
Pergamon 

PII: s0960-0779(97)ooo14-3 

Printed in Greal Britain. All rights reserved 
llYh0477Y/Y7 $17.00 + MM) 

Distribution of Oscillator Strengths for Recombination of 
Localised Excitons in Two Dimensions 

MICHAEL WILKINSON, PAUL N. WALKER and KAUMBA CHINYAMA 

Department of Physics and Applied Physics, John Anderson Building. University of Strathclyde. Glasgow G4 ONG. 
Scotland, UK 

Abstract-We investigate the distribution of oscillator strengths for the recombination of excitons in a 
two-dimensional sample, trapped in local minima of the confinement potential: the results are derived 
from a statistical topographic model of the potential. The predicted distribution of oscillator strengths 
is very different from the Porter-Thomas distribution which usually characterises disordered systems. 
and is notable for the fact that small oscillator strengths are extremely rare. 0 1997 Elsevier Science 
Ltd 

1. INTRODUCTION 

Many experiments have been performed in which excitons (excitations in the form of an 
electron-hole bound state) are trapped in a layer of lower bandgap semiconductor, between 
two layers of higher bandgap material [l, 21. Exciton absorption and emission lines in these 
two-dimensional samples are typically much broader than in three-dimensional systems. This 
is often due to fluctuations in the width of the layer: there is a ‘quantum confinement’ 
contribution to the energy of the exciton, which is a decreasing function E(w) of the layer 
width w  and which is analogous to the ground state energy n2h2/2mw2 of a particle trapped 
in a one-dimensional potential well [3,4]. 

The excitons are able to interact with phonons by radiationless processes [S, 61, becoming 
trapped in local minima of the confinement energy: the lifetime for electron-hole 
recombination is typically long enough that most of the luminescence observed from these 
samples is from trapped excitons. This trapping effect has recently been observed directly by 
spatially resolved studies of exciton luminescence [7,8]: if the luminescence is recorded from 
a macroscopic area of the sample, a broad spectrum is observed, whereas sufficiently small 
microscopic areas show either no luminescence or a small number of relatively sharp lines, 
corresponding to excitons in a single trap. These exciton traps may be thought of as a novel 
type of mesoscopic system. 

The spectra of two-dimensional excitons show some near-universal features; for example, 
it was noticed that the Stokes shift S of the luminescence spectrum relative to the absorption 
peak and the width W of the absorption spectrum usually satisfy S/W = 0.6, independent of 
the semiconductor materials or of the magnitude of the broadening [9]. This observation was 
explained using a classical picture of trapping of excitons in local minima of a smooth 
effective confinement potential, modelled as a Gaussian random function [lo]. This statistical 
topographic model predicted S/W = 0.55.. . , in good agreement with the experimental values. 
In Section 2, we review this model and discuss a variant of the experimental approach which 
may give better agreement with theoretical predictions. 
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In this paper, we discuss the distribution of oscillator strengths (or, equivalently, Einstein 
A coefficients) for exciton recombination, for excitons localised in minima of the effective 
confinement potential. We use the same statistical topographic model as was previously used 
to calculate the Stokes shift. If the model is correct, the probability distribution of oscillator 
strengths for localised excitons should be a near universal signature of trapped excitons, but 
we believe that this may be a more sensitive test of the validity of the model. The predicted 
probability distribution of oscillator strengths is 

P(Z) = Zm9 exp( $)erfc( -$). (1) 

(The scaling of the intensities I is arbitrary; for this form of the distribution, the mean 
intensity is (I) ==0.699....) This result is interesting because the predicted distribution has 
very few small intensities: the fraction of recombination lines predicted to be less than half 
the mean intensity is approximately 3.15 x lo-‘. It is very different from the Porter-Thomas 
distribution P(Z) - exp(-Z)/fi, which usually characterises the distribution of oscillator 
strengths for disordered or complex systems [ll], and which follows from the Gaussian 
distribution of matrix elements in such systems. 

Section 3 discusses the model used for calculating the matrix elements for recombination 
of excitons trapped in local mimima of a potential. In Section 4, we give a complete 
characterisation of the distribution of quadratic forms characterising the stationary points of 
an isotropic Gaussian random function: although this is not difficult to obtain using standard 
techniques of statistical topography [12,13], we could not find a discussion of it in the 
literature in the form we require. These results are then used to obtain equation (1). 

The field of statistical topography was largely stimulated by the desire to understand 
optical properties of random surfaces, such as that of the sea. In Section 4, we also comment 
on the closest optical analogy of our results, namely the distribution of intensities of reflected 
images of a small light source on a distant random surface, (such as ‘sea glitter’, reflections of 
the sun from the sea, observed from an aircraft [14]). The distribution of oscillator strengths 
turns out to be very different from that of the intensities of sea glitter sparkles. 

