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We conside singularities of the se of energy levels E,(X) of a quantum Hamil-
tonian obtainel by varying aséd of d parametes X=(X4,..,Xy). Singularities such
as minima, degeneraciesdrand points and avoidel crossing can play an impor-
tart role in physicd applications We discus a generd methal for countirg these
singularities and apply it to arandan matrix modéd for the paramete dependence
of enery levels We also shov how the densiy of avoidal crossimg singularities is
related to a non-analyticiy of a correlation function describirg the enery levels.
© 199% American Institute of Physics [S0022-24886)01810-5

[. INTRODUCTION

It is now widely acceptd tha randan matrices provide an excellen modd for statistical
properties of the specta of quantum systens for which the energy levels cannd be determined
analytically?? randam matrix modek hawe been successfujl applied to disordere solids classi-
cally chaott systemsand mary body problems There are mary contexs in which families of
Hamiltoniars dependig smoothy on a se of parametes are of physicd importancefor example
the parametes could representhe positiors of atomic nuclé in the Hamiltonian for the electrons
in a molecule or the Bloch wavevectos of an electran in a periodic potential Recenty the
randon matrix approab has been extende to descrile statistic which characterie the parameter
dependereof enery levels3~° One approab to analyzirg the paramete dependeneis to con-
side correlation functions an exampé which has receivel attentiofi~2 is the correlation function
C(X) of the derivatives of enery level E;=dE,/dX:

C(X)=(E4(X+Xo)E4(Xo)) . (1.1)

An alternative approab is to examire various types of singulariy in the spectrum sud as
degeneraci€s?® (where a pair of enery levels becone equa at sore red valued poirt in the
paramete spacg, brand point€ (where enery levels becone degenerat at complex parameter
values, and avoidel crossing? (characterist structures where energ levels come close to de-
generacy. Thes singularities can hawe dired physicd consequencesn determinirg various
aspeds of the breakdown of the adiabati theorent: 43 and discontinuities of the quantizel Hall
conductancé®16:10

This pape has two objectives The first is to explan the strategy for calculatirg the densiy of
singularities in the paramete space we will preseh sone new calculatiors of the densiy of
singularities as well as reviewing existing results The seconl objective is to discus the impli-
catiors of the= resuls for the calculatio of correlation functiors sud as (1.1). Guaner et al.
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demonstratet tha the existene of brand point singularities in the spectrun implies that correla-
tion functions suc as C(X) hawe anon-analytt behavia at X=0. We will shov how the leading
ordea non-analytt pait of this function is obtainal from the densiy of singularities.

This pape is organizel as follows. In Sec Il we discus parametedependengeneralizations
of the standad randan matrix models In Sec Il we descrile the approab to countirg densities
of singularities of randam functions using the densiy of minima as an example In Sec IV we
review the known resuls on the densiy of various types of singularity, and their physicd appli-
cations Sorre of the resuls in Sec IV are new, and of the® the densiy of degeneracigfor the
GUE ard GSE ensemble are not easily obtained thes calculatiors are explainal in Sec V and
in an Appendix Finally in Sec VI we discus the implicatiors of the resuls given in Sec IV for
correlation functiors sud as (1.1).

In this pape we will discus a variely of differert probability distributions To avoid naming
amultiplicity of differert functions describiry thes distributions we will introduce the notational
conventian tha dP=P[X]dX is a probability measue for the quantiy X.

Il. PARAMETER DEPENDENT RANDOM MATRICES

The mog fundamenthrandan matrix modek are the Gaussia ensemble introducel by
Porte and Dyson Thes are constructe from red symmetrc matrices H® and red antisymmet-
ric matrices H{® with independenGaussia distributed elementsthe variane of the i jth element
of thee matrices is, respectively 1+ §;; . There are three Gaussia ensemblesinvariart under
orthogonal generé unitary, ard “symplectic” unitaly transformations;? which are constructed
from combinatiors of the symmetrc and antisymmetté matrices as follows:

~ 1~ AL
[H]ij:\/_—ﬁ [H(S)]ijeoJszl [HMTija - 2.1

Here =1,2,4 for the orthogonal, unitary and symplectic ensembles, respectesely, are 1,
J—1, respectively and the othe e, are the othe base for the quaternim algebra In orde for
thes to be usefu modek for enery levd statistics the dimensia N of the matrix shoutl be large.

