10] and S � 0:12 [8] in the limit as Ku! 0. Our
numerical results, summarized in Fig. 3, show that the
activated escape model for the formation of caustics, de-
scribed by (6), is valid even when Ku approaches unity. We
find that the action S depends upon Ku. For our model
(described below) we found S � 0:70 for Ku � 1, S �
0:18 for Ku � 0:2, and S � 0:15 for Ku � 0:04, consistent
with the limiting value S � 0:14 for Ku! 0 quoted above.

The dependence of J upon I (or equivalently, on St) is
analogous to the dependence of the rate of a chemical re-
action on temperature T, which is well approximated by
expressions containing an Arrhenius factor, exp��E=kT�
(E is the activation energy, k is the Boltzmann constant).
In this sense we may regard the formation of caustics as
an activated process, in which the dimensionless intensity
of the turbulence (I or St) plays a role analogous to
temperature.

We argue that the function f�St;Ku� describing the
prevalence of caustics is closely related to the rate of

caustic formation, so that the collision rate is well approxi-
mated by

 R � Ra � exp��S=I�Rg: (7)

Formulae for the advective and gas-kinetic collision rates,
Ra and Rg respectively, are given below. It is Eq. (7) which
is the theoretical curve illustrated in Fig. 1, using values of
S obtained from Fig. 3. We fitted the prefactor of the
expression for Ra, which is the dominant term when St

1, but there are no other fitted parameters. We remark that
combining Eqs. (2), (4) of [6] gives an expression which
can be written in the form R � Ra � PRc, analogous to our
(7), in whichRc is similar to the precise asymptote, Rg. The
expression for the factor P in [6] has a different depen-
dence upon St.

Our numerical simulations use a two-dimensional model
in which the divergenceless velocity u�x; t� is obtained
from a scalar random field  �x; t� by writing u �
�@ =@y;�@ =@x�. The field  �x; t� is a Gaussian random
function with spatially and temporally stationary, iso-
tropic statistics. The mean value is zero and the correlation
function is h �x;t� �x 0;t0�i�u2

0�
2 exp��t� t0�2=2�2��

exp��jx0 �xj2=2�2�, which gives I �
���������
�=2

p
Ku2St for

this model. The droplets are initially randomly positioned,
and they are regarded as having collided when their sepa-
ration falls below 2a [that is, we assume that the collision
efficiency is unity [1] ]. Figure 1 shows the rate of collision
R for a single particle. We did not include gravitational
settling or other effects which also occur without turbu-
lence. The results for our single-scale flow are very similar
to the simulations using Navier-Stokes flows, reported in
[3,4], implying that the multiscale aspect of those simula-
tions is not essential to their understanding.

In order to complete the discussion of our formula (7) for
the collision rate we describe the asymptotic formulas for
the advective and gas-kinetic collision rates. In the advec-
tive limit the suspended particles are brought into contact
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FIG. 3 (color online). Rate of caustic formation as a function
of I / Ku2St, showing evidence for ‘‘activated’’ behavior: Ku �
1 (�), with action S � 0:70, Ku � 0:2, S � 0:18 (	), and Ku �
0:04, S � 0:15 (�). Also shown is the limiting behavior as
Ku! 0, with action S � 0:14 (dashed line).
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by the effect of shearing motion in the flow. The typical
shear rate is u0=�. The relative velocity for particles that
will be brought into contact is �v� au0=�, and the vol-
ume swept in time �t is �V � adu0�t=�. Collisions
typically occur when n�V � 1, so that the expected rate
of collision is Ra � Canadu0=� (where Ca is a constant
which we fitted numerically). Saffman and Turner [1]
gave an upper bound on the collision rate which can be
calculated analytically if correlation functions of the flow
field are known. Their approach gives a precise asymp-
tote for the steady hyperbolic flow which they discussed,
but in general it is an upper bound because their calculation
does not account for multiple collisions in generic flows
(which are not steady and which may not be locally
hyperbolic).

When St� 1, the inertia of the aerosol particles means
that their motion becomes uncorrelated with the velocity of
fluid, and a gas-kinetic model of the type proposed by
Abrahamson [12] is appropriate. The maximal Lyapunov
exponent 
 for motion of the particles is positive [15] and if
the rate of collision satisfies R
 
, then the velocities of
nearby particles are completely randomized by the time
they collide (our estimates below verify this assumption).
The aerosol particles become a gas of droplets with ve-
locities which are uncorrelated with each other and with
that of the turbulent air. The velocity distribution is
Maxwellian, even if u is not Gaussian distributed, because
the equation of motion for the droplet velocity is analogous
to an Ornstein-Uhlenbeck process [18]. The rate of colli-
sion is exactly the same as for a hard-sphere gas with the
same particle radius and rms velocity. The number of
collisions per unit time of a given particle in a dilute gas
is Rg � nad�1 �vr (Rg � 4an �vr in two dimensions), where
�vr is the mean relative speed of the droplets. For a

Maxwellian velocity distribution, �vr �
���������
�=4

p ���������
hv2

ri
p

in

two dimensions and we have Rg � 2
����
�
p

na
���������
hv2

ri
p

. It re-
mains to calculate the mean-squared velocity of the water
droplets, hv2i, from which we obtain hv2

ri � 2hv2i. The
solution of the equation of motion (1) for the velocity of a
droplet is

 v �t� � �
Z t

�1
dt0 exp���t� t0�� u�r�t0�; t0�: (8)

The variance of the velocity is obtained by squaring this ex-
pression and averaging: when St� 1 this is asymptotic to

 hv2i �
�
2

Z 1
�1

dt hu�0; t� � u�0; 0�i: (9)

This gives a collision rate Rg � nad�1u0
������
��
p

(for our

two-dimensional model, Rg � 27=4�3=4nau0
������
��
p

). Thus
Rg=Ra is of order �=a when St � 1 and Ku � 1.

In summary, we have argued that the collision rate is
well approximated by the gas-kinetic model as soon as the
turbulence intensity I exceeds the action S. Finally, we
must consider whether this gives a sufficiently rapid rate of
collision. In three dimensions, the gas-kinetic model gives

a collision rate Rg � 16
���������
�=3

p
na2

����������
hv 2i

p
. From (9), we

estimate
���������
hv2i

p
�

�����
St
p

�=�. Using the above data, this esti-
mate gives a collision rate of Rg � 5� 10�3 s�1 when
St � 1. We conclude that rainfall can be initiated in a time
scale of a few minutes, provided that a sufficiently large
part of the cloud has a turbulence intensity, I which
exceeds the action for forming caustics, S.
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Phys. Rev. Lett. 95, 240602 (2005).
[9] J. Sommerer and E. Ott, Science 259, 335 (1993).

[10] M. Wilkinson and B. Mehlig, Europhys. Lett. 71, 186
(2005).

[11] M. V. Berry, Singularities in Waves, Proceedings of
Les Houches Summer School Session XXXV, edited by
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