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Abstract
A new type of basis set for quantum mechanical problems is introduced. These
basis states are adapted to describing the dynamics of a Hamiltonian Ĥ which is
dependent upon a parameterX. A function f (E) is defined which is an analytic
function ofE, and which is negligibly small when |E| � δE, where δE is large
compared to the typical level separation. The energy-shell basis set consists of
states |ξn(X)〉 which are derived by applying the operator f (Ĥ (X) − Ēn(X))

to elements of a fixed basis set, where Ēn(X) is an analytic approximation
to an eigenvalue En(X). The energy-shell basis states are combinations of
states close to energy En, but vary more slowly as a function of X than the
eigenfunctions |φn(X)〉of Ĥ (X). This feature gives the energy-shell basis states
some advantages in analysing solutions of the time-dependent Schrödinger
equation.

PACS numbers: 03.65.-w, 02.10.Yn, 05.45.Mt

1. Introduction

1.1. Commonly used representations of quantum dynamics

Many quantum mechanical experiments involve probing a system with an externally applied
disturbance, and observing the response. The Hamiltonian Ĥ of the system depends on a
parameter X, which describes the effect of the external perturbation, and which is itself a
function of time. The full solution of the problem is described by the evolution operator
Û (t, t0), which gives the wavefunction |ψ(t)〉 at time t from that at the earlier time t0:

|ψ(t)〉 = Û (t, t0)|ψ(t0)〉. (1.1)

The evolution operator satisfies the time-dependent Schrödinger equation

ih̄ ∂t Û (t, t0) = Ĥ (X(t)) Û(t, t0) (1.2)

with the initial condition Û (t0, t0) = Î , the identity operator.
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It is usually natural to expand the wavefunction as a combination of a complete orthonormal
set of discrete states, |χn〉, which may depend upon the parameter X

|ψ(t)〉 =
∑
n

an(t) exp[−iθn(t)] |χn(X(t))〉. (1.3)

The phase θn(t) may be chosen to simplify the equation of motion of the coefficients an(t).
This paper will be concerned with making an appropriate choice of the states |χn(X)〉 in order
to facilitate finding approximate solutions of the Schrödinger equation. Substituting (1.3) into
the Schrödinger equation leads to an equation of motion for the coefficients an(t) of the form

ih̄ ȧn =
∑
m

Hnm(t) exp
[
i
(
θn(t)− θm(t)

)]
am (1.4)

where ḟ ≡ df/dt , and

Hnm(t) = [〈χn(X)|Ĥ (X)|χm(X)〉 − δnmh̄∂t θn(t)
] − ih̄Ẋ〈χn(X)|∂Xχm(X)〉. (1.5)

The matrix with elements Hnm(t) is Hermitean. It contains a component which depends only
upon X, and a term which is proportional to the velocity Ẋ. It will be written

Hnm = Hnm(X) + ih̄ẊZnm(X) (1.6)

where the elements Znm(X) are antiHermitean: Z∗
mn = −Znm.

I shall now describe two commonly used basis sets, and discuss reasons for introducing
alternative choices. In many situautions the parameterX(t) remains bounded, with its deviation
from X0 remaining small. In these cases it is convenient to expand the wavefunction in the
terms of the eigenfunctions of the Hamiltonian, satisfying

Ĥ (X)|φn(X)〉 = En(X)|φn(X)〉 (1.7)

and the eigenfunctions |φn(X0)〉 would be a suitable choice for the basis set in (1.3). Using
a time-independent basis is termed using a ‘fixed basis set’, and a fixed basis consisting of
eigenfunctions is a convenient choice. Also, it is natural to take θn(t) = En(X0)t/h̄, which
makes the diagonal elements Hnn equal to zero. In this case the terms in (1.6) containing Znm

vanish. The first term can be expanded as Taylor series in X(t). Truncating at the leading
order term gives (for n �= m)

Hnm = (∂XH)nm(X0) exp [i(En − Em)t/h̄] [X(t)−X0] (1.8)

where (∂XH)nm are matrix elements of ∂Ĥ/∂X evaluated in the basis formed by the
eigenfunctions

(∂XH)nm(X) =
〈
φn(X)

∣∣∣∣∣∂Ĥ∂X
∣∣∣∣∣φm(X)

〉
. (1.9)

This approach of using a fixed basis set has the disadvantage that the matrix elements Hnm can
become large if the perturbation does not remain small.

If the parameter X(t) undergoes a large excursion, it may be possible to obtain a more
convenient representation of the Schrödinger equation by using parameter-dependent basis
states. If the parameter X(t) varies very slowly, and the adiabatic basis, formed by the
instantaneous eigenstates of the Hamiltonian, is preferred. The quantum adiabatic principle [1]
shows that, if the Hamiltonian varies sufficiently slowly, a particle initially in the nth adiabatic
state |φn(X0)〉 remains close to the nth state, such that the state at time t is approximately
exp [i�(t)]|φn(X(t))〉 (for some phase angle�(t)). This adiabatic basis is therefore expected
to give a very efficient representation of the dynamics when Ẋ is small. The phases θn are
chosen to be integrals of the energies, so that the following substitutions are made in (1.3):

|χn(X)〉 = |φn(X)〉 θn(t) = 1

h̄

∫ t

dt ′ En(X(t ′)). (1.10)
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In this basis, the diagaonal elements Hnn vanish, and the off-diagonal matrix elements are

Hnm(t) = ih̄Ẋ exp [i(θn(t)− θm(t))]
(∂XH)nm(X)

En(X)− Em(X)
. (1.11)

The diagonal matrix elements are made equal to zero by choosing the phases of the states
|φn(X)〉 so that 〈∂Xφn|φn〉 = 0. The adiabatic basis is an efficient representation when Ẋ is
sufficiently small.

The matrix elements Znm in (1.6) are zero when a fixed basis is used, and the Hnm are
zero when the adiabatic basis is used. In general, both terms are present, but for a sufficiently
large value of |Ẋ| the Hnm may be negligible. This latter case will be of most interest here.

1.2. Motivation for introducing energy-shell bases

It has already been remarked that the fixed state basis is not ideal when the excursion of X(t)
is large. A difficulty also arises with the adiabatic representation, in that the matrix elements
(∂XH)nm are very rapidly varying functions of the parameterX, because the adiabatic states are
very sensitive to changing the parameterX. This feature makes it difficult to obtain predictions
from the adiabatic representation when Ẋ is larger than a certain characteriztic value [2]. This
characteriztic value is small compared to values required for many applications, making it
desirable to find a set of basis states which evolves as the parameter X changes, but which are
not as sensitive to changes of the parameter as the adiabatic states. It is natural to define a set
of states |χn(X)〉 which are combinations of the adiabatic states in a small interval of energy,
of size δE. This interval is centred on Ēn(X), which is an analytic approximation to En(X).
The states |χn(X)〉 are defined so that they vary much more slowly than the eigenfunctions as
a function of X. A set of states having this property is defined in section 2. It will be termed
the energy-shell basis.

