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We consider singularities of the set of energy levels En(X) of a quantum Hamil-
tonian, obtained by varying aset of d parametersX5(X1 ,..,Xd). Singularitiessuch
as minima, degeneracies, branch points, and avoided crossings can play an impor-
tant role in physical applications. We discuss a general method for counting these
singularities, and apply it to a random matrix model for the parameter dependence
of energy levels. Wealso show how the density of avoided crossing singularities is
related to a non-analyticity of a correlation function describing the energy levels.
© 1996 American Institute of Physics. @S0022-2488~96!01810-5#

I. INTRODUCTION

It is now widely accepted that random matrices provide an excellent model for statistical
properties of the spectra of quantum systems for which the energy levels cannot be determined
analytically:1,2 random matrix models have been successfully applied to disordered solids, classi-
cally chaotic systems, and many body problems. There are many contexts in which families of
Hamiltonians depending smoothly on a set of parameters are of physical importance, for example
the parameters could represent the positions of atomic nuclei in the Hamiltonian for the electrons
in a molecule, or the Bloch wavevectors of an electron in a periodic potential. Recently the
randommatrix approach has been extended to describe statisticswhich characterize the parameter
dependence of energy levels.3–9 One approach to analyzing the parameter dependence is to con-
sider correlation functions; an example which has received attention6–8 is the correlation function
C(X) of the derivatives of energy levels En85dEn /dX:

C~X!5^En8~X1X0!En8~X0!&.¬ ~1.1!

An alternative approach is to examine various types of singularity in the spectrum, such as
degeneracies9,10 ~where a pair of energy levels become equal at some real valued point in the
parameter space!, branch points8 ~where energy levels become degenerate at complex parameter
values!, and avoided crossings3 ~characteristic structures where energy levels come close to de-
generacy!. These singularities can have direct physical consequences, in determining various
aspects of the breakdown of the adiabatic theorem,11–14,3 and discontinuities of the quantized Hall
conductance.15,16,10

This paper has two objectives. The first is to explain the strategy for calculating the density of
singularities in the parameter space; we wil l present some new calculations of the density of
singularities, as well as reviewing existing results. The second objective is to discuss the impli-
cations of these results for the calculation of correlation functions such as ~1.1!. Guaneri et al.8
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demonstrated that the existence of branch point singularities in the spectrum implies that correla-
tion functions such asC(X) have a non-analytic behavior at X50. Wewil l show how the leading
order non-analytic part of this function is obtained from the density of singularities.

This paper is organized as follows. In Sec. II we discuss parameter dependent generalizations
of the standard random matrix models. In Sec. II I we describe the approach to counting densities
of singularities of random functions, using the density of minima as an example. In Sec. IV we
review the known results on the density of various types of singularity, and their physical appli-
cations. Some of the results in Sec. IV are new, and of these the density of degeneracies for the
GUE and GSE ensembles are not easily obtained; these calculations are explained in Sec. V and
in an Appendix. Finally in Sec. VI we discuss the implications of the results given in Sec. IV for
correlation functions such as ~1.1!.

In this paper we wil l discuss a variety of different probability distributions. To avoid naming
amultiplicity of different functions describing thesedistributions, wewil l introduce the notational
convention that dP5P@X#dX is a probability measure for the quantity X.

II. PARAMETER DEPENDENT RANDOM MATRICES

The most fundamental random matrix models are the Gaussian ensembles introduced by
Porter and Dyson. These are constructed from real symmetric matrices H̃ (S) and real antisymmet-
ric matrices H̃k

(A) with independent Gaussian distributed elements; the varianceof the i j th element
of these matrices is, respectively, 16d i j . There are three Gaussian ensembles, invariant under
orthogonal, general unitary, and ‘‘symplectic’’ unitary transformations,1,2 which are constructed
from combinations of the symmetric and antisymmetric matrices as follows:

@H̃# i j5
1

Ab
H @H̃ ~S!# i je01 (

k51

b21

@H̃k
~A!# i jekJ .¬ ~2.1!

Hereb51,2,4 for the orthogonal, unitary and symplectic ensembles, respectively,e0, e1 are 1,
A21, respectively, and the other ek are the other bases for the quaternion algebra. In order for
these to beuseful models for energy level statistics, thedimensionN of thematrix should be large.