2. THE STATISTICAL TOPOGRAPHIC MODEL 

Here we briefly review the statistical topographic model for exciton luminescence 
presented in Refs [9, lo]. We also propose a reason for the small discrepancy between theory 
and experiment, and a variant of the experimental approach which may give a better 
agreement with experiment. 

Figure 1 shows the absorption and luminescence spectra of excitons in a semiconductor 
heterostructure: the data are taken from Ref. [15]. First, consider the form of the absorption 
peak. In the absence of disorder, the peak would be very sharp, because (unlike unbound 
electron-hole pairs) conservation of momentum implies that the oscillator strength for 
creation of the exciton vanishes unless the centre of ‘mass of the exciton is stationary (see 
Ref. [16]; this can also be verified using the model discussed in Section 3). The width of the 
absorption peak in Fig. l(a) is determined by inhomogeneous broadening due to disorder. 
The energy of an exciton in the ground state depends upon the width of the potential well in 
which it is confined, and the well width varies randomly with position in the plane. We 
assume that the length scale over which the well width varies is large compared with the 
width of the wells: this implies that the ground state energy of a static exciton at position 
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Fig. 1. Experimental data from Ref. [15]: (a) absorption spectrum, (b) luminescence spectrum, isolated 
points-resonant Rayleigh scattering. Theoretical curves: (c) Gaussian fit to absorption spectrum, (d) corresponding 

distribution of heights of local minima. 

(x,y) is a well defined smooth function, which we denote by E(x,y). It is reasonable to 
assume that the fluctuations of E(x,y) represent contributions from many independent 
events, and the central limit concept then indicates that the fluctuations are Gaussian. 
Because the excitons are created with zero centre of mass motion, the absorption spectrum is 
proportional to the distribution of E(x,y). The curve (c) in Fig. 1 is a fit of a Gaussian curve 
to the absorption spectrum (a): it fits quite closely. 

Now consider the luminescence peak. This is shifted toward lower energies because the 
excitons can lose energy before they decay. Time-resolved studies of spectral hole burning 
indicate that the energies of excitons can change over a timescale of typically tens of 
picoseconds, much shorter than the half-life for decay of excitons, typically several hundred 
picoseconds [5,6]. The predominant mechanism of energy loss for the excitons appears to be 
by the excitation of phonons: if the absorption spectrum is probed with narrow spectral lines, 
it is possible to observe features in the luminescence spectrum which are shifted from the 
probe frequency by multiples of the frequency of the optical phonons [6]. These results 
justify the following picture of the luminescence process: after the exciton is created at 
position (xo,y,,) with energy EC1 = E(xo,y,,), it will move into regions where the potential 
energy E(x,y) is less than Eo, and the excess energy E,, - E(x,y) appears as kinetic energy. 
The moving exciton is able to excite phonons and, as it does so, it loses kinetic energy. 
Eventually, if it does not decay in the meantime, it will end up trapped in a local minimum 
of the potential energy E(x,y). Because the exciton lifetime is much longer than the 
timescale associated with energy transfer to phonons, most of the excitons are trapped close 
to a local minimum of the potential energy E(x,y) when they decay. 

These considerations lead to a model in which both the absorption and luminescence 
spectra are determined by the statistical topography of a Gauss random function, which we 
will denote by f(x,y), and which represents the energy function E(x,y) after applying linear 
scaling transformations to E, x and y such that 

(f> = 0, (f’> = 1, (f.3 = vt> = 1. (2) 

The absorption spectrum is proportional to the Gaussian probability distribution of this 
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function, whereas the luminescence spectrum is determined by the distribution of heights of 
its local minima. 

The Gaussian random function f(x,y) is characterised completely by its correlation 
function C(r), which in the isotropic case is a function of r = r only. The calculations in Refs 
[13, lo] show that the distribution of stationary points depends on the correlation function 
only through averages of second derivatives. In the isotropic case, after scaling the function 
so that equation (2) is satisfied, the distribution of stationary points is characterised [lo] by a 
single parameter a, where 

<fZ> = (f&> = 3(ff,> := 3a. (3) 

The distribution of heights of local minima was determined analytically in Refs [9, lo]: the 
result is that 