If the exact values of the matrix elements Hnm(X, Ẋ) can be evaluated, then (1.5) is an
exact representation of the Schrödinger equation. In most of the potential applications of
this approach, the Hamiltonian would be a ‘complex’ quantum system, for which it would
be impossible to obtain analytic expressions for the matrix elements. The matrix elements
could either be evaluated numerically, or else they could be characterized statistically, and the
Schrödinger equation would then be modelled by a system of stochastic differential equations,
in which the matrix elements Hnm(X, Ẋ) are replaced by random functions with the same
statistical properties. This approach has been described in [2] for the special case where the
adiabatic basis is used. It is adequate when statistical properties of the evolution operator, rather
than accurate estimates of individual matrix elements, are required. The remaining sections of
the paper will be concerned with this statistical approach. Section 3 will consider estimates for
the variance of the matrix elements Hnm, and section 4 will consider their correlation functions.

These estimates will be given in terms of two parameters characterizing the Hamiltonian,
namely the average density of states, ρ, and the typical size σ of the matrix elements (1.9).
The latter quantity is a function of the energy difference �E = En − Em, and of the mean
energy E = 1

2 (En + Em), and is defined in terms of a second moment as follows:

σ 2(�E,E) = 1

ρ2

∑
n,m �=n

|(∂XH)nm|2δε(�E − En + Em) δε (E − 1
2 (En + Em)). (1.12)

Here δε(E) is a broadened delta function, with support ε and weight equal to unity. The
support is chosen so that ερ � 1, implying that many elements contribute to (1.12), but ε is
small compared to all of the other energy scales involved. The dependence of σ 2 on E will
not be made explicit, and this quantity will subsequently be written σ 2(�E). This function is
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assumed to be non-zero at �E = 0 and to decay rapidly as |�E| → ∞ when �E exceeds a
characteriztic size �Ec. It will be characterized by two numbers, namely a typical magnitude
σ 2

0 = σ 2(0) and its ‘support’�Ec. The energy scale�Ec is often referred to as the correlation
energy, because in systems which exhibit chaotic classical behaviour it is reciprocal to the
timescale τc for the decay of correlations of classical observables: �Ec = h̄/τc.

1.3. Energy diffusion and dissipation

The evolution operator can be described in terms of matrix elements in an energy-shell basis,
formed by states |χn(X)〉:

Unm(t, t0) = 〈χn(X(t))|Û (t, t0)|χm(X(t0))〉. (1.13)

The matrix element Unm(t, t0) is the amplitude to the reach state with index n at time t , having
started in a state with index m at time t0. These elements can be characterized statistically in
terms of moments of the transition probability |Unm|2. The second moment

�(t) =
∑
n

〈|Unm(t, t0)|2(Ēn − Ēm)
2
〉

(1.14)

(where the angle brackets indicate an average over the initial state, indexed by m) will be
considered in section 5. In the case where the adiabatic basis is used [2], it has been argued
that this quantity exhibits linear growth, indicating a diffusive spread of the energy of a particle:

d�(t)

dt
= 2DE(Ẋ). (1.15)

The same argument applies to the more general energy shell bases which are considered here.
The diffusion constant DE is estimated in section 5, using a perturbative method.

It has also been argued that the diffusion constant is proportional to the rate of dissipation
of energy. In systems of independent fermions at low temperatures, the formula for the rate of
dissipation takes a particularly simple form [3]:

dET

dt
= ρDE, (1.16)

where ET is the total energy absorbed by the reservoir of fermions, and where both ρ and DE

are evaluated at the Fermi energy.
The usual approach to calculating the rate of dissipation is via the Kubo formula [4], which

is a pertubative expression. The version of the Kubo formula appropriate to the independent
particle model was given by Greenwood [5], and will be termed the Kubo–Greenwood formula.
The rate of dissipation obtained from (1.16) agrees with the Kubo–Greenwood formula in the
limits temperature T → 0 and frequency ω → 0 if

DE = πh̄ρσ 2
0 Ẋ

2. (1.17)

In [2], which used the adiabatic basis, it was argued that the diffusion constant is given by (1.17)
provided |Ẋ| is smaller than some limiting value Ẋmax. The use of the energy-shell bases,
together with some additional assumptions which will be described later, justify a much larger
value of Ẋmax. The conclusions about the validity of (1.17) are discussed in section 6. The
value of Ẋmax obtained there is still not an optimal estimate for many systems.

In this paper no systematic attempt is made to consider the errors introduced by the various
approximations which must be used. The symbolA ≈ Bmeans thatA andB are approximately
equal, and A ∼ B means that A/B is a number of order unity.
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2. Energy-shell bases

2.1. Quasi-projection onto the energy shell

The definition of the energy-shell basis requires an analytic function of energy, f (E), an
analytic approximation to the energy of the state with index n, which will be denoted Ēn(X),
and a set of states with elements |αn〉.

The function f (E) is positive, and has significant magnitude in an interval of width δE,
centred on zero. An example of such a function would be

f (E) = A exp [−E2/2δE2] (2.1)

where A is a constant.
The function Ēn(X) is a smooth function of X chosen so that the energy of the nth state

of the system is close to Ēn(X). If the system has a classical limit, with d degrees of freedom,
this requirement is satisfied by requiring that the volume of the energy shell remains equal to n
times the phase-space volume per state which is expected from the Weyl rule, namely hd [6].
If &(E,X) is the phase-space volume inside an energy shell at E, the following equations
give an implicit definition of Ēn(X):

&(Ēn(X),X) = n(2πh̄)d &(E,X) =
∫

dq

∫
dp �(E −H(q,p, X)). (2.2)

(Here�(x) is the Heaviside function,�(x < 0) = 0,�(x � 0) = 1.) The function&(E,X)
also provides an estimate of the density of states:

ρ(E,X) = 1

(2πh̄)d
∂&

∂E

∣∣∣∣
E,X

. (2.3)

If no classical limit exists, alternative definitions of ρ and Ēn can be used. For example, Ēn(X)
could be obtained by numerically smoothing away the fluctuations of the actual eigenvalues,
En(X).

It will also be assumed that a set of orthonormal states with elements |αn〉 are available,
which are independent of X:

〈αn|αm〉 = δnm. (2.4)

The states |αn〉 are highly arbitrary, and the minimal requirements they must satisfy will be
discussed later.

A set of states with elements |ξn(X)〉 can be generated using the function f (E) as follows:

|ξn(X)〉 = f
(
Ĥ (X)− Ēn(X)

) |αn〉. (2.5)

Functions of the Hamiltonian are defined in terms of the eigenfunctions and eigenvalues:

f (Ĥ ) =
∑
n

|φn〉f (En)〈φn| (2.6)

where the sum runs over all of the eigenfunctions |φn〉. The set of states with elements |ξn(X)〉
is termed the energy-shell basis.

