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Von Neumann lattices of Wannier functions for Bloch
electrons in a magnetic field
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Department of Physics, 405-47 California Institute of Technology, Pasadena,
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(Communicated by M. V. Berry, F.R.S. — Received 24 June 1985)

The problem of Bloch electrons in a magnetic field in two dimensions can
be reduced to a one-dimensional problem with a Hamiltonian A that is
a periodic function of £ and p. Wannier functions can be defined for the
sub-bands of the spectrum of this effective Hamiltonian. When the Chern
class (quantized Hall conductance integer) of the sub-band is zero, the
Weyl-Wigner formalism can be used to represent these Wannier functions
by a von Neumann lattice. It is shown how this von Neumann lattice of
Wannier functions can be defined for irrational as well as rational
magnetic fields.

An important benefit from using the Weyl-Wigner formalism is that
symmetries of the periodic potential are reflected by symmetries of the
effective Hamiltonian in phase space. It is shown how the Wannier
functions can be defined so that their Wigner functions have the point
symmetries of the effective Hamiltonian.

An example of how these results can prove useful is given: if we take
matrix elements of the Hamiltonian between the Wannier states of a
sub-band, we derive a new effective Hamiltonian describing this sub-band,
which is again a periodic function of coordinate and momentum operators.
Since, by projecting onto a sub-band, we have also reduced the number
of degrees of freedom, this operation is a renormalization group trans-
formation. It is shown that the symmetry of the new effective Hamil-
tonian in phase space is the same as that of the original one. This
preservation of symmetry helps to explain some unusual properties of
the spectrum when the Hamiltonian has fourfold symmetry.

1. INTRODUCTION

This paper describes some results on Bloch electrons in a magnetic field in two
dimensions, which are obtained by transforming the original two-dimensional
problem on a lattice into a one-dimensional problem on a line. Since this
transformation is not as well known as it might be, I will start by giving a brief
description of how it works.

Peierls (1933) showed how to construct a single-band model for the problem of
Bloch electrons in a magnetic field. If ¢, (k) is the Bloch dispersion relation for the
nth band when the field B = 0, then the Peierls effective Hamiltonian describing
the effect of a weak magnetic field is

1. e

S, =en(;bp—%A(f)), (1.1)
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136 M. Wilkinson

where A(r) is the vector potential. The basis set for this effective Hamiltonian is
the set of lattice sites R corresponding to the lattice of Wannier functions for the
crystal in the absence of a magnetic field. Although the Peierls Hamiltonian is only
approximate, there is a function ¢, (k) for which (1.1) is exact, and which tends
toward ¢, (k) as B0 (Blount 1962).

To reduce (1.1) to a one-dimensional effective Hamiltonian, we will choose A(r)
to be the Landau gauge

A = (0, Bz, 0), (1.2)

1 B 1 )
and write X= <%py—%) oAt P=%pzdf, (1.3)
where .o/ is the area of unit cell. Since 4(r) does not contain y, P, 18 a good quantum
number, and enters only as a parameter. The effective Hamiltonian (1.1) can now
be written

AW =, (A4 4P, o4 ~4X) = HX, P), (1.4)

e
where [X, P] = ik*, #* = eBod/h. (1.5)

We have expressed the original effective Hamiltonian in the form of a one-
dimensional effective Hamiltonian H(X, P) (equation (1.4)), which has been scaled
so that the area of its unit cell in the (X, P) phase plane is 4n2. The ‘Planck
constant’ in (1.5) is a dimensionless measure of the magnetic field: %*/2n is the
number of flux quanta per unit cell, and we will use the symbol f for this quantity.
Because p, enters as a parameter in X, the basis set for the new effective
Hamiltonian (1.4) is the entire X axis. Thus the original two-dimensional problem
on a lattice has been reduced to a one-dimensional problem on a line.