In order to study singularities of the spectrum, it is necessary to construct a parameter depen-
dent version of these random matrix models. It is convenient to do this in such a way that
]Ĥ/]X is an independent realization of the same ensemble asĤ, and that the distribution of both
of these quantities is stationary: this is achieved by writing

Ĥ~X!5 cos XĤ11 sin XĤ2 ,¬ ~2.2!

where Ĥ1 and Ĥ2 are Hermitean operators represented by independent samples from the same
Gaussian symmetry-invariant ensemble defined above. Reference 5 discusses theoretical argu-
ments and numerical resultswhich support the useof ~2.2! asamodel for parameter dependencies
of spectra. In the calculations below, we wil l require the matrix elements of dĤ/dX in the basis
formed by theeigenstatesof Ĥ: this is simply an arbitrary unitary transformation of dĤ/dX within
the appropriate symmetry class ~orthogonal, unitary, or symplectic!. Because theGaussian invari-
ant ensembles are invariant under these unitary transformations, the matrix elements
]Hnm[^fnudĤ/dXufm& have the same statistical properties as those of the matrix dĤ/dX.

In order to compare a randommatrix model with the spectrum of a ‘‘real’ ’ physical system in
the neighborhood of energy E, we must scale energy levels of the system so that the density of
statesr(E) corresponds to that of the random matrix model. In a parameter dependent system, it
is also necessary to adjust another parameter, describing the sensitivity of the energy levels of the
system to perturbations: the natural choice is to use either the variance of the off-diagonal matrix
elements of dĤ/dX in the eigenbasis,
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s2~E!5^u]Hnmu2&
En;Em;E

nÞm

,¬ ~2.3!

or the variance of dEn /dX: these are related by

varFdEndX G5
2

b
s2.¬ ~2.4!

Equation ~2.4! follows from the definition ~2.1! for theGaussian randommatrix models, and there
are several arguments suggesting that it should also hold for complex quantum systems.17,18 For
the random matrix ensemble ~2.2!, we haves51.

The model ~2.2! can be extended to systems with d parameters in several ways; the simplest
is to use 2d independent realizations of the random matrices, and write

Ĥ~X!5(
i51

d

cos XiĤ2i211 sin XiĤ2i .¬ ~2.5!

Now the sensitivity of energy levels to the parametersXi can be characterized by defining a set of
parameters Ci j which generalize ~2.3!:

Ci j5^] iHnm* ] jHnm&
En;Em;E

nÞm

,¬ ~2.6!

where] iHnm[^fnu]Ĥ/]Xi ufm&. A change of variables makes the parameter dependence of the
energy levels resemble that of the model ~2.5!. In the many-parameter case the parameters
characterizing the sensitivity of energy levels is naturally defined in terms of the Jacobean of this
transformation: noting that for ~2.5! we have Ci j5d i j , the natural definition is

s25~det@C̃# !1/d,¬ ~2.7!

where C̃ is amatrix with elements Ci j . In order to use the parametrized random matrix models,
both the density of statesr and the sensitivity parameters must be estimated. This can always be
done numerically calculating an average over energy levels. For systems which exhibit semiclas-
sical behavior,r can be estimated using the Weyl formula,19 ands2 can be estimated from the
classical correlation function of ]H/]X.20

III. COUNTING SINGULARITIES

The method which we use for calculating the density of singularities can be viewed as an
extension of one described by Rice,21 who gives an expression for the frequency of zero crossings
of a random function f (x), for which the joint probability density of the function and its derivative
f 8 is known. If D (0) is the density of zeros of the function, the probability of finding a zero in a
short interval of length @x0 ,x01dx# at a randomly chosen pointx0 is dP5D (0)dx. If the point
x0 happens to be close to a zero, the distance from x0 to this zero crossing is approximately
2 f (x0)/ f 8(x0), and the probability of the zero crossing lying within dx of x0 is

dP;E
2`

`

d fE
2`

`

d f8P@ f , f 8#xS 2 f

f 8dx D ,
~3.1!

x~x!5 H1,¬ 0,x,1,
0,¬ 0.x.1.

Dividing by dx and taking the limitdx→0 gives
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D ~0!5E
2`

`

d fE
2`

`

d f8P@ f , f 8#dS f

f 8 D5E
2`

`

d f8u f 8uP@0,f 8#.¬ ~3.2!