If f (E) took the value unity when E is close to zero, and was equal to zero elsewhere,
then the states |ξn(X)〉 would represent a projection onto the energy shell of the Hamiltonian
at energy Ēn(X). Such a projection would fluctuate as rapidly as the eigenstates |φn(X)〉. The
use of the analytic function f (E − Ēn) to select states in the neighbourhood of Ēn(X) can
be termed a ‘quasi-projection’ onto the ‘energy shell’. The motivation for using an analytic
function is that the energy-shell basis states are expected to fluctuate less rapidly than the
eigenstates.
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The eigenstates decorrelate on a scale δX0 ∼ (ρσ0)
−1, whereas the Hamiltonian is

assumed to decorrelate whenX changes by an amount of order unity. The operator f (Ĥ −Ēn)
is expected to decorrelate more rapidly than the Hamiltonian, but less rapidly than the
eigenfunctions (provided ρδE � 1). A calculation (based upon random matrix models)
of the scale δXδE over which the states |ξn(X)〉 decorrelate is given in section 4.

2.2. Orthogonalization of the basis set

The states |ξn(X)〉 do not form an orthonormal set. It is useful to define matrix elements of a
‘normalization operator’ as follows:

Nnm = 〈ξn|ξm〉. (2.7)

The constant A in (2.1) will be chosen so that

〈Nnn〉 = 1 (2.8)

where the angle brackets denote an average over states. This average will be expressed in
terms of the quantity

〈|〈φj |αn〉|2〉 = p(Ej − Ēn). (2.9)

Here the angle brackets denote an average over the state labels j and n, with only states
with a given value of Ej − En being included: this average can be defined by an expression
analogous to (1.12). It will be assumed that p(E) is a smooth function which is negligible
when |E| � �Eα , with �Eα � δE. The fact that the |αn〉 are normalized implies that

1 =
∑
j

〈|〈φj |αn〉|2〉 ≈ ρ

∫ ∞

−∞
dE p(E). (2.10)

Now, requiring that (2.8) is satisfied leads to

1 = 〈〈ξn|ξn〉〉 =
∑
j

〈|〈αn|φj 〉|2〉f 2(Ej − Ēn)

≈ ρ

∫ ∞

−∞
dE p(E)f 2(E) ≈ ρ p(0)

∫ ∞

−∞
dE f 2(E) (2.11)

where it has been assumed that the coefficients 〈φj |α〉 are uncorrelated, and the final
approximation uses �Eα � δE. Equations (2.10) and (2.11) represent normalization
requirements on the functions f and p. In the case where the function f (E) is given
by (2.1), (2.11) becomes

√
πA2ρp(0)δE = 1.

It is instructive to estimate the mean-squared value for the off-diagonal elements of the
normalization matrix:

〈|Nnm|2〉 =
〈 ∑

j

∑
j ′

〈αn|φj 〉f (Ej − Ēn)f (Ej − Ēm)〈φj |αm〉

×〈αm|φj ′ 〉f (Ej ′ − Ēn)f (Ej ′ − Ēm)〈φj ′ |αn〉
〉

≈
∑
j

〈|〈αn|φj 〉|2〉〈|〈αm|φj 〉|2〉f 2(Ej − Ēn)f
2(Ej − Ēm)

≈ ρp2(0)
∫ ∞

−∞
dE f 2(E)f 2(E + Ēn − Ēm). (2.12)
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It has been assumed that the coefficients 〈φj |φn〉 and 〈φj ′ |φn〉 are statistically independent
when j �= j ′. Equation (2.11) gives the estimate ρp(0)δEf 2(0) ∼ 1, implying that when
|En − Em| � δE, the typical magnitude of the off-diagonal elements is

〈|Nnm|2〉 ∼ 1

ρδE
. (2.13)

The off-diagonal elements of the normalization matrix are therefore small provided δE is large
compared to the mean level spacing. The normalization matrix Ñ = {Nnm} can therefore be
written Ñ = Ĩ + δÑ , where Ĩ is the identity matrix, and where the elements of δÑ are all
small. A set of orthonormal states |χn〉 can be obtained from the states |ξn〉 by means of a
matrix with elements Wnm:

|χn〉 =
∑
m

Wnm|ξm〉. (2.14)

The matrix W̃ = {Wnm} and the matrix Ñ are related by Ĩ = W̃ ∗ÑW̃T, where Ĩ is the identity
matrix. This relation is solved by setting

W̃ = (Ñ∗)−1/2 ≈ Ĩ − 1
2δÑ

∗. (2.15)

3. Hamiltonian in the energy-shell basis

3.1. An approximation for the matrix elements

The time-dependent Schrödinger equation can be represented in the form (1.4), with matrix
elements given by (1.5). Using (2.14) to express |χn(X)〉 in terms of the energy-shell basis
states |ξn(X)〉
Hnm(t) =

∑
j

∑
j ′
W ∗
njWmj ′ 〈ξj |Ĥ |ξj ′ 〉 − h̄θ̇nW

∗
njWnj ′ 〈ξj |ξj ′ 〉δnm − ih̄ẊW ∗

nj 〈ξj |∂X
(
Wmj ′ |ξj ′ 〉).

(3.1)

Using (2.15), and neglecting all except these leading order terms in δÑ , the matrix
elements (3.1) are

Hnm(t) = 〈ξn|Ĥ |ξm〉 − h̄θ̇nδnm + 1
2 ih̄Ẋ[〈∂Xξn|ξm〉 − 〈ξn|∂Xξm〉]. (3.2)

Note that this approximation is of the form (1.6), with the term proportional to Ẋ having the
correct symmetry, Z∗

mn = −Znm. The phase θn is chosen to be given by integrating

h̄θ̇n = 〈ξn|Ĥ |ξn〉 (3.3)

so that the diagonal elements Hnn vanish. The approximate formula (3.2) is valid in the limit
ρδE � 1, where the elements of δÑ are small.

Note that the coefficients Hnm(t) are the sum of two terms, one of which is proportional
to Ẋ, the other independent of the rate of change of the parameterX(t). It is useful to estimate
the size of both of these terms, so that the smaller contribution may be neglected.

3.2. Estimate of the velocity-independent contribution

Consider how to estimate the matrix elements of the Hamiltonian, 〈ξn|Ĥ |ξm〉 for n �= m. These
may be written

〈ξn|Ĥ |ξm〉 =
∑
j

〈ξn|φj 〉Ej 〈φj |ξm〉 ≡
∑
j

XjEj (3.4)
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where the final equality defines the Xj , which will be modelled as uncorrelated random
numbers. Approximate orthogonality of |ξn〉 and |ξm〉 implies that∑

j

Xj ≈ δnm. (3.5)

When n �= m the number ofXj that differ significantly from zero is ∼ρδE when |En−Em| <
δE, and is zero when |En − Em| � δE.