Prn,“(f > = 
ti 

2navzFl 
[ -(2u - I)f exp(&) +*& 1)exp(2tiFTiJ 

x erfc ( 
vi 

d/2(2& - 1)(3a - 1) f) +fV/za@ - l)(f’- l)exp(-$)erfc(v2c~ _ i,)l, (4) 

where erfc(x) is the complementary error function [17]. 
The prediction in equation (4) contains the undetermined parameter a. In Refs [9, lo], it 

was argued that the annealing process involved in the growth of the heterostructures causes 
the fluctuations of E(x,y) to be suppressed by a diffusive process: we write 

E(x,Yl=ldx’/ dy’ P(x - x’,y - y’)E’(x’,y’), 

P(X,Y)=&exp(-s), 

where E’(x,y) characterises an initial distribution of well width fluctuations with a much 
shorter correlation length, D is the diffusion constant and t the annealing time. We may 
therefore model E(x,y) as the convolution of a white noise function with a Gaussian. It 
follows that the correlation function of E(x,y) is also a Gaussian, implying that a = 1. 

The distribution of minima in equation (4) with a == 1 is shown as curve (d) in Fig. 1; the 
mean and variance have been scaled to correspond to the mean and variance of the Gaussian 
distribution (c). The curve is not a particularly good fit to the luminescence spectrum (b). 
The experimental data shown in Fig. 1 are typical: it is usually found that the Stokes shift is 
somewhat higher than our theoretical prediction [9]. We will make two points about this 
discrepancy. 

First, we propose a qualitative explanation of this observation: the excitons can move into 
deeper local minima than the ones in which they were initially trapped before they 
recombine, either by thermally assisted hopping or quantum mechanical tunnelling. This 
explanation is supported by the literature on time resolved luminescence studies; which show 
that the Stokes shift initially assumes a value close to our prediction, and then slowly 
increases [18]. 

Our second, more important, point concerns resonant Rayleigh scattering experiments on 
excitons, such as that discussed in Ref. [15]. From the discussion above, it is apparent that it 
would be desirable to have a more direct probe of the density of local minima of the 
effective potential to facilitate comparison between theory and experiment. We will now 
argue that resonant Rayleigh scattering spectra measure the density of local minima of the 
effective potential. The intensity of Rayleigh scattering from an exciton is proportional to 
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the time over which the exciton survives at the energy o:F the incident radiation. The lifetime 
of an exciton trapped in a minimum of the effective potential is equal to the lifetime for 
luminescent decay, typically less than a nanosecond. A:n exciton which is not trapped may 
lose energy by exciting phonons, and the lifetime for these processes is much shorter, 
typically a few tens of picoseconds. The spectra for resonant Rayleigh scattering are 
proportional to a density of states weighted by the ‘exciton survival time. Because the 
survival time is very much larger for trapped excitons, the Rayleigh scattering spectrum is 
weighted very heavily by the density of states for trapped excitons. 

The isolated points plotted on Fig. 1 are resonant Rayleigh scattering amplitudes 
measured at a discrete set of frequencies, taken from data published in Ref. [15]. Both the 
mean and the variance of these data are remarkably close to the theoretical distribution of 
local minima, curve (d), which is a plot of equation (4) with a = 1, and with the mean and 
variance chosen to match those of the Gaussian fit to the absorption spectrum. 

3. MODEL FOR EXCITON LUMINESCENCE MATRIX ELEMENTS 

We consider a solid consisting of N atoms, each of which can exist in four different states: 

1. Neutral and unexcited, IO). 
2. With additional electron (in the conduction band), I--). 
3. With an electron removed (i.e. with hole in valence band), I+). 
4. Excited atom (or Frenkel exciton), with an electron in the conduction band and a hole in 

the valence band, le,.J = I*). 

We consider a Hilbert space for the solid with 4N basis vectors, consisting of all possible 
combinations of these four states of the N individual atoms: for example, a state with two 
electrons, a hole and an exciton could be written as 10,0, - ,O,O ,..., O,O, + ,O, f ,O, - ,0 ,...) = 
ln,,n2,n3;n3,n4), where n, and n2 are the positions of the electrons, n4 is the position of the 
hole and + is the position of the Frenkel exciton. 

This model is reasonable for insulators in which the electrons are tightly bound to 
individual atoms. This description can also be carried over directly to semiconductors, if the 
electron and hole states localised on individual atoms are replaced by Wannier states derived 
by integrating over the conduction and valence band wavefunctions, respectively [16]. 

In a semiconductor, the excitons are typically of the Wannier type, in which the electrons 
and holes, although correlated, are not bound to the same atomic orbital. The Wannier 
exciton state I+) is a superposition of electron and hole states of the form 

where n, and n2 are the positions of the electron and hLole, respectively. In the case of the 
weakly localised Wannier exciton, the coefficients c,,,,+~ can be approximated by a continuous 
wavefunction $(x,y), where x and y are the locations of atoms with labels nl and n2. The 
wavefunction +(x,y) is an eigenfunction of an effective Hamiltonian [16] 

-t- vm + V,(r,). 