Apart from the simplification resulting from the reduction to a one-dimensional
problem, there is another advantage in using the effective Hamiltonian (1.4).
Symmetries of the Bloch dispersion relation €,(k) become symmetries of H(X, P)
in the phase plane; thus symmetries of the crystal lattice are represented in a
transparent way. It is known that symmetries of the crystal lattice can have a
dramatic effect on the nature of the spectrum and eigenstates when a magnetic
field is applied (see Wilkinson 1984a,b).

We can also use a one-dimensional effective Hamiltonian, which is periodic in
x and p, in the limit in which the lattice potential weakly perturbs a Landau level.
In this case also, symmetries of the crystal lattice are represented by symmetries
in the phase plane. Both types of one-dimensional effective Hamiltonian are
discussed in more detail in Appendix A.

The Weyl-Wigner formalism for quantum mechanics provides a method for
representing operators and density matricesasfunctions of phase-space coordinates.
In §2 I introduce the Weyl association between operators and phase-space
functions, and show that it is a natural tool to use in this problem, because the
Weyl function of an operator transforms classically under translations, rotations
and reflections in phase space (which correspond to equivalent operations in real
space when B = 0). I will also introduce von Neumann lattices of states; these are
sets of states with Wigner functions localized about the points of a lattice in
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phase space. The main objective of this paper is to study the use of von Neumann
lattices as a set of Wannier states for a sub-band of the spectrum of the effective
Hamiltonian (1.4).

In §3, Wannier states for the effective Hamiltonian (1.4) will be introduced.
These Wannier states can be defined whenever the dimensionless magnetic field
B is rational, # = p/q. When g = 1/q (i.e. p = 1), it is natural to try to represent
these Wannier states as a von Neumann lattice in phase space. It is found that
this is possible if and only if the Chern class (quantized Hall conductance integer)
of the sub-band is zero. When this condition is satisfied, I will show how a von
Neumann lattice of Wannier functions can be defined for irrational as well as
rational fields. In §3 I also show how the states of the von Neumann lattice can
be chosen so that the Wigner function of each state has the point symmetries of
the effective Hamiltonian.

One motivation for studying Wannier functions stems from the fact that they
are orthogonal to all states outside their own sub-band. Because of this, we can
obtain an effective Hamiltonian describing a sub-band of the spectrum by taking
matrix elements of the Hamiltonian between the Wannier states of that sub-band.
This is essentially the same procedure as that used by Peierls to construct the
original effective Hamiltonian (1.1) from Wannier states of the system when B = 0.
The results of forming an effective Hamiltonian for a sub-band are, of course,
entirely trivial when the magnetic field f is rational. When g is irrational, however,
we find that the new effective Hamiltonian describing the sub-band is also a
periodic function of position and momentum coordinates, like (1.4), but with a new
value of #*. Since the number of degrees of freedom has also been reduced (by
taking matrix elements between the states of one sub-band only), this operation
is a renormalization group transformation. This renormalization group transfor-
mation will be described in §4, and it will be shown that if the von Neumann lattice
of Wannier functions is prepared so that their Wigner functions have the point
symmetry of the effective Hamiltonian, then the symmetry of the new effective
Hamiltonian is the same as that of the original one. This preservation of symmetry
has important implications for the structure of the spectrum and of the eigenstates.
The renormalization group transformation that is described here is an exact
version of an approximate method introduced previously by Suslov (1982) and
Wilkinson (1984a).

2. THE WEYL-WIGNER FORMALISM

In this section, I will introduce the Weyl-Wigner formalism and describe why
it is useful for this problem. I introduce a set of operators that represent the
rotation, translation and reflection symmetries of the effective Hamiltonian. I also
describe the von Neumann lattice of states, which will be used in §3 to represent
the Wannier functions of a sub-band.