Now consider the magnitude of Hnm = 〈ξn|Ĥ |ξm〉 when En and Em are close
(|En − Em| < δE) but not equal. This can be estimated by calculating the variance

〈|Hnm|2〉 =
∑
j

E2
j 〈X2

j 〉 +
∑
j

∑
j ′ �=j

EjEj ′ 〈XjXj ′ 〉. (3.6)

When j �= j ′, the terms 〈XjXj ′ 〉 are expected to be very small, but neglecting the second term
in (3.6) gives an unsatisfactory answer, in that the variance of the off-diagonal elements of
Ĥ+λÎ is predicted to depend upon the arbitrary constantλ. Despite the fact that the correlations
are all individually small, the sum rule (3.5) implies that the correlation coefficients 〈XjXj ′ 〉
are themselves correlated: they must satisfy∑

j

〈X2
j 〉 +

∑
j

∑
j ′ �=j

〈XjXj ′ 〉 ≈ 0. (3.7)

Now write Ej = Ē + δEj , where

Ē =
∑

j Ej 〈X2
j 〉∑

j 〈X2
j 〉

. (3.8)

Then (3.6) gives

〈|Hnm|2〉 =
∑
j

〈X2
j 〉

(
Ē2 + 2δEj Ē + δE2

j

)
+

∑
j

∑
j ′ �=j

〈XjXj ′ 〉(Ē2 + (δEj + δEj ′)Ē + δEjδEj ′
)

=
∑
j

∑
j ′ �=j

〈XjXj ′ 〉(Ē(δEj + δEj ′) + δEjδEj ′
)

+
∑
j

〈X2
j 〉δE2

j

≈
∑
j

〈X2
j 〉δE2

j . (3.9)

The simplification of this expression used (3.7) and (3.8) to eliminate terms proportional to
both Ē and Ē2, and in the remaining term the correlations 〈XjXj ′ 〉 are taken to be negligible
when j �= j ′. The variance of the matrix elements is therefore

〈|Hnm|2〉 ≈ ρp2(0)
∫ ∞

−∞
dE (E − Ē)2f 2(E + Ēn − Ēm)f

2(E) (3.10)

where

Ē = ρp2(0)
∫ ∞

−∞
dE Ef 2(E + Ēn − Ēm)f

2(E). (3.11)

Using (2.11), this gives the estimate

〈|Hnm|2〉 ∼ δE

ρ
(3.12)

which is applicable for off-diagonal elements with |En − Em| comparable to δE.
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3.3. Estimate of the velocity-dependent contribution

Now consider the contributions to the matrix elements which are proportional to Ẋ. The
following notations will be used

αnj = 〈αn|φj 〉 (fn)j = f (Ej − Ēn)

(∂Xfn)jk = 〈φj |∂Xf
(
Ĥ (X)− Ēn(X)

)|φk〉. (3.13)

The coefficients determining the velocity-dependent part of the Hamiltonian are then

Znm = 1
2

[〈∂Xξn|ξm〉 − 〈ξn|∂Xξm〉]
= 1

2

∑
j

∑
k

αnjα
∗
mk

[
(∂Xfn)jk(fm)k − (fn)j (∂Xfm)jk

]
. (3.14)

Now calculate the coefficients (∂Xfn)jk:

(∂Xfn)jk =
∑
l

〈φj |
[
|∂Xφl〉f (El − Ēn)〈φl| + |φl〉 ∂f

∂E
(El − Ēn)

(
dEl
dX

− dĒn
dX

)
〈φl|

+|φl〉f (El − Ēn)〈∂Xφl|
]
|φk〉

= 〈φj |∂Xφk〉(fn)k + (fn)j 〈∂Xφj |φk〉 +

(
∂f

∂E

)
Ej−Ēn

[
dEj
dX

− dĒn
dX

]
δjk. (3.15)

Using perturbation theory

〈φj |∂Xφk〉 = (∂XH)jk

Ek − Ej
. (3.16)

It follows that

(∂Xfn)jk = (∂XH)jk(fn)k − (∂XH)
∗
kj (fn)j

Ek − Ej
+ (∂Efn)j (∂XEj − ∂XĒn)δjk (3.17)

where (∂Efn)j = ∂f

∂E
(Ej − Ēn) and ∂XEj = dEj/dX. The matrix element Znm can

now be obtained by substituting (3.17) into (3.14). The general expression is unwieldy.
Subsequent expressions will refer to the case where the wavefunctions are real-valued, so
that the coefficients αnj and (∂XH)jk are real. In this case

Znm =
∑
j

∑
k

αnjαmk
(∂XH)jk

Ej − Ek

[
(fn)j (fm)k − 1

2
(fn)j (fm)j − 1

2
(fn)k(fm)k

]

+
∑
j

αnjαmj
[
(∂Efn)j (∂XEj − ∂XĒn)(fm)j

−(∂Efm)j (∂XEj − ∂XĒm)(fn)j
]
. (3.18)

Now estimate the variance of theses matrix elements, in terms of the variance σ 2 of matrix
elements of ∂Ĥ/∂X, which is defined by (1.12). The second term in (3.18), involving only a
single summation, will be assumed to make a negligible contribution to the variance and will
be ignored. Assuming that the mean value of the terms in the double sum in (3.18) is zero,
and that the coefficients αnj and αnj ′ are independent unless j = j ′, the variance of the Znm is

〈|Znm|2〉 ≈ 1

4
ρ2p2(0)

∫ ∞

−∞
dE

∫ ∞

−∞
dE′ σ

2(E − E′)
(E − E′)2

[
2f (E − Ēn)f (E

′ − Ēm)

−f (E − Ēn)f (E − Ēm)− f (E′ − Ēn)f (E
′ − Ēm)

]2
. (3.19)
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The variance has a very simple form when |Ēn − Ēm| � δE, and �Ec � δE. The first of
these inequalities implies that only the term containing the factor f (E − Ēn)f (E

′ − Ēm) is
significant. The second implies that the factors of f 2 can be treated as Dirac delta functions,
with significant contributions only where E ≈ Ēn and E′ ≈ Ēm. Using the normalization
properties contained in (2.10) and (2.11):

〈|Znm|2〉 ≈ ρ2p2(0)
∫ ∞

−∞
dE

∫ ∞

−∞
dE′ σ

2(E − E′)
(E − E′)2

f 2(E − Ēn)f
2(E′ − Ēm)

≈ σ 2(Ēn − Ēm)

(Ēn − Ēm)2
. (3.20)

When |En − Em| is comparable to δE, (3.19) shows that 〈|Znm|2〉 ∼ σ 2
0 /δE

2.