The same approach is used to determine the density of any point singularity: we use the known
statistics of the function to calculate the probability of finding a singularity in a small element
centered on a randomly chosen test point, and equate this to the density of singularitiesmultiplied
by the volume of the element.

As an elementary example, we can use ~3.2! to determine the density of minima D (min) of
En(X) for the randommatrix model ~2.2!. Thedensity of minimamight find physical applications,
for example in determining the number of possible energetically stable configurations of complex
molecules which can be obtained by varying configuration of the nuclei.

The first and second derivatives of En(X),

En85
dEn
dX

5]Hnn ,¬ En95
d2En

dX2
52(

mÞn

u]Hnmu2

~En2Em!
22En ,¬ ~3.3!

are independent, because they depend upon different matrix elements. Wedenote the distributions
of the first two derivatives by P@E8# and P@E9#, respectively. The first derivativeE8 is Gaussian
distributed with variance 2s2/b, and with a mean value which is zero for the model~2.2!, but
which may have anon-zero value ^E8& in physical applications. The distribution of the second
derivative is difficult to calculate: when the matrix dimension N is large, an excellent
approximation22 is

P@E9#5
Cb

@ab
21E92#~b12!/2 ,¬ ~3.4!

which isalso an exact result for theGUE in the limi t N→`.23 TheconstantsCb aregiven in Refs.
4,5,

C152p2r2s4,¬ C2524p2r3s6,¬ C4528p4r5s10/3,¬ ~3.5!

and the ab are then determined by normalizing the distribution: we find a152prs2 and
a15a25a4. The density of minima can now be calculated by using ~3.2! to calculate the density
of zeros of En8(X), and dividing by two because half of the extrema of En(X) are maxima:

Db
~min!5P@E850#E

0

`

dE9uE9uP@E9#5Cb
~min!rs expF 2b^E8&2

4s2¬ G ,¬ ~3.6!

with dimensionless constants

C1
~min!5

Ap

2
,¬ C2

~min!5A2

p
,¬ C4

~min!5
4

3Ap
.¬ ~3.7!

These results are exact for theGUE in the limi t N→`, and at least a very good approximation for
the GOE and GSE.

IV. REVIEW OF RESULTS ON DENSITY OF SINGULARITIES

Below we discuss the various other types of singularity of the spectrum which are of interest
and their physical significance, and review the existing results on their density. Al l of the results
are exact for the random matrix models introduced in Sec. II in the limi t N→`.
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A. Degeneracies

A degeneracy occurs when two or more energy levels are equal for some real valued point in
parameter space; in practice we wil l only be interested in degeneracies between pairs of levels,
because higher order degeneracies have ahigher codimension. Generically, two parameters must
be varied in a family of real symmetric matrices to create a degeneracy, three parameters in a
family of Hermitean matrices, and fiveparameters in afamily of quaternion symmetric matrices.24

We wil l therefore consider the density of degeneracies in the model ~2.5! with d52,3,5 for the
GOE, GUE and GSE versions, respectively.

An interesting example of the importance of degeneracies is given by Simon,15 who shows
that the Chern integers describing the quantized Hall conductance16 change, typically by 61, at
degeneracies. Degeneracies can also enable other invariant quantities to change; for example the
center of symmetry associated with Wannier functions of a Bloch band can change discontinu-
ously when the band touches aneighboring band at some point in the Brillouin zone.

The density of degeneracies for the parametrized ensembles is defined in a space of b11
parameters, and their density is

Db
~deg!5Cb

~deg!~rs!b11,¬ ~4.1!

with dimensionless prefactors

C1
~deg!5

p

3
,¬ C2

~deg!5
2Ap

3
,¬ C4

~deg!5
16A2p3/2

45
;¬ ~4.2!

C1
(deg) was derived in Ref. 9 and C2

(deg) was quoted in Ref. 10 without a full derivation. An
estimate consistent with ~4.1! was given in an earlier paper25 for the special case of billiards,
without an accurate value of the prefactor. The derivations of C2

(deg) and C4
(deg) wil l be given in

Sec. V and in an Appendix, respectively.
In the neighborhood of a degeneracy, the separation D5En112En of the degenerating levels

is given by the square root of a quadratic form; for example in the case of a system such as the
GOE, where the Hamiltonian is real, we can write

D25A11dX1
21A22dX2

212A12dX1dX21O~dX3!.¬ ~4.3!