In orde to study singularities of the spectrumit is necessarto construt a parametedepen-
dert versian of thee randan matrix models It is convenien to do this in suh a way that
dH/oX is an independent realization of the same ensemblé, & tha the distribution of both
of thee quantities is stationary this is achievel by writing

I:I(X)z cos XI:|1+ sin XI:IZ,—| (2.2

where H; ard H, are Hermitean operatos representé by independensamples from the same
Gaussia symmetry-invariah ensemta definal above Referene 5 discusse theoretica argu-
ment and numerica resuls which suppot the use of (2.2) asamode for parametedependencies
of spectraln the calculatiors below, we will require the matrix elemens of dH/dX in the basis
formed by the eigenstateof H: thisis simply an arbitray unitaty transformatio of dH/dX within
the appropriae symmety class (orthogonal unitary, or symplectig. Becaus the Gaussia invari-
art ensemble are invariart unde thee unitayy transformations the matrix elements
IHm=(,|dH/dX| ¢,) hawe the sane statistica properties as those of the matrix dH/dX.

In orde to compae arandan matrix mode with the spectrun of a “real’’ physica systen in
the neighborhod of enery E, we mud scak energy levels of the systen so tha the densiy of
statesp(E) corresponds to that of the random matrix model. In a parameter dependent system, it
is also necessarto adjug anothe parameterdescribirg the sensitiviy of the enery levels of the
systen to perturbationsthe naturd choice is to use eithe the variane of the off-diagona matrix
elemens of dH/dX in the eigenbasis,
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202 — 2 5
o (E)=(|oHnm)_ . (2.3
n#m

or the variane of dE,,/dX: thes are relatad by

dE,
val dx

2
=50t (2.4

Equatian (2.4) follows from the definition (2.1) for the Gaussia randan matrix models and there
are severh argumers suggestig tha it shoutl also hold for comple« quantum systems-”*8 For
the randan matrix ensemi# (2.2), we haveo=1.

The modé (2.2) can be extendd to systens with d parametesin severdways the simplest
is to use 2d independenrealizatiors of the randan matrices and write

d
Q(X):Z CCBXiQZi_l'f‘ sin Xiﬂm A (25)
i=1

Now the sensitivily of energy levels to the parametes X; can be characterize by defining a set of
parametes C;; which generalie (2.3):

Cij:<aiH:mﬁanm>EnNEm~E'_l (2.6
n#m

WhereaiHnmE(¢n|&I:|/&Xi|¢m). A chang of variables makes the paramete dependene of the
enery levels resembd tha of the modd (2.5). In the many-parametecas the parametero
characterizig the sensitiviyy of enery levels is naturaly definel in terms of the Jacobea of this
transformationnoting that for (2.5 we hawe C;; = §;;, the naturd definition is

o?=(defC])¥ 2.7

where C is amatrix with elemens C;; . In orde to use the parametrize randon matrix models,
both the densiy of statesp and the sensitivity parameter must be estimated. This can always be
dore numericaly calculatirg an avera@ over enery levels For systens which exhibit semiclas-
sicd behavior,p can be estimated using the Weyl formtifaand o® can be estimate from the
classicé correlatian function of 9H/9X.?°

Ill. COUNTING SINGULARITIES

The methal which we use for calculatirg the densiy of singularities can be viewed as an
extensim of one describe by Rice?! who gives an expressia for the frequeny of zer crossings
of arandan function f(x), for which the joint probability densiy of the function and its derivative
f’ isknown If Z(% isthe densiy of zercs of the function the probability of finding azemw in a
shot intervd of lengh [xq,Xo+ 8x] at a randomly chosen poing, is SP= 9 x. If the point
Xo happes to be close to a zerg the distan@ from X, to this zemw crossimy is approximately
—f(Xp)/f'(Xg), and the probability of the zero crossimg lying within 8x of x; is

) © _f
5P~f_xdfj_wdf P[f,f ]X( Tox ),
(3.1
_ 1- 0<x<1,
XX)=105 0>x>1.