3.4. Interpretation of the equation of motion

Having estimated the two contributions to the matrix elements, it is useful to consider the
circumstances under which different terms dominate. It is also desirable to consider the extent
to which the dynamics is reversible.

Using (3.11) and (3.20), the ratio of the velocity-dependent and velocity-independent
coefficients of the Hamiltonian is

µ ≡
∣∣∣∣ h̄Znm

Hnm

Ẋ

∣∣∣∣ ∼ h̄σ0|Ẋ|
δE

√
ρ

δE
. (3.21)

The final approximation uses the magnitudes of the largest matrix elements Znm and Hnm.
The energy-shell basis set is most appropriate when the velocity-dependent contributions to
the Hamiltonian are dominant. This is because the velocity-dependent terms represent the
response to the time-dependent perturbation, whereas the velocity-independent terms arise
because the basis states are not eigenstates of the instantaneous Hamiltonian. The condition for
the velocity-dependent terms to be dominant, µ � 1, is most easily realized when δE is small.

It is also necessary to consider whether the evolution predicted by (1.4) is reversible.
The relevant question is whether reversing the path of X(t), whilst continuing to increase t ,
reverses the evolution of the coefficients an(t) and recovers the original state. In [2] it was
shown that the evolution operator Ûr for the reversed path in parameter space is the transpose
of that for the original evolution. When the matrix elements of Û are well approximated by
real numbers, the matrix representing Û is approximately orthogonal, so that ÛT ≈ Û−1. In
this case the motion is reversible. When the matrix elements are complex, ÛT typically does
not approximate the inverse of Û , and the evolution is therefore not reversible.

Note that if the states χn are described by real wavefunctions, then the coefficients Znm are
real numbers. The matrix elements of the evolution operator are however complex, because
of the phase factors appearing in (1.4). If these phase factors were absent, the evolution would
be reversible. If the phase factors do not change significantly over the characteriztic timescale
τq over which the an(t) fluctuate, then the evolution is not expected to be entirely irreversible.
Phase factors which are multiplied by negligibly small coefficients Znm can be ignored. The
largest significant phase factors arise when |Ēn − Ēm| ∼ �Ec, where �Ec is the support of
σ 2(�E). The criterion for the evolution to be irreversible is therefore expressed in the form

�Ecτq/h̄ � 1. (3.22)

The discussion of the solution of the time-dependent Schrödinger equation in sections 5 and 6
will focus on the case where µ � 1 and where (3.22) is satisfied.
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It is instructive to consider the expansion of a fixed state |ψ〉 in the basis formed by the
states |χn(X)〉:

|ψ〉 =
∑
n

cn(t)|χn(X)〉. (3.23)

The equation of motion for the coefficients cn(t) is readily seen to be

ċn = −Ẋ
∑
m

〈χn|∂Xχm〉cm = Ẋ
∑
m

Znmcm. (3.24)

This equation of motion is the same as the Schrödinger equation in the form (1.4), with both
the velocity-independent terms and the phase factors removed. In cases where the velocity-
independent terms are negligible, the effect of eliminating the phase factors from (1.4) is to
give the equation of motion of the expansion coefficients of a fixed basis state, represented
as a combination of parameter-dependent basis states. This evolution clearly is completely
reversible, and has no physical significance. When (3.22) is not satisfied, it is therefore very
difficult to extract information about irreversible energy diffusion from (1.4).

4. Correlation functions of basis states

4.1. Some general considerations

In order to characterize the parameter dependence of the matrix elements Znm(t), their
correlation function will be calculated. The calculation of the correlation function is difficult,
and an exact result has not been obtained in the general case. It will be convenient to discuss,
in the first instance, the correlation function of various simpler objects.

The first of these simpler matrix elements is

Anm = 〈αn|f (Ĥ )|αm〉
=

∑
j

〈αn|φj 〉f (Ej )〈φj |αm〉 =
∑
j

αnjfjα
∗
mj (4.1)

where a condensed notation similar to (3.12) has been used. It will be assumed that the
coefficients αnj are real, and that they are uncorrelated, satisfying

〈αnjαmj 〉 = δnm p(Ej − Ēn)

〈αnjαmjαn′j ′αm′j ′ 〉 = 〈αnjαmj 〉〈αn′j ′αm′j ′ 〉 + 〈αnjαn′j ′ 〉〈αmjαm′j ′ 〉 + 〈αnjαm′j ′ 〉〈αmjαn′j ′ 〉. (4.2)

The matrix elements Anm and An′m′ are therefore uncorrelated (unless n = n′ and m = m′,
or n = m′ and m = n′). If the same assumption (4.2) is applied to the matrix elements Znm,
these too are predicted to be uncorrelated, so that

〈Znm(X +X0)Zn′m′(X0)〉 = (δnn′δmm′ − δnm′δmn′)C(X, Ēn − Ēm). (4.3)

The correlation properties of these matrix elements are therefore described by a single function,
C(X,�E).

The following quantity will prove crucial to calculating these correlation functions:

Pnm(X) = 〈|〈φm(X0 +X)|φn(X0)〉|2〉 (4.4)

where the angle brackets represent an average over states. In [7] an argument was proposed
for the form of Pnm(X), which was derived for a random matrix model, but which is expected
to be quite generally applicable. The form predicted is Pnm(X) = P(X, Ēn − Ēm), where

P(X,�E) = σ 2
0X

2

�E2 + (πρσ 2
0X

2)2
(4.5)

and where σ 2
0 = σ 2(0). This expression is expected to hold when considering complex

quantum systems without symmetries or constants of motion, when�E � �Ec. This formula
will now be used to calculate the correlation function of matrix elements such as (4.1).
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4.2. Models for matrix element correlations

It will be instructive to consider the correlation functions of three different types of matrix
elements in turn. First consider the correlation function for elements of the form (4.1). The
correlation coefficient is independent of the indices n and m, and it is sufficient to calculate
the correlation function CA(X) of an object A(X), defined as follows:

A(X) = 〈α|f (
Ĥ (X)

)|β〉
CA(X) = 〈A(X0 +X)A(X0)〉.

(4.6)

Using the notation αn = 〈α|φn(0)〉, βn = 〈φn(0)|β〉:
CA(X) =

〈 ∑
n

αnf (En(0))βn
∑
n′
αn′

∑
m

〈φn′(0)|φm(X)〉f (Em(X))〈φm(X)|φn′(0)〉βn′

〉
.