This quadratic form can be defined by the orientation, eccentricity, and size of the elliptical level
curves of D. For the model ~2.5!, the orientation of the ellipses is random, and the other param-
eters are defined by the trace t5A111A22 and determinant d5A11A222A12

2 of the matrix which
represents the quadratic form. The joint distribution of the trace and determinant has been
calculated:9 it is

P@ t,d#5
d

256s6
expS 2t

8s2 D ,¬ ~4.4!

within the physically allowed region t.0, d.0, d< 1
2 t

2. Other statistics describing the elliptical
contours of D can be obtained directly from this simple result; for example the distribution of
eccentricity e of the ellipses is

P@e#5S 2e

22e2
D 3.¬ ~4.5!

The distribution of parameters of the quadratic form for the unitary and symplectic ensembles is
not known.
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B. Avoide d crossings

When asingleparameter is varied, energy levelsof systemswithout symmetriesnever cross,26

but they can approach each other very closely at events called avoided crossings. When the
separation of a pair of energy levels is very small compared to their separation from all of the
other levels, the structure of these avoided crossings can be understood using degenerate pertur-
bation theory for a two level system: provided the Hamiltonian is a regular function of parameter
in the neighborhood of the near-degeneracy, the levels have ahyperbolic form,

E6~X!;B~X2X0!6
1

2
Ae21A2~X2X0!

2.¬ ~4.6!

The avoided crossing is characterized by four parameters, the gape, the difference of the asymp-
totic slopes A, the mean of the asymptotic slopes B, and the position X0.

Avoided crossings are physically important because they mediate the breakdown of the adia-
batic theorem by Landau-Zener transitions,11,12,3and in Sec. VI wewil l show that they determine
the form of singular terms in the expansion of correlation functions such as ~1.1!.

The density of avoided crossings can be defined as follows: Db
(ac)(A,B,e)dAdBdedX is the

expected number of avoided crossings between a given pair of successive levels, in an interval of
length dX, for which the slope difference, mean slope, and gap parameters all lie in intervals of
widths, respectively, dA, dB, de, centered on the valuesA, B, e. This statistic is only meaningful
for small valuesof e, becauseA andB are only defined for avoided crossings with gaps which are
very small compared to themean level separation 1/r. The avoided crossing density is calculated
by exactly the same approach as for the density of degeneracies, although the calculation is
somewhat more difficult: the result, obtained in Refs. 3 and 5 is

Db
~ac!~A,B,e!dAdBde5P@B#dBCb

~ac!~r/s!b11eb21deAb11 exp@2bA2/8s2#dA,¬ ~4.7!

where P@B#dB is a Gaussian distribution, with variances2/b, and

C1
~ac!5

p

24
,¬ C2

~ac!5
p3/2

12
,¬ C4

~ac!5
8p7/2

135A2
.¬ ~4.8!

C. Branc h points

Degeneracies between levels of the one parameter model ~2.2! can occur for complex values
of X; these degeneracies have a branch point structure. The branch points are important because
they are used to determine the exponents describing the probability of non-adiabatic
transitions.13,14 Branch points can be identified with a particular pair of levels by considering a
closed path in the complex X planewhich leaves the real axis and loopsaround one, and only one,
branch point. For all but one of the levels indices n, the energy level En(X) is single valued when
traced around this path, but one level, Em say, is continuously transformed into another level
Em8 when traced around this path. The levels with indices m, m8 are connected by the branch
point.

We defineDb
(br)(Y,N)dY to be the frequency with which we encounter branch points involv-

ing the nth level and the level n1N, with the imaginary part of the parameter X in an interval of
width dY centered on Y.

We have only been able to find the density of branch points for N51 and small Y. Branch
points very close to the real axis are associated with avoided crossings with very small values of
e: the distance of the branch point from the real axis is e/A. The density of these branch points is
obtained immediately from ~4.7! and ~4.8!:
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Db
~br!~Y,1!5E

0

`

dAE
2`

`

dBE
0

`

deD ~ac!~A,B,e!dS Y2
e

A D
5Cb

~br!~rs!b11Yb21,¬ ~4.9!

with dimensionless constants

C1
~br!5

4p

3
,¬ C2

~br!5
16p3/2

3
,¬ C4

~br!5
210p7/2

45A2
.¬ ~4.10!