6 Vol. 403. A



138 M. Wilkinson

2.1. The Weyl correspondence and invariant quantization

The Weyl correspondence (Weyl 1927) associates a function A(x,p) to an
operator A; the operator is written

4= dedp Az, p) W(x, p), (2.1)
where the Weyl operator
Wi(x, p) =%fdedP exp{% [(p—p) P+ (x—2%) X]}. (2.2)
This operator basis is self inverse; if W, (z, p) is defined by
tr[W(z, p) Winy(@', p')] = da—a') d(p—p') (2.3)
then we find Wipo(, p) = W(x, p). (2.4)

Thus A4(x, p) is given by
A(z,p) = tr[W(x,p) 4]. (2.5)

If the operator 4 is a density matrix, then A(z,p) is called Wigner’s function
(Wigner 1932).

Basis operators other than (2.2) could be used (Mehta 1964), but the Weyl
operator has some properties that make it especially suitable for analysing
problems of Bloch electrons in a magnetic field. The Weyl correspondence has
special properties with respect to linear canonical transformations. In one dimension
these transformations take the form

[:J = Mm det M =1, (2.6)

and include rotations of the phase plane about the origin. The Weyl correspondence
shows how to quantize the Hamiltonian in a way that is invariant under rotations
of the phase plane, and also provides a classical representation of these rotations.
This is very important in the present context since rotations in phase space
correspond to rotations of the crystal lattice in real space.

There are two steps required to establish these results. First, note that
linear transformations of phase space are generated by quadratic Hamiltonians
#. There is also a quantum evolution operator associated with #, given
by U(t) = exp (i#t/#). Consider the time-dependent (Heisenberg) operator
Aty = Ut) AU (t). Tt can be shown that the Weyl function, 4 (x,p,t), of this
operator evolves classically, i.e.

0dy _ 04y . Ay

ot Ox op

P ={dw, #}. (2.7)

A proof of this result is given by Ozorio de Almeida & Hannay (1982) for the
case in which 4y is a Wigner function; the general case is proved in just the same
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way. The result only holds if # is quadratic, and if A (x, p, t) is obtained by using
the Weyl operator (2.2).

The second point to note is that if the Hamiltonian of the system is expressed
as a sum of functions h; of linear combinations of x and p,

H=HZ,p) = Z hi(a; £+b; D), (2.8)
2

then the Weyl function Hy(x,p) of the Hamiltonian is just the classical
Hamiltonian

Hy(x,p) = H(x,p) = X hj(a,z+b;p). (2.9)

()

Thus, since (by (2.7)) Hy(x,p) transforms classically under linear canonical
transformations, and (by definition), so does the classical Hamiltonian H(x, p), we
see that if we express the Hamiltonian in the form (2.8), the results of quantizing
this Hamiltonian are invariant under linear canonical transformations of phase
space (2.6). Papers by Groenewold (1946), Baker (1958) and Balazs & Jennings
(1983) contain many more useful results on the Weyl-Wigner formalism.

The effective Hamiltonian (1.4) can be expressed in the form (2.8) by writing
it as a Fourier series. To avoid introducing too much notation, we will make a
canonical transformation of the form (2.6), chosen so that the Hamiltonian is
periodic on a square lattice in phase space of side 2n:

H=H@p)= X hyy expli(NE+ Mp)}. (2.10)
NM

If the Hamiltonian originally had threefold rotational symmetry, shearing the
phase space to make the lattice a square one disguises this symmetry. For this
reason we will exclude these cases from consideration here; they do have some very
interesting properties, however, which will be described in a later publication.