(4.7)

This expression will be simplified using the assumption that αn and βn are uncorrelated,
i.e. 〈αnαn′ 〉 = 〈α2

n〉δnn′ , 〈αnβn′ 〉 = 0, and 〈βnβn′ 〉 = 〈β2
n〉δnn′ . Writing fn = f (En(0)),

f ′
n = f (En(X)), the correlation function (4.7) is then given by

CA(X) =
∑
n

∑
m

〈α2
n〉 〈β2

n〉 fn f ′
m Pnm(X). (4.8)

Now assume that 〈α2
n〉 = 〈β2

n〉 and that these are independent of n for all energies for which
the fn are significant (this is equivalent to the assumption δE � �E discussed in section 2).
The correlation function is then

CA(X) = 〈α2〉2ρ2
∫ ∞

−∞
dE

∫ ∞

−∞
dE′ f (E)f (E′)P (X,�E). (4.9)

Writing f (E) = F(E/δE), this correlation function may be expressed in the form

CA(X) = 〈α2〉2 ρ δE 7(ζ ) ζ = πρσ 2
0X

2

δE
(4.10)

where

7(ζ) = 1

π

∫ ∞

−∞
dx

∫ ∞

−∞
dx ′ F(x)F (x ′)

ζ

(x − x ′)2 + ζ 2
. (4.11)

Where the function F is Gaussian, F(x) = exp(−x2/2)

7(ζ ) = √
π exp (ζ 2/4)erfc(ζ/2). (4.12)

The scale length δXδE and the timescale τq for the decay of matrix element correlations are
therefore

δXδE = 1

σ0

√
δE

ρ
τq = 1

σ0|Ẋ|

√
δE

ρ
. (4.13)

Equations (3.14) and (2.5) show that the matrix elements Znm contain derivatives of the
form ∂Xf (Ĥ − E). Accordingly, it will be instructive to consider the correlation function of
the matrix element

B(X) ≡ 〈α|∂Xf
(
Ĥ (X)

)|β〉 = ∂XA(X). (4.14)

This correlation function CB(X) is

CB(X) = 〈B(X0 +X)B(X0)〉 = ∂2

∂X1∂X2

〈A(X1)A(X2)
〉∣∣
X1=X,X2=0

= ∂2

∂X1∂X2
CA(X1 −X2)

∣∣
X1=X,X2=0. (4.15)
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It follows that

CB(X) = −∂
2CA(X)
∂2X

= −2πρ2σ 2
0 〈α2〉2

[
2ζ

d27(ζ)

dζ 2
+

d7(ζ)

dζ

]
(4.16)

where the final equality has used (4.10). The matrix elements B(X) therefore have the same
characteriztic correlation length as the A(X), namely that given by (4.13).

Next, consider the correlation function of the matrix element

C(X) = 〈α|g(Ĥ (X))∂Xf (Ĥ (X))|β〉 = 〈A(X)|B(X)〉 (4.17)

where |A(X)〉 = g(Ĥ )|α〉, and |B(X)〉 = ∂Xf (Ĥ )|β〉. This matrix element is similar in
structure to (3.14). I did not find a general formula for the correlation function of these matrix
elements. In the case where the support of the functions f and g do not overlap, it is possible to
estimate the correlation function. In this case, the states |A(X)〉 and |B(X)〉 may be assumed to
be statistically independent. The correlation function is therefore proportional to the product
of correlation functions characterizing these states. To make this more concrete, assume that
{|γn〉} are a complete set of states. The states |A(X)〉 and |B(X)〉 are assumed to be drawn
from ensembles having the following correlation properties:

〈〈A(X0 +X)|γn〉〈γn′ |A(X0)〉〉 = anδnn′CAA(X)

〈〈B(X0 +X)|γn〉〈γn′ |B(X0)〉〉 = bnδnn′CBB(X)

〈〈A(X0 +X)|γn〉〈γn′ |B(X0)〉〉 = 0

(4.18)

where the averages are over X0, the weights an and bn are non-negative real numbers, and
the correlation functions CAA(X) and CBB(X) are independent of the index n. The required
correlation function CC(X) can then be written in terms of the correlation functions defined
in (4.18), i.e.

CC(X) ≡ 〈〈A(X0 +X)|B(X0 +X)〉〈A(X0)|B(X0)〉〉
=

∑
n

∑
n′

〈〈A(X0 +X)|γn〉〈γn|B(X0 +X)〉〉〈〈A(X0)|γn′ 〉〈γn′ |B(X0)〉〉

≈ CAA(X)CBB(X)
∑
n

anbn = K CAA(X)CBB(X) (4.19)

where K is a constant.
Finally, consider the correlation function of the matrix elements (3.14). These matrix

elements are of the form

Z(X) = 1
2 〈α|∂Xf (Ĥ )g(Ĥ )− f (Ĥ )∂Xg(Ĥ )|β〉 = 1

2

[〈AX|BX〉 − 〈CX|DX〉]. (4.20)

where |AX〉 = ∂Xf̂X|α〉, |BX〉 = ĝX|β〉, |CX〉 = f̂X|α〉, and |DX〉 = ∂XĝX|β〉, with
f̂X = f (Ĥ (X)), ĝX = g(Ĥ (X)). The correlation function of this matrix element is

CZ(X) = 〈Z(X0 +X)Z(X0)〉
= 1

4

[〈〈AX|BX〉〈A0|B0〉〉 + 〈〈CX|DX〉〈C0|D0〉〉
−〈〈AX|BX〉〈C0|D0〉〉 − 〈〈CX|DX〉〈A0|B0〉〉

]
= 1

2

[
C1(X)− C2(X)

]
. (4.21)

The final equality in (4.21) uses the fact that the first pair of correlations between pairs of Dirac
brackets are equal (and are denotedC1(X)), as are the second pair (denotedC2(X)). I will treat
the functional forms of the correlation functionsC1(X) andC2(X) in due course. First consider
their values at X = 0. Using the approach of section 3.3, and setting f (E) → f (E − Ēn),
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g(E) → f (E − Ēm), 〈α2〉 = 〈β2〉 = p(0) in order give agreement with the notation used
there, i.e.

C1(0) = 1

2
ρ2p2(0)

∫ ∞

−∞
dE

∫ ∞

−∞
dE′ σ

2(E − E′)
(E − E′)2

×[(
f (E − Ēn)− f (E′ − Ēn)

)2
f 2(E′ − Ēm) +

(
f (E − Ēm)− f (E′ − Ēm)

)2
f 2(E − Ēn)

]
C2(0) = ρ2p2(0)

∫ ∞

−∞
dE

∫ ∞

−∞
dE′ σ

2(E − E′)
(E − E′)2

×[(
f (E − Ēn)− f (E′ − Ēn)

)(
f (E − Ēm)− f (E′ − Ēm)

)
f (E − Ēm)f (E

′ − Ēn)
]
.