Guarneri et al.8 gave an argument for an expression of the form ~4.9!, but did not obtain the
prefactors ~4.10!.

V. DENSITY OF DEGENERACIES

We now discuss how to determine the density of degeneracies. This has already been de-
scribed in detail for the Gaussian orthogonal ensemble,9 and the result for the Gaussian unitary
ensemble has also been quoted in an earlier paper.10 Here we discuss the GUE case in detail,
presenting details of the calculation which were omitted in Ref. 10; the calculation for the GSE
case is similar, and is discussed in an Appendix.

Following the approach introduced in Sec. III , we select an arbitrary point in parameter space
X0. Weassume that this point is close to adegeneracy between levelswith indices n and n11. In
the neighborhood of this point we represent the Hamiltonian in the basis formed by the eigen-
functions ucn(X0)& at X0, and apply two-state degenerate perturbation theory. The separation of
the nearly degenerate levels at a nearby position X5X01dX is

En112En;AFD1(
i

~] iHn11 n112] iHnn!dXi G214U(
i

] iHnn11dXiU2 ,¬ ~5.1!

where D5En11(X0)2En(X0). Within this approximation the degeneracy occurs when the dis-
criminant ~5.1! vanishes, at adisplacementdX from X0. ThecomponentsdXi of this displacement
are given by solving a system of linear equations:

(
j51

3

Mi jdXj5Dd1 j ,¬ ~5.2!

where the elements of the 333 matrix M̃5$Mi j % are

M1 j5] jHn11 n112] jHnn ,
~5.3!

M2 j52 Re@] jHnn11#,¬ M3 j52 Im@] jHnn11#.

Note that the Mi j are elements of a real, non-symmetric, random matrix M̃ with statistically
independent elements, all of which are identically Gaussian distributed, with variance 2s2 and
mean 0.

The distance from the reference point to the degeneracy, R5udXu, is proportional toD: we
write R5D f where

f 25(
i51

3

@~M̃21! i1#
2.¬ ~5.4!
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The probability P@R# that the nearest degeneracy exists at a small distanceR can then bewritten,
by analogy with ~3.2!,

P@R#5E
0

`

d fE
0

`

dDP@ f #P@D#d~R2 fD!, ~5.5!

where P@ f # is the probability distribution for f , and P@D# is the distribution of neighboring
energy level separations: these quantities are independent because of the statistical independence
of Ĥ and] i Ĥ ~note that D dependsonly upon Ĥ whereas f dependsonly upon thematrix elements
] iHnm). The distribution P@D# is the well known level spacing distribution.1,2 When R is small,
the Dirac delta function only supports small values of D, for which the level spacing distribution
is known analytically2 in the limi t N→`:

P@D#dD5F13p2r3D21O~D3!GdD,¬ ~5.6!

wherer is the density of states. Performing the integrals in~5.5! gives

P@R#5F13p2r3^ f23&R21O~R3!GdR.¬ ~5.7!

The expected number of degeneracies in a spherical shell of radius R and thickness dR is
4pD2

(deg)R2dR; comparing this with ~5.7! gives

D2
~deg!5

1

12
pr3^ f23&.¬ ~5.8!

It remains to evaluate the integral I5^ f23&, by averaging over the probability density

dP5P@M̃ #dM̃5P@M11,M12, . . . ,M33#)
i j

dMi j5AexpF2
tr~M̃TM̃ !

4s2 GdM̃,¬ ~5.9!

whereA is a normalization factor. To facilitate the calculation of the average, the non-symmetric
real matrix M̃ is decomposed into a product of two orthogonal matrices Õ1, Õ2, and a diagonal
matrix D̃:

M̃5Õ1
TD̃Õ2 .¬ ~5.10!

This gives auseful simplification of the expression for f :

f 25(
i51

3

@~Õ 1
TD̃Õ2!

21# i1
2 5(

i51

3

@Õ2
TD̃21Õ1! i1]

25(
i51

3

l i
22~Õ1! i1

2 ,¬ ~5.11!

wherel i is the i th diagonal element of D̃. Also, the trace in ~5.9! takeson asimple form when we
use ~5.10!:

tr~M̃TM̃ !5tr~D̃2!5(
i51

3

l i
2.¬ ~5.12!