The intensity of emission from an exciton state is proportional to the square of the dipole 
matrix element (ewl2 IO) for the transition between the texciton state and the ground state of 
the system, summed over three orthogonal choices for the coordinate X. This matrix 
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element can be expressed in terms of the dipole matrix elements of the localised basis states. 
We assume that the dipole matrix element for the basis states is 

(01~ InIP*) = 4qn22 (8) 

i.e. the dipole matrix element for recombination is iassumed to be negligible, unless the 
electron and hole are on the same atomic site. Most crystals have centres of symmetry, and 
the dipole matrix element (018 (n;n) vanishes if the atomic orbitals or Wannier functions 
defining the valence and conduction bands have the. same parity with respect to the X 
coordinate. The atomic orbitals associated with successive bands typically have opposite 
parity with respect to one of the coordinates, so that for at least one choice of the coordinate 
X the matrix element considered in equation (8) does not vanish because of symmetry 
considerations. 

The required matrix element can now be calculated using equation (8): 

(9) 

where E’ is another constant. The matrix element is therefore proportional to the amplitude 
for the electron and hole to be at the same site. 

We now consider the case of excitons in heterostructures, where the excitons are trapped 
in a layer of low bandgap material between regions of higher bandgap. Imperfections of the 
growth process result in random fluctuations of the layer width; we will assume that the 
fluctuations of the layer width are on a larger scale than the size of the exciton [lo]. We 
therefore use the model 

V,(b) + V,(rh) = ueke> + uhkh) + 4(xr> + uhtxh) 

- dz,) + Uhkh) + 44X) + Uh(X), (10) 

where X,/h = (&lh&h) are the electron/hole coordinates in the (x,y) plane, and X and x are 
the corresponding centre of mass and relative coordinates. In the second line, the 
assumption that the variation of the potentials &/h is slow on the scale of the exciton 
diameter justifies the approximation x, - xh -X. The effective Hamiltonian can then be 
written in the separated form 

~(re?~htpr~ph) = & +- HI7 (11) 

where 

- + u&e) + Uhkh), z-z, = & P2 + K,(X), 

and V,,(X,Y) = u,(X, Y) + &(X,Y), P is the momentum conjugate to X = (X,Y), and p and 
A4 are the reduced and total masses. The corresponding solution of the Schriidinger equation 
is a product of an exciton wavefunction &,y,zr,zh)! and a wavefunction +(X,Y) for the 
centre of mass motion in the (X,Y) plane. Equations (9) and (11) show that the transition 
strength for exciton recombination is of the form 

I- ((018 lew)l* = C 11 dX 1 #dY 6(X,Y)/*, (12) 

where the constant C is the same for all exciton states. 
We first discuss the interpretation of this result for a non-disordered system. In this case, 

the centre of mass wavefunctions are 4(X) = A-‘” exp[ik.X], where A is the area of the 
sample. The recombination transitions only occur from the ground state, for which 
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4(X,Y) = A-“*, because the integral in equation (12) vanishes for all of the other states. 
Equation (12) then implies that the transition rate for recombination from the centre of mass 
ground state is proportional to the area of the system, whereas the rate for all of the other 
possible states is zero. This is in accord with the expectation that the sum of the transition 
rates for a system of area A should be proportional to A. 

Now consider the case of a disordered system. We will use the same model as in Refs [9] 
and [lo]: we assume that the excitons interact strongly with phonons, and that mobile 
excitons rapidly lose energy by exciting phonons. Most of the exciton recombination 
therefore occurs after the excitons have become trapped in minima of the effective potential 
V,,(X,Y). We will assume that the effective potential for the centre of mass motion is an 
isotropic Gauss random function. The form of the effective potential in the neighbourhood 
of its minima can be approximated by a quadratic form: if the origin of the (X,Y) plane is 
shifted to lie at the minimum, we write 

V,,(X,Y) - v, + ; [l&x* + VyyY2 + 2V,,,XY] = v, + ; xTi2x, (13) 

where A is the Hessian matrix of second derivatives evaluated at the minimum. The exciton 
recombination occurs from a ground state of the centre of mass motion trapped in this 
minimum, for which the wavefunction +(X,Y) is a harmonic oscillator ground state, which 
satisfies 

dY 4(X,Y) = c[det tilP”‘, (14) 

where c is independent of the local environment in which the exciton is trapped. The 
distribution of transition strengths I for trapped excitons is therefore determined from the 
distribution of determinants of the Hessian matrix at mmima: 

I - 1oy4, D =detii?t. (1-V 

4. DISTRIBUTIONS OF INTENSITIES 

4.1. Distribution of quadratic forms at stationary points 

Methods for calculating properties of point singularities such as minima are well known: 
the one-dimensional and two-dimensional cases are discussed by Rice [12] and Longuet- 
Higgins [13]. We will calculate the distribution of the trace T and determinant D of the 
Hessian matrix 

describing the second derivatives fxx, f,, f, of an isotropic Gauss random function f(x,y) at 
its stationary points. 