(4.22)

Note that when |Ēn − Ēm| � δE

C1(0) ≈ −C2(0) ≈ σ 2(Ēn − Ēm)

(Ēn − Ēm)2
. (4.23)

Now the form of the correlation function C1(X) has already been obtained in (4.19):

C1(X) = K1 7(ζ)

[
d7(ζ)

dζ
+ 2ζ

d27(ζ)

dζ 2

]
(4.24)

where K1 is a constant. To determine the form of the correlation function C2(X), note that
∂X(f̂XĝX) = f̂X(∂XĝX) + (∂Xf̂X)ĝX, and introduce a correlation function

C3(X) = 〈〈α|∂X(f̂XĝX)|β〉〈α|∂X(f̂0ĝ0)|β〉〉. (4.25)

Note that

C3(X) = 2
[
C1(X) + C2(X)

]
(4.26)

and also that C3(X) is a correlation function of the same form as CB(X), with f̂X replaced
by the product f̂XĝX. This correlation function may therefore be calculated using (4.16), and
the function C2(X) is obtained using (4.26) and (4.24). In the case where we wish to obtain
the correlation functions of matrix elements with |Ēn − Ēm| � δE, the functions f (E) and
g(E) are replaced by functions f (E − Ēn) and g(E − Ēm), which have non-overlapping
support. The product f (E)g(E) is therefore negligible in this case, so that C3(X) ≈ 0,
implying thatC2(X) ≈ −C1(X) in that case. For the particular choice of f (E) given by (2.1),
equations (4.12), (4.23) and (4.24) give

CZ(X) = 〈Znm(X)Zn′m′(0)〉 ≈ (δnn′δmm′ − δnm′δn′m)
σ 2(Ēn − Ēm)

(Ēn − Ēm)2
=(ζ) (4.27)

where

=(ζ) = exp (ζ 2/4)erfc(ζ/2)
[
(ζ 2 + 1)− 1

2

√
πζ(ζ 2 + 3) exp (ζ 2/4)erfc(ζ/2)

]
(4.28)

(where ζ is defined in (4.10)). Equation (4.27) is valid when δE � |En − Em| � �Ec.

5. Energy diffusion

Now consider the use of the energy-shell basis states to characterize solutions of the time-
dependent Schrödinger equation. These states could be used for a numerical solution of
the exact Schrödinger equation. It is, however, instructive to discuss a model Schrödinger
equation with random matrix elements, chosen to have the same statistical properties as the
matrix elements in the energy-shell basis. It will be assumed that |Ẋ| is sufficiently large that
the velocity-independent term in the equation of motion (1.4) can be neglected (the condition
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for this was discussed in section 3.4). The Schrödinger equation (1.4) is therefore modelled
by a system of stochastic differential equations for expansion coefficients an(t). This will be
written in the form

ȧn = Ẋ
∑
m

Znm(Ẋt) exp
[
i
(
Ēn − Ēm

)
t/h̄

]
am (5.1)

with Znn = 0, Znm(t) = −Z∗
mn(t)modelled as random functions. Rather than solving (3.3), the

phase factor in (5.1) has been simplified by using the approximate energies Ēn and assuming
that their X dependence may be neglected. This approximation is not expected to have a
significant influence on any of the results discussed below.

The Znm are the smoothly varying real-valued random functions satisfying

〈Znm(t)〉 = 0
〈Znm(t)Zn′m′(t ′)〉 = (δnn′δmm′ − δnm′δn′m)W(Ēn − Ēm)c(t − t ′).

(5.2)

The correlation function in (5.2) will be taken to be that obtained in (4.27): c(t) = =(ζ), with
ζ = πρσ 2Ẋ2t2/δE. The approach of replacing the exact Schrödinger equation by a system
of stochastic differential equations was used in [2] for the case where the matrix elements Znm

were taken to be those obtained using the adiabatic basis. Most of the discussion below follows
sections 4 and 5 of [2]. The remainder of this section will summarize the relevant results from
that earlier paper, emphasizing the points which differ when the energy-shell basis is used
instead of the adiabatic basis.

Reference [2] discussed a perturbative treatment of (5.1), which corresponds to taking the
limit Ẋ → 0, holding the timescale for decay of the correlation function c(t) fixed. It was
shown that in the limit Ẋ → 0 the probability for occupation of the state with index n, namely
Pn = 〈|an|2〉, obeys the rate equation

dPn
dt

=
∑
m

Rnm(Pm − Pn). (5.3)

The rate constants are given by

Rnm = R(�E) = Ẋ2
∫ ∞

−∞
dt exp (i�Et/h̄)W(�E) c(t) (5.4)

with �E − Ēn − Ēm. This description is valid provided the product λ of the total rate for
transitions out of a state and the timescale τq over which correlations of matrix elements decay
is a small number

λ ≡ τq

∑
m

Rnm � 1. (5.5)

Now consider how λ may be estimated. The results of section 3 indicate that the variance of
the matrix elements Znm is approximately σ 2(�E)/�E2 when�E � δE, and approximately
σ 2

0 /δE
2 when�E � δE. The largest rate constants are therefore of sizeRmax ∼ τqẊ

2σ 2
0 /δE

2.
The number of rate constants of this magnitude is ∼ρδE. Using (4.13), the quantity λ is
therefore

λ ∼ ρδERmaxτq ∼ 1. (5.6)

The perturbative description provided by (5.3) and (5.4) is valid when λ � 1, and fails
when λ � 1. The physically significant situation is therefore the marginal case, where the
perturbative expression can be assumed to be a useful approximation, but not necessarily a
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precise evaluation of the diffusion constant. A similar conclusion was obtained in [2] for the
special case of the adiabatic basis.

Now consider the estimation of the energy-diffusion constant, DE , defined by (1.14)
and (1.15). Again, this follows the approach of [2] quite closely. The diffusion constant is
estimated as

DE ≈ 1

2ρ2

∑
m

Rnm(n−m)2 ≈ 1

2ρ

∫ ∞

−∞
d�E R(�E)�E2. (5.7)

It will be assumed that the integral is dominated by contributions from the region where
�E � δE. The transition rate in this region is estimated using (4.27), which gives

R(�E) ≈ Ẋ2 σ
2(�E)

�E2

∫ ∞

−∞
dτ exp (i�Eτ/h̄) c(τ ) (5.8)

where c(0) = 1, and where the support of c(τ ) is τq. The integral can be approximated by
2πh̄δν(�E), where δν(x) is a broadened delta function with support ν = h̄/τq. Inserting this
approximation into (5.7) leads to the estimate

DE ∼ πρh̄σ 2
0 Ẋ

2 (5.9)

provided ν is smaller than support �Ec of the function σ 2(�E). The condition for (5.9) to be
applicable is therefore that ν/�Ec is small, i.e.