We can now calculate ^ f23& by transforming from the coordinates $Mi j % to a set of coordinates
consisting of the three diagonal elements of D̃, and two sets of three coordinates
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a5$a1 ,a2 ,a3% and b5$b1 ,b2 ,b3% which parametrize the orthogonal matrices Õ1 and Õ2 ,
respectively. The Jacobian J of the coordinate transformation is defined by

dM̃5Jda1da2da3db1db2db3dl1dl2dl3 ,¬ ~5.13!

where J5udet j̃ u and j̃ is composed of three, 933 blocks:

j̃ 5S ]M̃

]l
U ]M̃

]a
U ]M̃

]b D .¬ ~5.14!

In the first block, the elements of the type ]Mi j /]lk are independent of the l i . In the second
block the elements]Mi j /]ak are linear in thel i ; the sameapplies for the third block. Expanding
out the determinant, we find that all the termswhich contribute to J are 6th degree polynomials in
the l i . Furthermore, If l i56l j for any i , j , then there exists at least one coordinate for the
orthogonal matrices Õ1, Õ2 which does not affect the matrix M̃ . This implies that the Jacobian
J must vanish whenever l i56l j . These observations lead to a unique form for the Jacobian,

J5g~a!g~b! )
i , j51
i. j

3

ul i
22l j

2u,¬ ~5.15!

where g(a)da1da2da3 is an invariant measure for the orthogonal group. The probability mea-
sure in the transformed coordinates is therefore

dP5Ag~a!g~b! )
i , j51
i. j

3

ul i
22l j

2uexpF2
1

4s2(
k51

3

lk
2G)

i51

3

da idb idl i .¬ ~5.16!

We can now use ~5.11! and ~5.16! to evaluate ^ f23&. The three elements (Õ1) i1 in ~5.11! are
components of a unit vector with random direction, and can easily be represented using polar
coordinatesu, f. The required average is then

^ f23&5I 1 /I 2 ,

I 15E dlP@l#E
0

p

du sin uE
0

2p

df~l1
22 cos2 u1l2

22 sin2 u sin2 f1l3
22 sin2 u cos2 f!23/2

~5.17!

I 25E dlP@l#E
0

p

du sin uE
0

2p

df,

where P@l# is the product of the polynomial and exponential in ~5.16!. After performing the
integrals over u andf, we find

^ f23&5
A8s3I ~1,12,3!

I ~ 1
2 ,

1
2,3!

,¬ ~5.18!

where the I (a,g,n) are integrals obtained from results derived by Selberg27 and Aomoto,28

quoted by Mehta,2
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I ~a,g,n!5E
2`

`

. . . E
2`

`

)
i51

n

uxi u2a21 )
1< j, i<n

uxi
22xj

2u2g expF 2xi
2

2 Gdxi
52an1gn~n21!)

j51

n
G~11g j !G~a1g~ j21!!

G~11g!
.¬ ~4.29!

We find I (1,12,3)596, I ( 12 ,
1
2,3)524A2p, so that̂ f23&58s3/Ap. The density of degeneracies

is thereforeD2
(deg)5 2

3Apr3s3.

VI. SINGULARITIES OF CORRELATION FUNCTIONS

Now we discuss how the singularities of the energy levels are related to singularities of the
correlation function C(X) defined in ~1.1!. Our contribution builds upon work of Guarneri et al.,8

who showed that the Fourier transform of C(X) has apower law decay as uku→`:

C̃~k!;
abs

r S rs

uku D
b12

,¬ ~6.1!

where we wil l define the Fourier transform f̃ (k) of f (x) as follows:

f̃ ~k!5E
2`

`

dxf ~x!exp@ ikx#.¬ ~6.2!