Dividing by éx and taking the limitéx— 0 gives
J. Math. Phys., Vol. 37, No. 10, October 1996
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@‘D:J:ﬁ de_w df’P[f,f’](S( fi)=J'_w df’|[f'|P[O,f'].- (3.2

The sane approab is useal to determire the densiy of any point singularity. we use the known
statistis of the function to calculae the probability of finding a singulariy in a smal element
centere on arandomy chose teg point, and equae this to the densiy of singularities multiplied
by the volume of the element.

As an elementay example we can use (3.2) to determire the densiy of minima (™" of
E(X) for the randan matrix modé (2.2). The densiy of minima might find physicd applications,
for exampe in determinirg the numbe of possibk energeticall stabke configuratios of complex
molecules which can be obtainal by varying configuratian of the nuclei.

The first and seconl derivatives of E,(X),

,_ 4B , &%, |9Hnml?
En= gy = Hunom En_W_Zn;nm_ZEn,_‘ 3.3

are independentbecaus they depemnl upon differert matrix elementsWe denot the distributions
of the first two derivatives by P[E'] and P[E"], respectively The first derivative E’ is Gaussian
distributed with varian@ 20/ 8, and with a mean value which is zero for the mo@Pp), but
which may have anon-zep value (E') in physicd applications The distribution of the second
derivative is difficult to calculate when the matrix dimensimm N is large an excellent
approximatiof?? is

— Cp
P[E"]= sz](mzyzh (3.9

which isalso an exad resut for the GUE in the limit N— 2.2 The constars C; aregivenin Refs.
4!51
C,=2mp?0*~ C,=2%7?p30® - C,=287*p°c193 - (3.5

and the a; are then determine by normalizirg the distribution we find a,=2mpo? and
a;=a,=ay,. The densiy of minima can now be calculatel by using (3.2) to calculae the density
of zeres of E;(X), and dividing by two becaus half of the extrena of E,(X) are maxima:

0 _ \2
JMN=p[E'=0]| dE'|E"|P[E"]=CU"™" AE) 3.6
”B 0 B po ()4 40_2_| )71 .
with dimensionles constants
) N ) 2 )
e g2, cf=—— @7

Thes resulk are exad for the GUE in the limit N— oo, ard at leag a very goad approximatio for
the GOE ard GSE.

IV. REVIEW OF RESULTS ON DENSITY OF SINGULARITIES

Below we discus the variouws othe types of singulariy of the spectrun which are of interest
ard their physica significance and review the existing resuls on their density All of the results
are exad for the randan matrix modek introducel in Sec Il in the limit N—oo.
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A. Degeneracies

A degenerag occuis when two or more energy levels are equa for sone red valued point in
paramete space in practiee we will only be interesté in degeneraciebetwea pairs of levels,
becaus highe orde degeneracehawe ahighe codimensionGenerically two parametes must
be varied in a family of red symmetrc matrices to creat a degeneracythree parametesin a
family of Hermitea matrices and five parametesin afamily of quaternim symmetrec matrices>*
We will therefoe conside the densiy of degeneraciin the mode (2.5 with d=2,35 for the
GOE, GUE ard GSE versions respectively.

An interestiy exampe of the importane of degeneraciis given by Simon!® who shows
tha the Chen integes describig the quantizel Hall conductanct¥ change typically by +1, at
degeneracieDegeneraciecan aln enabk othe invariart quantities to change for exampé the
cente of symmety associaté with Wannieg functiors of a Bloch bard can chang discontinu-
ously when the bard touches aneighborirg bard at sone point in the Brillouin zone.