ηδE ≡ |Ẋ|σ0h̄

�Ec

√
ρ

δE
� 1. (5.10)

When (5.10) is satisfied, the estimate (5.9) for the diffusion constant is expected to be applicable.
It was noted in section 1.3 that (5.9) implies a rate of dissipation which is equivalent to that
predicted by the Kubo formula. A similar criterion was given in [2] for the special case where
the adiabatic basis states were used, and (5.10) reduces to the inequality given in [2] when
δE ∼ ρ−1. It should also be checked that the condition for the dynamics to be irreversible
is satisfied. Using the estimate for τq given in (4.13), it is seen that the criterion (3.22) is
equivalent to (5.10).

The conclusions of this section may be summarized as follows. Equation (5.9) was
obtained as an estimate of the energy-diffusion constant. This was based upon a perturbative
calculation, valid when the dimensionless coupling constant λ is small. The constant λ is in
fact of order unity, so that the argument presented above is not sufficient to show that (5.9)
is a precise estimate of DE . Two conditions must be satisfied in order for the estimate (5.9)
to be justified. First, the equation of motion was assumed to be dominated by the velocity-
dependent term, which requires that δE is sufficiently small that (3.21) is satisfied. Secondly,
the estimate (5.9) depends upon the decorrelation time τq being given correctly by (4.13),
and consequently upon δE being made sufficiently large that (5.10) is satisfied. These two
conditions can be satisfied simultaneously provided �Ec � δE. If (5.10) is not satisfied, it is
not possible to make any reliable prediction about DE from these arguments.

6. Discussion

This paper has characterized a new type of basis set, in terms of matrix elements of the
Hamiltonian and their parametric correlations. The principle motivation for this work was to
use the statistics of these matrix elements in a stochastic model of the Schrödinger equation,
and to characterize solutions of the time-dependent Schrödinger equation by means of the
energy-diffusion constant, DE . This energy-diffusion constant is directly related to the rate
of dissipation.
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In the Introduction it was remarked that (1.17) gives a rate of dissipation which is in
agreement with the Kubo–Greenwood formula. The derivation of the Kubo–Greenwood
formula is perturbative, in that it is only strictly justified if the excursion of the parameterX(t)
is extremely small. The energy-diffusion constant is defined in terms of a finite excursion
of X(t), and there is no guarantee that the energy-diffusion constant will be given correctly
by (1.17). For systems which are well described by chaotic classical dynamics, the energy-
diffusion constant may be obtained in terms of a classical correlation function [8], which can
be related to the matrix element statistic σ 2(�E) by a semiclassical relation [9]. In these
systems (1.17) must be valid in the limit h̄ → 0. In the case of systems which are not
well described by chaotic classical motion, there is still no satisfactory general theory for the
energy-diffusion constant DE .

The results of this paper should be compared with [2], which used a stochastic differential
equation to model the Schrödinger equation in the adiabatic basis. In that paper it was
argued that DE is given approximately by (1.17), provided that |Ẋ| is sufficiently small that a
dimensionless parameter η is small compared to unity, i.e.

η ≡ h̄ρσ0|Ẋ|
�Ec

� 1. (6.1)

The physical origin for this inequality is that when (6.1) is violated, the rapid fluctuations
of the matrix elements could suppress transitions between states. Reference [2] presented
two discordant but not incompatible arguments about the validity of the condition (6.1).
Numerical experiments on a class of banded random matrix models showed that (1.17) is
an accurate expression for DE when (6.1) is satisfied, and that for these systems (6.1) does
correctly predict the onset of the failure of (1.17) as |Ẋ| is increased. By contrast, it was also
shown that this behaviour would lead to a breakdown of ohmic dissipation (i.e. DE ∝ Ẋ2) at
unphysically small values of |Ẋ|, both in systems described by classical dynamics, and in a
model for dissipation in electrical conductors. It was argued that in these latter systems there
are correlations between matrix elements which ensure that (6.1) does not represent a threshold
for failure of the Kubo–Greenwood formula.

This paper has defined an alternative set of states, the energy-shell basis states, which
fluctuate more slowly than the adiabatic states, and which therefore exhibit the correlations
which were hypothesized in [2]. For these states condition (6.1) is replaced by an analogous
condition (5.10), which allows larger values of |Ẋ| before the argument supporting (1.17)
breaks down. This extension of the range of validity of (1.17) was achieved at the expense of
an assumption, contained in (4.5), concerning the parametric dependence of eigenfunctions.
In the banded random matrix model discussed in [2], (6.1) was found to be the relevant
criterion for failure of (1.17), indicating that for this model there is a failure of the assumptions
underlying (4.5) (which was based upon full, as opposed to banded, random matrices).

The optimal value of δE to obtain the highest possible threshold is obtained by setting
δE ∼ �Ec, which is at the borderline for mutual compatibility of the inequalities (3.21)
and (5.10). This leads to the following estimate for the maximum value of |Ẋ| for which (1.17)
is shown to be applicable:

|Ẋ| � Ẋmax ∼ �E
3/2
c

ρ1/2h̄σ0
. (6.2)

It should be emphasized that the inequality (6.2) does not necessarily represent a threshold for
the breakdown of (1.17) in any given system. Using the estimates discussed in [2], the value
of Ẋmax given by (6.2) is found to vanish in the limit h̄ → 0, holding all classical parameters
fixed. This indicates that the condition (5.10) is therefore still too restrictive to describe the
behaviour of quantum systems which are well described by classical dynamics.
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The velocity scale defined by (6.2) has been discussed in earlier papers by Cohen [10,11],
who proposes that it ‘controls the route towards quantal-classical correspondence’ and that
when this velocity scale is exceeded, the rate of dissipation ‘may be qualitatively different’. A
comparison of the present paper with these earlier works shows that the nature of the arguments
leading to (6.2) are quite distinct. He also claims that (1.17) is always valid when |Ẋ| is lower
than the estimate (6.2), which contradicts the numerical results in [2].

In fact the behaviour of the energy-diffusion constant DE appears to be highly system
dependent. It has already been pointed out that neither (6.1) nor (6.2) determine the failure
of (1.17) for semiclassical systems, whereas numerical evidence shows that (6.1) is the relevant
criterion for a class of banded random matrix models. Another class of random matrix models
has been discussed [12] in which (1.17) also fails in a certain range of parameters, and where
the boundary is not determined by either (6.1) or (6.2).

The use of the energy-shell basis, as detailed in this paper, represents an advance in
understanding the dynamics of complex quantum systems, but does not yet give a complete
description. It has been used here to extend the range of values of |Ẋ| for which (1.17) is
applicable, subject to the assumptions of a random matrix model, contained in (4.5). The
approach is potentially quite general in its scope, but the discussions from section 4 onwards
used (4.5), resulting from the random matrix model discussed in [7] to analyse the parametric
correlations of matrix elements. It is anticipated valuable insights into the behaviour of the
energy diffusion constant in different systems will be gained by dropping this assumption, and
examining ‘non-universal’ aspects of the correlation of the matrix elements Znm(X).
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