Now we evaluate the matrix elements of (2.10) in the x representation. The
Schrodinger equation H|y) = E|y) becomes

% [%] hyar exp{i(Ne +3MAE)}) Y (x+ ME) = By (x), (2.11)

i.e. the Schridinger equation is a difference equation with periodic coefficients, with
frequency f = %/2n. Note that the Hamiltonian only couples a sequence of points
x, separated by a distance #:

x, = nh+9. (2.12)

The parameter 0 is related to the quasi-momentum in the y-direction, p,, in (1.3).
Finally, it may be helpful to give a specific example of an effective Hamiltonian.
Suppose that the Bloch dispersion relation when B = 0 is

(k) = 2a cos k,+cosk, . (2.13)
The corresponding effective Hamiltonian is
A= H(&,p) = 2cosp+2a cos z, (2.14)

6-2
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and the Schrodinger equation (2.11) is

Y(x+h)+y(x—h)+2a cosx f(x) = By (x), (2.15)
or VUnir t ¥y +20 cos (2rpn+98) ¥, = By, (2.16)

where i, = {y(x,). Equation (2.16) is known as Harper’s equation (Harper 1955),
and it may be useful to bear this simple model in mind in subsequent discussions.

2.2. Symmetry operations in phase space

Now we introduce operators that represent translations, rotations and reflections
in phase space. The Weyl-Wigner functions of states and operators transform
classically under the effect of these operators.

The operator

T(X, P) = exp{i(P%— Xp)/h} (2.17)
shifts the Wigner function W, (x,p) of a state | /) through a vector (X, P) in the
phase plane

Wry(x,p) = Wy(x—X,p—P), (2.18)

Le. it plays the role of the translation operator in phase space. The composition

T(X,P) (X', P') = exp{i(X'P— XP')/2k} T(X + X', P+ P) (2.19)

and the adjoint is R A
™X,P)=T(—X,—P). (2.20)
The phase change on transporting a state anticlockwise about a circuit of area .o/
is therefore .o /h. The algebra of the phase-space translation operators is the same
as that of the magnetic translation operators introduced by Peierls (1933).
The rotation operator has already been discussed; the operator

~

R(0) = exp{i(#2+p2+£) 0/24} (2.21)
rotates the Wigner function of a state clockwise through the angle 6. The factor
of i#i added to the harmonic oscillator Hamiltonian ensures that R(2r) = 1 (instead
of —1 if this were omitted). If the Wigner function of a state |) is localized in
phase space near the origin, B(0)|y) could be computed simply by expanding | )
in eigenstates of the harmonic oscillator Hamiltonian. If the Wigner function of
[¥) is not localized, however, this is impracticable, but R(0)|y) can still be

calculated quite easily by using the position-space representation of B(6) (Feynman
& Hibbs 1965):

> = RO, P(a) = J de’ R(w,o’,0) ().

% 2 ’9 _ ’
Riz.«’: 0) :( exp{i[g—f-(x +a'2) cos O 29090]}

1 (2.22)
2mi# sin 0) 2 2% sin 6

Finally, a mirror symmetry about the line p = 0 can be represented by the
operation of taking the complex conjugate of the wavefunction. This symmetry
will be denoted by the operator M :

[Y"> =MIy>, ¢'(@) = p*@). (2.23)
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2.3. Two types of basis set

The effective Hamiltonian (2.10) is invariant under a square lattice of translations
in phase space, of side 2. This suggests use of a basis set consisting of a set of
functions | n, m; v), with the Wigner function of the state |0,0; v) localized about
a symmetry centre of this lattice, and the states |n, m; v) obtained by translating
the state |0,0,v) = |v) by the vector (2nn, 2nm):

|n,m, vy = T(2nn, 2nn)|v) (2.24)

(see figure 1). Such a set of states is a form of von Neumann lattice. Since the unit
cell area is 42, we see that the number of states per unit Planck constant area
is. #, which is less than unity. The set of states (3.17) is therefore certainly
incomplete. Our aim will, however, be to choose the generating state | v) in such
a way that the von Neumann lattice (2.24) is a strictly complete basis for the vth
sub-band of the spectrum of the effective Hamiltonian, and these states are
therefore a form of Wannier function.

p
j@ 11,1,0>
0,0,0> 11,0,v>
N A
NN

Fi1cURE 1. An illustration of the von Neumann lattice basis set, |n,m; v)>. The curves
represent, contours of the Wigner functions of the states.