The densiy of degeneracifor the parametrizd ensembls is definad in a spae of 8+1
parametersand their densiy is

D =CYD(pa)PHt - (4.1
with dimensionles prefactors

cuo-T C(deggi; - C(deg>:16‘/5”3/2.ﬂ 4.2
3’ 2 37 4 45
c{®9) was derived in Ref 9 and C{®9 was quotal in Ref. 10 without a full derivation An
estimae consisteh with (4.1) was given in an earlie papef® for the specia ca® of billiards,
without an accura value of the prefactor The derivatiors of C{%® and C{%*9 will be given in
Sec V ard in an Appendix respectively.

In the neighborhod of a degeneracythe separatio A=E,, ;— E,, of the degeneratig levels
is given by the squae root of a quadratt form; for exampe in the ca® of a systen sud as the
GOE, whete the Hamiltonian is real we can write

A2=A116X3+ AgpSX5+ 2A 150X 16X+ O(8X3) .- 4.3

This quadratt form can be defined by the orientation eccentricity and size of the elliptical level
curves of A. For the modd (2.5), the orientatio of the ellipses is random and the othe param-
etes are defina by the trace t=A;,+ Ay, ard determinahd=A;;A,— Afz of the matrix which
represert the quadratt form. The joint distribution of the trace ard determinah has been
calculated it is

PIt,d]= — p(_—t) 44
A= e @M 502 |7 (49

within the physicaly allowed region t>0, d>0, d< 3t2. Othe statistic describirg the elliptical
contous of A can be obtainel directly from this simple result for exampé the distribution of
eccentriciy e of the ellipsesis

Ple]=

2e 3
) — (4.5

2—¢?
The distribution of parametes of the quadratt form for the unitary and symplectc ensembils is

not known.
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B. Avoide d crossings

When asingle parameteis varied energ levels of systens without symmetris neve cross2®
but they can approab ead othe very closely at evens called avoidal crossings When the
separatia of a pair of energy levels is very smal comparé to their separatia from all of the
othe levels the structue of thes avoided crossing can be understod using degenera pertur-
bation theowy for atwo leve system provided the Hamiltonian is a regula function of parameter
in the neighborhod of the near-degeneracyhe levels havwe ahyperbolc form,

1
Ei(X)~B(X—XO)izx/62+A2(X—XO)Z.—| (4.6)

The avoideal crossimy is characterize by four parametersthe gap e, the difference of the asymp-
totic slopes A, the mean of the asymptott slopes B, and the position X.

Avoided crossing are physically importart becaus they mediae the breakdown of the adia-
batic theoren by Landau-Zenetransitions:>*?3and in Sec VI we will shaw tha they determine
the form of singula terms in the expansio of correlation functiors sud as (1.1).

The densiy of avoided crossing can be definad as follows: @%aC)(A,B,e)dAd BdedX is the
expecte numbe of avoidel crossing betwea a given pair of successig levels in an intervd of
lengh d X, for which the slope difference mean slope and ggp parametes all lie in intervak of
widths respectivelydA, dB, de, centered on the valuds, B, e. This statistic is only meaningful
for smal values of €, becausé\ andB are only defined for avoided crossings with gaps which are
very smal comparé to the mean levd separatio 1/p. The avoided crossing density is calculated
by exacty the same approab as for the densiy of degeneraciesalthoudh the calculation is
somewhamore difficult: the resulf obtainel in Refs 3 ard 5 is

T (A,B,e)dAdBde=P[B]dBC[ (p/o) P+ P 1 deAPH ! exi] — BA%I80?]dA,~ (4.7)
where P[B]dB is a Gaussia distribution with variances?/8, and
3/2 8'777/2

'
4 C(Eﬂfi):_,_| cl@® — -
2 12 4 1352

kg

(ac)
C1 24’

4.9

C. Branc h points

Degeneracigbetwee levels of the one parametemodé (2.2) can occu for complex values
of X; thes degeneraciehawe a brand point structure The brand points are importart because
they are used to determire the exponers describig the probability of non-adiabatic
transitions:>* Branch points can be identified with a particula pai of levels by considerimg a
closa pat in the complex X plare which leaves the red axis and loops arourd one and only one,
brandt point For all but one of the levels indices n, the enery levd E, (X) is single valued when
traced arourd this path but one level, E,, say is continuousy transforme into anothe level
E,, when tracel arourd this path The levels with indices m, m’ are connectd by the branch
point.