We follow the approach and notation of Ref. [IO]: the distribution of extrema is 
determined by the joint probability distribution P( f , fi , f,, fxx, f,, f,) of the function f, its 
first derivatives f+ and f,, and its second derivatives evaluated at the same point (x,y). By a 
simple adaptation of the calculation in Ref. [lo], the joint distibution of the trace and 
determinant is 

where X is a normalisation factor, t = (fxx + f,,) and d = fxxfyv - f$. The function is assumed 
to be scaled so that equation (2) is satisfied. 
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In terms of the variables R = t/2, X = (fxx -f,,)/2 and Y =fx,, the probability distribution 
in equation (17) was obtained in Ref. [lo] as 

~(f,0J4f&y~Ly) = (2n)3aim exp( - !&xp( - 2(2a _ 1) (f + R)Z)exp( - v). (18) 

The integral in equation (17) can now be evaluated easily. The normalised probability 
density is 

JslDiexp(%,exp(-g)E)(D-f), (19) 

where O(x) is a step function, decreasing from 1 to 0 at x = 0. 

4.2. Distribution of oscillator strengths 
Now we will use the results of Section 3 to calculate the distribution of transition strengths 

for excitons. The distribution of the determinant D of ihe Hessian matrix at stationary points 
is obtained by integrating equation (19) over T: 

P(D) = lx dTP(T,D) = $ IDI exp(%) [ 
-x 

O(D) + O( - D)erfc(im)]. (20) 

It is noteworthy that the parameter a only appears in the ratio D/a in this probability 
measure: it therefore sets the scale of the distribution of D but does not alter its functional 
form. The distribution of intensities is therefore insensitive to this parameter, and we may 
take a = 1. 

The minima are those extrema for which D > 0 and T > 0, The distribution of intensities 
I - ID 1-“4 follows immediately from this expression, considering only the branch with D > 0. 
The result, with arbitrary scale for the intensities, is given by equation (1). Numerically, the 
mean value of the intensities with distribution given by equation (1) is found to be 
(I) = 0.699.... The distribution of equation (1) is plotted in Fig. 2(a). 

4.3. Relation to sea glitter 
The analysis of Gauss random functions in two dimensions was largely motivated by the 

desire to achieve a statistical understanding of the surface of the sea. It is natural to ask 
which experimentally observable property of the sea surface corresponds most closely to our 
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Fig. 2. Predicted distribution of intensities of (a) exciton luminescence, (b) sea glitter sparkles. 
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distribution of exciton transition intensities and to compare the two results. The correspond- 
ing property is ‘sea glitter’ [14], which is the pattern of reflections of the sun on the ocean 
surface seen from a high flying aircraft. 

To simplify the discussion, we will assume that the sun is overhead and that the sea glitter 
is observed by looking vertically downwards. If the radius of the sun subtends an angle E, the 
observer sees a bright area on the sea suface due to reflected sunlight, whenever the angle of 
the sea surface is smaller than e/2. There is therefore a bright spot on the sea surface in the 
neighbourhood of every maximum, minimum or saddle point: each of these bright spots is 
seen as an ellipse, of area A - jdet ii?-‘, where iii is the Hessian matrix at the stationary 
point. The quantity which corresponds to the distribution of exciton intensities is the 
distribution of integrated intensities I -A of the reflected images of the sun. The distribution 
of determinants, for all types of stationary points, is given by equation (20) and the 
corresponding distribution of I - ID\-’ is 

P(I)=d1-‘[exp(-$) +exp(&)erfc(k\/37/)]. (21) 

Note that, once again, the distribution is independent. of the parameter a: this result is 
therefore universal for isotropic sea surfaces. This distribution is plotted in Fig. 2(b). Again, 
the normalisation of the intensity distribution is arbitrary and, in this case, we find 
numerically that (I) = 0.433.... This- result is very differenl 
intensities. The reasons for the difference are that all of 
there is a different relationship between I and D = det ti. 

from the distribution of exciton 
the extrema contribute and that 
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