The remainder of this section will describe how the von Neumann lattice states
|n, m;v) can be transformed into another basis set, denoted by |n;d; v), which
will be used in §3 to relate the von Neumann lattice to the conventional Wannier
functions of the Schrodinger equation, (2.11) or (2.16).

To define the relation between the |n,m;v) and |n; d; v) basis sets we will
consider a finite (A" x A") lattice of states in the phase plane

|n,m; vy = T(2rn, 2nm) | vy, IN <n,m <IN, (2.25)
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and later take the limit A" —co. The |n; §; v) basis set is then given by
|n; 8; vy = N 72 Y exp{2ni(nn—38) m/E} | n,m; v, (2.26)
m
where d takes the values

S=W/N, 1=01,.. N—1. (2.27)

In the limit A" — 00, § becomes a continuous variable, and it will become apparent
that it is the same as the phase parameter § introduced in (2.12).

The|n; d; v) states are, in effect, obtained by Fourier transforming the | n, m; v)
states over m, and so are a unitary transformation of these states. To demonstrate
the motivation for the definition (2.26), consider the position-space wavefunction
of one of the |n; §; v) states:

Y(x) =<x|n; ;v
= N 1Y exp{2ni(nn—0)m/E} {x|n,m; v). (2.28)

/‘\ "
JaR\
\y :

o~ N
~1V

)

C

xX

/I—\l\ ’

N

x

F1GURE 2. An illustration of the relation between the |n, m; v) basis and the |n; &; v) basis. (a)
Contours of the Wigner function of the state |n,0; v) in the phase plane. (b)) Wavefunction
of the state |n,0; v). (c) Wavefunction of the state |n;8; v) is a Dirac d-comb, sampling
the wavefunction ¢, (x—2nn) of the state | n,0; ») with phase §.
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Now
(z|n,m; vy = {x|T2nn,2nm)|v)

— 2n%inm 2mimaE —2mind
= expy 5 {(¥|exp)—5— exp 7 v

= exp{—2mi(x+nw)m/k} ¢, (x—2nn), (2.29)

where ¢,(x) = (x| v), so that
Y(x) = & 713 exp{2mi(x—0) m/h} ¢ (x—2nn). (2.30)

Thus, in the limit as 4"~ 00, ¥(x) becomes the function ¢, (x) shifted through 2mn
along the z-axis, and sampled on a comb of Dirac d-functions at the points
x, = khi+8 (see figure 2). Therefore the states |n;d;v), |n';é";v) are plainly
orthogonal for & # ¢”. Also, since H contains only translation operators exp {iMp}
shifting states by multiples M of %, it is clear that A is diagonal with respect to
0. This fact makes the |n; d; v} basis important in intermediate stages of the
calculations in §4.

3. VoN NEUMANN LATTICES AS WANNIER FUNCTIONS

In this section the Wannier functions when £ is a rational number of the form
B = 1/q are discussed, and it is shown how the generating state |v) of the von
Neumann lattice can be chosen so that the |n; §; v) states are Wannier functions
of a sub-band. The von Neumann lattice is only a useful basis set when the Chern
class is zero; when M is non-zero the expansion of an arbitrary state in terms of
the von Neumann lattice is not convergent. The von Neumann lattices of Wannier
functions for irrational fields are also defined, and the method of constructing these
states is shown. Finally, I show how the states |¥) can be chosen so that their
Wigner functions have the point symmetry of the effective Hamiltonian.

3.1. Wannier functions when 3 is rational

From the Schrédinger equation (2.11) or (2.16) we can see immediately that when
A is rational, # = p/q, Bloch’s theorem is applicable and the band is split into ¢
sub-bands. Usually these sub-bands do not overlap and are separated from each
other by finite gaps. (Harper’s equation is special in this respect: since it is a
second-order difference equation, the bands cannot overlap, but due to a physically
non-generic symmetry the gaps can close; see Bellissard & Simon 1982.) When g
is made irrational, the gaps in the spectrum persist for a sufficiently small change
in £, but the structure of the spectrum and eigenstates changes dramatically. If
we consider Harper’s equation (2.16), and apply perturbation theory in « or 1/«,
this suggests that the spectrum is a Cantor set (Avron & Simon 1981), although
proving this is difficult (Simon 1982).