We defire Z£7(Y,N)dY to be the frequeng with which we encounte brand points involv-
ing the nth levd ard the levd n+ N, with the imaginay paitt of the paramete X in an interve of
width dY centere on Y.

We hawe only been able to find the densiy of brant points for N=1 ard smal Y. Branch
points very close to the red axis are associate with avoidal crossing with very smal values of
e: the distane of the brand point from the red axis is e/A. The density of these branch points is
obtainel immediatey from (4.7) ard (4.8):
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;@‘Bb”(Y,l)=J:dAﬁo dBJ:de%a@(A,B,e)é( Y—%)

=CY(po) YA L - (4.9
with dimensionles constants
3/2 10__7/2
C(lbr):4_77'_| C<2br):1677 - Elbr)zz T 4.10
3 3 45,2

Guarner et al.2 gave an argumen for an expressia of the form (4.9), but did not obtain the
prefactos (4.10).

V. DENSITY OF DEGENERACIES

We now discus how to determire the densiy of degeneraciesThis has alrea¢y been de-
scribal in detal for the Gaussia orthogon& ensemblé, ard the resut for the Gaussia unitary
ensemh# has alo been quota in an earlie paper'® Here we discus the GUE ca® in detail,
presentig detaik of the calculation which were omitted in Ref. 10; the calculatio for the GSE
ca® is similar, and is discussd in an Appendix.

Following the approab introducel in Sec Ill, we seled¢ an arbitrary point in parametespace
Xo- We assune tha this point is close to adegenerag betwea levels with indicesn and n+ 1. In
the neighborhod of this point we represehthe Hamiltonian in the bask formed by the eigen-
functiors |,(Xo)) a Xo, and apply two-stat degenera perturbatio theory The separatia of
the nearly degenerat levels at a nearly position X=X+ 6X is

2
+4

2
- (5.1

En+1—En~ A+Ei(aiHn+1n+1—aiHnn>6xi EiaiHnméxi

wher A=E, . 1(Xq) —E,(Xg). Within this approximatio the degenerag occuss when the dis-
criminart (5.1) vanishesat adisplacementX from X,. The componentsiX; of this displacement
are given by solving a systen of linear equations:

3
jgl M;j 6X;=A 8y, (5.2

whete the elemens of the 3x 3 matrix M ={Mj;} are

Mlj:&an+ln+l_&annv

(5.3
MZ]:Z Rd:(?ann‘Fl:L_' MB]:Z |m[O7ann+1]-

Note tha the M;; are elemens of a real non-symmetric randon matrix M with statistically

independenelementsall of which are identicaly Gaussia distributed with varian@ 2¢? and
mean 0.

The distan@ from the referene point to the degeneracyR=|6X|, is proportional toA: we
write R=Af where

3
f2=21[<M-1>i1]2n (5.4)
J. Math. Phys., Vol. 37, No. 10, October 1996
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The probability P[ R] that the nearesdegenerag exist at a smal distane R can then be written,
by analoy with (3.2),

P[R]=JoxdffomdAP[f]P[A]é(R—fA), (5.5

where P[f] is the probability distribution for f, and P[A] is the distribution of neighboring
enery leve separationsthes quantities are independenbecaus of the statistica independence
of H andé;H (notetha A depend only upan H wherea f depend only upan the matrix elements
8;H ). The distribution P[A] is the well known leve spacimy distribution? When R is small,
the Dirac delta function only suppors smal values of A, for which the levd spacimg distribution
is known analytically’ in the limit N—o:

1
P[A]dA=[§w2p3A2+ O(A?’)}dA,ﬂ (5.6)
wherep is the density of states. Performing the integral$5rb) gives

P[R]= dR.- (5.7)

1
§772p3<f_3>R2+ O(R®)

The expectd numbe of degeneracein a spherich shel of radiss R ard thicknes dR is
47 7/ U*IR?dR; compariny this with (5.7) gives