Guarneri et al. were not able to determine the coefficientsab ; we wil l show how they can be
obtained using the results of Sec. IV B. They showed that the power law decay is caused by
avoided crossings with small values of the gap parametere, and deduced that the algebraic decay
of C̃(k) implies that C(X) has anon-analytic behavior at X50. Using the generalized Fourier
transform pairs,29

f̃ ~k!5
1

uku3
⇔ f ~x!5

1

2p
x2S loguxu1g2

3

2D ,¬ ~6.3a!

f̃ ~k!5
1

k4
⇔ f ~x!5

1

12
uxu3,¬ ~6.3b!

f̃ ~k!5
1

k6
⇔ f ~x!52

1

240
uxu5,¬ ~6.3c!

it can be seen that ~6.1! implies the existence of non-analytic terms in the expansion of the
correlation function about X50. Expressed in terms of the natural dimensionless variable
x5rsX, the behaviour ofC(x) up to and including the leading non-analytic term is

C~x!52s2@11g1uxu2loguxu1•••# ~GOE!,¬ ~6.4a!

C~x!5s2@11C2
~2!x21g2uxu31•••# ~GUE!,¬ ~6.4b!

C~x!5 1
2 s2@11C4

~2!x21C4
~4!x41g4uxu51•••# ~GSE!.¬ ~6.4c!
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The coefficients of the power series expansion are obtained by a straightforward application of
perturbation theory: the quadratic terms were calculated by Simons and Altshuler,6 and take the
valuesC2

(2)522p2 and C4
(2)52 4

3p2, respectively; the coefficient C4
(4) could also bedetermined

by the samemethod. The higher order coefficients of the power series expansion diverge because
of the effects of small denominators. Wewil l now calculate the coefficientsab in ~6.1!, enabling
the coefficientsgb of the singular terms to be identified.

We wil l find it convenient to assume that the energy levels are periodic in X, with period
L, so that the energy level En(X) can be expanded as aFourier series:

En~X!5 (
m52`

`

am expF 2p imX

L G .¬ ~6.5!

Later wewil l consider the limi t L→`. The correlation function C(X) wil l be defined in terms of
an average over the length L, which is conveniently expressed in terms of the Fourier coefficients
am :

C~X!5
1

LE0
L

dX8En8~X1X8!En8~X8!5 (
m52`

` S 2pm

L D 2uamu2 expF 2p imX

L G .¬ ~6.6!

For largem, the Fourier coefficients are determined by singularities of En(X) closest to the real
axis. These are branch points associated with the avoided crossings with small values of the gap
parametere. In order to calculate the effect of these singularities on the Fourier coefficients, we
wil l assume that the second derivative of the energy can be approximated by a sum of contribu-
tions from the avoided crossings:

En9~X!;(
j

~21!Pj f ~X2Xj ,Aj ,e j !,¬ ~6.7!

whereAj , e j , and Xj are the parameters of the j th avoided crossing. ~It ismore convenient to use
the second derivative, since this approaches zero at 6`.) Here the sum runs over all avoided
crossings between 0 and L, Pj is zero if the avoided crossing is with a level below, unity for
crossing with a level above, and f (X,A,e) is the second derivative of the energy associated with
a single avoided crossing with slope and gap parameters (A,e) at positionX50:

f ~X,A,e!5
A2e2

2~A2X21e2!3/2
.¬ ~6.8!

Using ~6.7! to estimate the Fourier coefficients am , and we find

am52S 2pm

L D 22 1

L(j ~21!PjE
0

L

dxf ~x2Xj ,Aj ,e j !

;2
1

k2L(j ~21!Pj exp@ ikXj # f̃ ~k,Aj ,e j !,¬ ~6.9!

where k52pm/L, and f̃ (k,A,e) is the Fourier transform off (X,A,e) with respect toX: in the
second relation we have assumed that L is sufficiently large that, for all the avoided crossings
except those close to Xj50 or Xj5L, the errors associated with taking the limits of integration to
infinity can be neglected. Using ~6.9! to estimate uamu2 gives an expression involving a double
sum over pairs of avoided crossings. The positions Xj of the narrowly avoided crossings can be
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assumed to be random, implying that the average over off-diagonal terms of the double sum
containing the phase factor exp@ik(Xj2Xj8)# vanishes. We can therefore write

uamu2;
1

k4L2
(
j

u f̃ ~k,Aj ,e j !u2

;
2

k4L
E
0

`

dAÈ`

dBE
0

`

deDb
~deg!~A,B,e!u f̃ ~k,A,e!u2,¬ ~6.10!

where Db
(deg) is the density of avoided crossings defined in Sec. IV B, and the factor of 2 is

included because avoided crossings with both the levels above and below must be considered.
The Fourier transform of ~6.8! is

f̃ ~k,A,e!5keK1~ke/A!, ~6.11!

where K1(x) is the Bessel function with imaginary argument.30,31 In the limi t L→` we can
approximate the sum in ~6.6! as an integral, and using ~6.10! we write

C~X!5
1

2pE2`

`

dk exp@2 ikX#C̃~k!,

~6.12!