We will denote the Bloch states when £ is rational by |k, &; v); k is the Bloch
wavevector and v is an index labelling the sub-band. The amplitudes ¥, of these
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wavefunctions are of the form
Y, = exp{ikfin} U, (k,0,v), (3.1)

where U, is periodic with period ¢, U, ,, = U, and k has been normalized so that
the wavefunction is periodic in £ with period unity. We can form Wannier functions
from these Bloch waves in the usual way by integrating over the wavevector. These
Wannier functions are separated by a distance of g lattice sites along the x axis,
i.e. their separationis g#. If # = 1/q (i.e. p = 1), then the separation of the Wannier
functions in x is 2, which suggests that they can be related to the von Neumann
lattice introduced in §2.

To make the connection between the von Neumann lattice and the Wannier
functions when £ = 1/q, it is useful to consider the discrete amplitudes yr,, to be
obtained by sampling a continuous function ¥, (k, z) at regularly spaced intervals:

let us write v, = x,) (3.2)
where x, =nh+06, #=2nL=2n/q, (3.3)
and the function ¢, (k, z) is of Bloch form

¥, (k, x+2m) = %%y (k, ). (3.4)

Apart from an overall phase, the Bloch states are periodic in & with period #, and
in k& with period unity. The analytic function ,(k, ) is not itself necessarily
periodic in £ however; in general it can be chosen to satisfy a periodicity condition
of the form

U, (k+1,2) = M2y (L, x). (3.5)

The integer M is a topological invariant, the Chern class, which characterizes the
vth sub-band (Avron et al. 1983), and it is related to the quantized Hall
conductance integer of the sub-band (Thouless et al. 1982); see Appendix B. Its
interpretation is as follows: if the Bloch states have their overall phases fixed so
that |k, d; v) is an analytic function of k and &, then the phase change of the
wavefunction on making a cycle around the edge of the ‘Brillouin zone’ in (k, &)
space is 2nM. When M is non-zero, therefore, the Bloch states | k£, d; v) cannot be
expressed as an analytic and periodic function of k£ and &: there must be some
singularity in the phase of the Bloch states. When # = 1/q, it is usually the case
that M is unity for one of the sub-bands and zero for the remainder (see Thouless
et al. 1982; for Harper’s equation with ¢ even, the central pair of bands touch, and
share the Hall current, but this degeneracy is destroyed by perturbations).

The value of the Chern class integer M has important implications for the
Wannier functions. We will denote the Wannier states by the symbol |n; 8 v),
and the states introduced in § 2 for which we used the same symbol can be identified
with these Wannier states. The Bloch waves and Wannier functions are related
by

|k, 05 v) = N 1Y e2ihn |y 0 p),
n

(3.6)
[n; 8;v) = A ~2 Y e 2Mbn| k& p).
)
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If M =0, the wavefunction |k,d; v> can be obtained as an analtyic, periodic
function of k and 4, and the Wannier states |n; &; v) are exponentially localized,
and can be obtained by sampling an analytic, localized function ¢, (z) at a set of
points x,. If 1, are the amplitudes of the Wannier state |n: §; v), then

Use of (3.2) in (3.6) gives ¢ (x) in terms of yr (k. x):

b(x) = f dk (k. ). (3.8)

If we identify the set of states |n;d; v) introduced in §2.3 with the Wannier
functions, then by comparing (2.30) and (3.7), it is seen that ¢ (x) can be identified
with the wavefunction of the state | v), which is used to generate the von Neumann
lattice (2.24).