, 1 _
g{zdeﬁl))zl—zwp3<f 3>.—1 (5.8

It remairs to evaluae the integrd | =(f~3), by averagiy over the probability density

tr(MTM)

P dM,- (5.9

dP:P[M]dMZP[MuaMlz, ce yMgg]H dM;;=Aexp
ij

where A is a normalization factor. To facilitate the calculation of the averagethe non-symmetric
red matrix M is decompose into a produc of two orthogona matrices O;, O,, and adiagonal
matrix D:

M=0]DO, .~ (5.10
This gives ausefu simplification of the expressia for f:
3 3 3
2= 2, [(03D0,) "' =2, [03D"01)il*= 2 A *(O)fy. (5.11

whee \; istheith diagon& elemer of D. Also, thetrace in (5.9) takes on a simple form when we
use (5.10:

3
tr(MTM)ztr(Bz)zgl N2 (5.12

We can now calculae (f ~3) by transformirg from the coordinate {M;;} to a se of coordinates
consistip of the three diagond elemens of D, and two sets of three coordinates
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a={ay,a5,a3} and B={B,,B2,B3} which parametrie the orthogon& matrices 51 ard 62,
respectively The Jacobia J of the coordinae transformatia is defined by

dM = Jda;da,dasdB,dB,d BsdN 1dN AN 5, (5.13
wher J= |detT | ard | is composd of three 9% 3 blocks:

oM

da

(5.19

2N

- (aﬂ &M)
j= -

B

In the first block, the elemens of the type dM;; / I\ are independenof the ;. In the second
block the elementsIM;; /day are linear in the \; ; the same applies for the third block Expanding
out the determinantwe find tha all the terms which contribue to J are 6th degres polynomiakin
the \;. Furthermore If \;==\; for ary i,j, then there exist at leag one coordinaé for the
orthogon& matrices O, O, which does not affed the matrix M. This implies that the Jacobian
J mug vanish wheneve \;= = \; . The observatios lead to a unique form for the Jacobian,

3
J=g<a>g(/3)igl INF=AElm (5.19

i>]j

wher g(a)dadasdas is an invariart measue for the orthogoné group The probability mea-
sure in the transforme coordinats is therefore

3

IT dadgidn; - (5.16
i=1

3 3
1
dP=Ag(a)g(B) I1 Ix?—xflex;{—r 22 N
i,j=1 0 k=1

i>]j

We can now use (5.11) ard (5.16) to evaluae (f 3). The three elemens (61)i1 in (5.1 are
componerg of a unit vecta with randan direction and can easiy be representg using polar
coordinates, ¢. The required average is then

(f_3>:|1/|2,

|1:f d)\P[)\]f:de sin afozvdw\;z co2 6+ )52 Si? 0 S b+ 32 Si? @ cof )32
(5.17)
T 2
I2=J d)\P[)\]fO dé sin Hfo do,

where P[\] is the produd of the polynomid and exponentiain (5.16. After performirg the
integrak over  and ¢, we find

~ V82 7(14,3)

7 5.1
75,53 (518

(f7%)

wher the .7(a,y,n) are integrals obtained from results derived by Selffeegd Aomoto?®
quotel by Mehta?
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n _y2

0 o X;
T(a,y,n)= f_w . f ' |xi|2“‘1l<j1;[i<n |x?—x7]2Y ex;{ T'

—oj=

dXi

_pantmn-1) DT+ y)T (et y(j—1))
=1 F(1+y)

(4.29

We find .7(1,3,3) =96, 7(%, 3,3) =242, so that(f ~%)=801/ /7. The densiy of degeneracies
is therefoe Z/{%9= 2,/7p343,

VI. SINGULARITIES OF CORRELATION FUNCTIONS

Now we discus how the singularities of the energy levels are relatel to singularities of the
correlation function C(X) defined in (1.1). Our contribution builds upan work of Guarner et al.B
who showel that the Fourig transfom of C(X) has apowe law decy as |k|—o:

B+2

a0 g
A L - (6.1)

S0~

whete we will defire the Fourie transfom nf'(k) of f(x) as follows:
"f'(k)=f dxf(x)exgikx].— 6.2