C̃~k!5
2

k2
E
0

`

dAE
2`

`

dBE
0

`

deDb
~deg!~A,B,e!u f̃ ~k,A,e!u2

5
2Cb

~ac!

k~b12! S r

s D b11E
0

`

dAA2b13 expF 2bA2

8s2 G E
0

`

dxxb11uK1~x!u2,

where we have used ~4.7!. Using the integral identity31

E
0

`

dx xnuK1~x!u25
2n26~n11!~n21!3@G~ 1

2 ~n21!!#4

G~n11!
,¬ ~6.13!

we find that C̃(k) is in the form ~6.1!, with dimensionless constants

a154p3, a25
256p3/2

3
, a45

214A2p7/2

45
.¬ ~6.14!

Expressed in terms of the dimensionless variable x5rsX, the correlation function, up to and
including the first singular term, is therefore

C~x!52s2@12p2x2 loguxu1•••# ~GOE!,

C~x!5s2F122p2x22
64p3/2

9
uxu31••• G ~GUE!,¬ ~6.15!

C~x!5 1
2 s2F12

4p2

3
x21C4

~4!x41
2048A2p7/2

675
uxu51 . . . G ~GSE!.
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APPENDIX: THE DENSITY OF DEGENERACIES FOR THE GSE

Here we discuss the density of degeneracies D4
(deg) for a parametrized Gaussian symplectic

ensemble. Themethod employed is the sameas that for theGUE, and so can be presented briefly.
The quaternion elements ek can be represented by the 232 matrices:

e05S 1 0

0 1D , e15S i 0

0 2 i D , e25S 0 1

21 0D , e35S 0 i

i 0D , ¬ ~A1!

enabling the GSE matrix to be represented by a 2N32N real matrix, which has N, 2–fold
degenerate eigenvalues: this ~Kramer’s! degeneracy wil l be neglected, and we wil l calculate the
density of degeneracies between pairs of these double levels. Five parameters must be varied in
order to create these degeneracies.

The condition for a degeneracy between levels n and n11 to be at a distancedX from an
arbitrary point can be written in a form analogous to ~5.2!, where M̃ is now a 535 matrix with
elements

M1 j5@] j H̃
~S!#nn2@] j H̃

~S!#n11 n11 ,

M2 j52@] j H̃
~S!#nn11 ,¬ ~A2!

Mi j52@] j H̃ i22
~A! #nn11 ,¬ i53,4,5.

Again M̃5$Mi j % is a non-symmetric real matrix with independent, Gaussian distributed elements,
with mean value zero; the variance is s2 in this case.

The Euclidean length of the vector which solves ~5.2! is again written R5D f , and following
the GUE analysis we find the probability P@R#dR that the nearest degeneracy lies in a shell of
thickness dR at distance R. Using the fact that for the GSE, the level spacing distribution is
P@D#dD; 16

135p
4r5D4dD for Dr!1, N@1, we find

P@R#;
16

135
p4r5R4^ f25&,¬ ~A3!

which is valid for small R. The expected number of degeneracies in this shell is P@R#dR

5 8
3 p2R4D 4

(deg)dR implying that the density of degeneracies for the parameterized GSE is

D4
~deg!5

2

45
p2r5^ f25&.¬ ~A4!

The integral I5^ f25& can beevaluated using thesameapproach as that used for ^ f23& in Sec.
V, using thedecomposition of M̃ given by ~5.10!. After somealgebra, theoriginal 25 dimensional
integral over theMi j is reduced to the quotient of two five dimensional integrals:
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^ f25&5
s5I ~1,12,5!

I ~ 1
2 ,

1
2,5!

5
16s5

A2p
,¬ ~A5!

where I (a,g,n) is the integral ~5.19!. Combining ~A4! and ~A5!, we then find
D 4

(deg)5(16A2p3/2/45)r5s5.
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