When M is non-zero, however, i (k, x) cannot be an analytic, periodic function of
k and an analytic function of . The implications for the Wannier functions depend
on how we choose the singularities of the phases of the Bloch waves. For instance,
if we express ¥, (k, x) as an analytic function in z, it is not periodic in k (equation
(3.5)), and so the Wannier states are a smooth function of 8, but are not well
localized. Alternatively, we could make ¢, (k, x) analytic and periodic in &, but at
the cost of introducing discontinuities along the z-axis at points separated by a
distance #. Then ¢,(x) would be well localized, but it would have discontinuities.
Another possibility would be to introduce dislocations in the phase of the Bloch
waves of total strength M. Then the function ¢,(x) would be neither well localized
nor analytic (see figure 3).

3.2. Von Neumann lattices and the Chern class

Now we will consider in detail the question of whether a von Neumann lattice
can be used as a Wannier function-like basis set for a sub-band when g = 1/q4. In
§3.1 we saw how to construct the wavefunction ¢, (x) of the state | v) so that the
|n; 05 v) states would be Wannier functions of the Schrédinger equation (2.11).
We found that when the Chern class M is zero, we can choose ¢,(x) to be both well
localized and an analytic function of . The Wigner function of the state |v) will
then be well localized in phase space.

If M is non-zero, however, the phase of the Bloch states | k, 8 v) has singularities
in the Brillouin zone, so that ¢,(x) is poorly localized or non-analytic, or both.
This results in the Wigner function of the state | v) being poorly localized in z or
p, or both. The Wigner function W,(z, p) will have power-law decay in at least one
direction in phase space. The details of this depend on how we choose to arrange
the singularities of the phase of the Bloch states. There must be either dislocation
points, where the phase changes by 2nN on making a cycle about the point, with
2;N;= M, or line discontinuities across which the phase of the Bloch waves
changes abruptly. For the case in which the singularities are dislocation points,
we can show that the Wigner function W,(x, p) of | v) has a r~* decay law, where
r measures distance in the phase plane. If there is a phase singularity along a line
d = const. or k = const., the Wigner function decays as p~2 or 2 respectively, and
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?,
(a)
o~— N — .
?,
hj\ /14 :
|l = N VAV N .
T

F16URE 3. (a) When the Chern class is zero, the function ¢ (x) that defines the Wannier states
is well localized and analytic. (b)) When the Chern class is not equal to zero, ¢, (x) must be
either not well localized, or non-analytic, or both. In this illustration, the Bloch states are
an analytic, periodic function of k£, but have discontinuities in 8. The function ¢,(x) is then
well localized, but discontinuous.

is well localized in the other direction. These results are discussed in more detail
in Appendix C.

If the von Neumann lattice is to be of any use as a basis set, the expansion of an
arbitrary state |y) in the subspace spanned by the vth sub-band should be
absolutely convergent. Thus, if we write

X0 = X agpln,m;v), (3.9)
nm
the set of coefficients a,,,, should satisfy
2 ay,| < o. (3.10)
nm

We will find that, because the Wigner functions of the states forming the von
Neumann lattice are poorly localized when M is not zero, the condition (3.10) is
not satisfied, and the von Neumann lattice is only a useful basis set when M = 0.

Since the states forming the von Neumann lattice are orthonormal (as they were
derived from an orthogonal set of Wannier functions), we have a,,,, = {n,m; v|x).
We can find an expression for |a,,, | in terms of the Wigner functions of the states
|v)> and | x>: if |a) and |b) are two arbitrary states, then |{a|b) |> = tr(/,,F,),
where g, = |a) {al, §, = |b) <b|. Using (2.1), we have

m=ﬂmwmmmmmm (3.11)
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where W, is the Wigner function of |a) and W the Weyl operator. Then, using
(2.3) and (2.4), we find

<alb) ]2 = f f dedp Wz, p) Wz p). (3.12)

Hence we find
|a,m|? = ffdx dp W (x, p) W,(x—21n, p—2nm). (3.13)

Knowing that the decay law of the Wigner function W,(x,p) is »™* in two
dimensions or 2 in one dimension, we see that the coefficients a,,,, decay as r™2
or 27!, and the expansion (3.9) is therefore not convergent when M is not zero.
These conclusions parallel those of Thouless (1984), who showed that the Wannier
functionsin two spatial dimensions are not well localized when the Hall conductance
is not zero.