Guarner et al. were not able to determire the coefficientsa;; we will shav how they can be
obtainel usirng the resuls of Sec IV B. They showal tha the powe law decy is causé by
avoidel crossing with smal values of the ggp parametek, and deduced that the algebraic decay
of C(k) implies tha C(X) has anon-analytt behavio at X=0. Using the generalizd Fourier

transfom pairs?®

~ 1 1 3
f(k):W@f(X):EX2(|0g|X|+7— 5) - (6.33
~ 1 _ 1 3
f(k)—F@f(x)—l—2|x| , (6.3
-~ 1 B 1 5
f(k)—@@f(X)—_ﬂJXl )7 (63@

it can be see tha (6.1) implies the existene of non-analytt terms in the expansia of the
correlation function abou X=0. Expressd in terns of the naturd dimensionles variable
x=poX, the behaviour ofZ(x) up to and including the leading non-analytic term is

C(x)=20?[1+ y41|x|%log|x|+---] (GOE),~ (6.43
C(x)=01+CZx%+ y,|x|®+---] (GUE),~ (6.4b)
C(X)= 30 [1+CPx2+C{x*+ yyx|>+---] (GSE).~ (6.40
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The coefficiens of the powea series expansio are obtainel by a straightforwad application of
perturbatim theory the quadratt terms were calculatel by Simors ard Altshuler® and take the
values C§?)= — 272 amd C{?)= — 472, respectivelythe coefficiert C§") could also be determined
by the same method The highe orde coefficiens of the powe series expansia diverge because
of the effects of smal denominatorsWe will now calculae the coefficientsa in (6.1), enabling
the coefficientsy, of the singula terms to be identified.

We will find it conveniemh to assune tha the energy levels are periodic in X, with period
L, so tha the energy levd E, (X) can be expandd as aFouria series:

ZwimX}

E,(X)= _Si am exp{ 1 (6.5

Later we will conside the limit L—oc. The correlation function C(X) will be defined in terms of
an averag over the lengh L, which is convenienty expresse in terms of the Fourig coefficients
am:

1 (2
C(X)=Efode'E;(x+x')E;(x')=m2 (Lm

- (6.6

=<\ L L

2 5 2mimX
lam|* ex

For large m, the Fouria coefficiens are determine by singularities of E,(X) closes to the real

axis Thes are brant points associatd with the avoided crossing with smal values of the gap
parametefe. In order to calculate the effect of these singularities on the Fourier coefficients, we
will assune that the secoml derivative of the enery can be approximatd by a sun of contribu-

tions from the avoided crossings:

Eﬁ(X)~; (—DPIf(X=X; A ), (6.7

where A;, €, and X; are the parametes of the jth avoided crossing (It is more conveniento use

the secoml derivative since this approachs zer at =.) Here the sum runs over all avoided
crossing betwea 0 and L, P; is zem if the avoidel crossig is with a leve below, unity for
crossirg with aleved above and f(X,A,e€) is the second derivative of the energy associated with
a single avoided crossimg with slope and ggp parametes (A, €) at positionX=0:

AZe?
f(X,A,f)Z m.ﬂ (6.8)
Using (6.7) to estimae the Fourig coefficiens a,,,, ard we find
-2
am:_(szm> %2}) (—1)PJJOdef(x—x,-,Aj,ej)
1 —~
~= ﬁg (—=D)P exdikX;1f(k,A},€)), 6.9

wher k=2m7m/L, andf(k,A,¢€) is the Fourier transform of (X,A,e) with respect toX: in the
secoml relation we hawe assumd tha L is sufficiently large that for all the avoided crossings
excep tho= close to X;=0 or X; =L, the errors associate with taking the limits of integratio to
infinity can be neglected Using (6.9) to estimae |a|? gives an expressia involving a double
sum over pairs of avoided crossings The positiors X; of the narrowly avoided crossing can be
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assumd to be random implying tha the avera@ over off-diagond terms of the doubk sum
containirg the pha® factar exik(X;—X;.)] vanishesWe can therefoe write

1 _
|am|2~W; (kA €)]?

2 0 ) o —_

~— dAJ dBJ de Z5(A,B, )| f(k,A, €)%~ (6.10
kL Jo B 0

where ,”Jf/fgdeg) is the densiy of avoidel crossing definel in Sec IV B, ard the factar of 2 is

included becaus avoidal crossing with both the levels abowe ard belov mug be considered.
The Fourig transfom of (6.8) is

T(k,A, €)=keKy(kelA), (6.1

wher K;(x) is the Bessé function with imaginay argument®3! In the limit L—o we can
approximagé the sum in (6.6) as an integral ard using (6.10 we write

1 (= ~
C(X)=§ﬁmdk exi —ikX]C(k),
(6.12
~ 2= fm e ~
C(k)= Ffo dAj_mdBfo deZf(A,B,e)[f(K,A,e€)[?

B+1 2
- —BA
L j dAAZAT3 ex A
o 0 80?2

where we hawe usel (4.7). Using the integrd identity®*

(ac)
_ ZCB
K(B+2)

2

f dxxP K (x)
0

2" v+ D(v=1IT (3 (v—1)]*

fo dx x”|K4(x)|?= T+ 1) 7 (6.13

we find that E(k) isin the form (6.1), with dimensionles constants

256773/2 214\/5777/2
e (6.14

a;=4m3, a,=

Expressd in terms of the dimensionles variabke x=paX, the correlation function, up to and
including the first singula term is therefore

C(x)=20?[1— #?x? log|x|+---] (GOE),

3/2

64
C(x)=0? 1—2772x2—T|x|3+--~ (GUE) = (6.15

472 2048272
1-— — x>+ CPx*+ L
3 675

C(x)= %7 x5+ .. } (GSE).
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APPENDIX: THE DENSITY OF DEGENERACIES FOR THE GSE

Here we discus the densiy of degeneracie #{*® for a parametrizd Gaussia symplectic
ensembleThe methal employael is the sare as that for the GUE, and so can be presentd briefly.
The quaternio elemens g, can be represente by the 2xX 2 matrices:

N N L N

enablirg the GSE matrix to be representg by a 2NX2N red matrix, which has N, 2—fold
degenerat eigenvaluesthis (Kramer's degenerag will be neglectedand we will calculae the
densiy of degenerackbetweea pairs of thee doubk levels Five parametes mug be varied in
orde to creae thee degeneracies.

The condition for a degenerag betwee levels n and n+1 to be at a distancesX from an
arbitray point can be written in aform analogos to (5.2), wher M is now a 5X5 matrix with
elements

M1j:[&jH(S)]nn_[ajH(S)]nJranrlv
M2;=2[3H Tnni 1, (A2)
Mij :Z[ﬁjﬁi(é)Z]nnJrli_' |:3,4,5
Again M ={M;j;} isanon-symmeti red matrix with independentGaussia distributed elements,
with mean value zerg the varian is o in this case.
The Euclidea lengt of the vecta which solves (5.2) is agan written R=Af, and following
the GUE analyss we find the probability P[R]dR tha the nearet degenerag lies in a shel of

thicknes dR at distane R. Using the faa that for the GSE the levd spacimy distribution is
P[A]dA~ 274p5A%dA for Ap<1, N>1, we find

16
P[R]~ Esw4p5R4<f*5>,ﬂ (A3)

which is valid for smal R. The expectd numbe of degenerac®in this shel is P[R]dR
= 7?R* 7 {%*9dR implying that the densiy of degeneraciefor the parameterize GSE is

oy 2 .
DD = emp(170).m (A4)

Theintegrd I =(f~°) can be evaluatel using the same approab as tha used for (f3)in Sec.
V, using the decompositia of M given by (5.10. After sone algebrathe origind 25 dimensional
integrd over the Mj; is reducel to the quotiert of two five dimension&integrals:
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o®7(145) 1605
73,45 2w

where 7(a,y,n) is the integral (5.19. Combining (A4) and (A5), we then find
7{$°9= (16\27%445)p°c".

(f=5)= (A5)
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