We could try to get over this problem by allowing non-orthogonal Wannier
functions. Write

|n; 8 vy = N =22 XM f(k, &) | k, &3 v); (3.14)
k

if |f|=1 everywhere, then these states are the usual orthogonal Wannier
functions, but if this constraint is dropped these states are no longer orthogonal.
Suppose that the phases of the states |k, §; v) have been chosen so that there is
a dislocation of strength M at the point (k*, §*), where M is the Chern class. Let
R be the distance from the point (k*, §*) in the Brillouin zone. If we choose the
function f(k,d) so that near the dislocation point it vanishes as

flk,8) ~ | RIM, (3.15)

then the state f(k,d)|k,J;v) is an analytic function of & and & (but is not
normalized). The Wannier functions (3.14) are then analytic functions of § and are
well localized, and the corresponding von Neumann lattice is made up of states
with well localized Wigner functions. This set of states is still not of any use,
however, since the expansion (3.9) still does not converge. Because the states
forming the von Neumann lattice are no longer orthogonal, the coefficient a,,,, is
not given simply by {(n,m; v|x); we find

Uy = N 2D Z(;, (f(k,0))~* exp{—2mi[kn+ (nm—8) m]} {k,d; v|x> (3.16)
)

e 85 v g I
ZE RO

Because f(k, 0) has a zero at (k*, 0*) when M # 0, this quantity diverges for almost
all states | x>, and (3.10) will also diverge. Thus we conclude that von Neumann
lattices can only be used as a basis set when the Chern class is zero, even if we
are prepared to accept non-orthogonal basis states.

Finally, we comment that the non-orthogonal, localized states constructed using

1
and hence Zla,, == (3.17)
nm N
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(3.14) also have another disadvantage when M # 0, namely that they are not a
complete set. Because f(k, ) vanishes at (k*, 8*), the states (3.14) are all orthogonal
to the Bloch state | k*, 8% ; v), so that this Bloch state cannot be reconstructed from
these Wannier functions. There is an extensive mathematical literature of
conventional von Neumann lattices of the type first described by von Neumann
(1955) with one state per unit h area in phase space. This corresponds to the special
case of ¢ = 1 in our problem, so that there is only one sub-band, which has a Chern
class M = 1. Several proofs have been published showing that these conventional
von Neumann lattices are overcomplete by one state; see Bacry et al. (1976), Dana
& Zak (1983), and references therein. There is no contradiction with the results
of this paper, however, since these proofs only show that the conventional von
Neumann lattice is an overcompleted basis for localized (I2(R)) states, and the
Bloch wave |k* 6*;v) is not in this space. Of course, the conventional von
Neumann lattice is not of any use for numerical work since the expansion of typical
states in terms of the von Neumann lattice does not converge.

3.3. Wannier states and von Newmann lattices for irrational fields

Up to this point, we have only considered von Neumann lattices of Wannier
functions for rational magnetic fields, of the form # = 1/q. The discussion is now
extended to irrational magnetic fields. When the magnetic field is changed from
an initial rational value to some nearby irrational one, the gaps in the spectrum
persist, but the eigenstates are no longer Bloch waves, so that the Wannier
functions must be defined in a different way. We will require that our generalized
von Neumann lattice of Wannier functions have the following properties.

(a) The states should tend toward those of the rational case as f—>1/q.

(b) The states should be well localized in phase space (in the sense that their
Wigner functions are localized).

(c) Thestatesshould form astrictly complete (i.e. complete but not overcomplete)
basis for the vth sub-band.

(d) Every state should be orthogonal to every eigenstate not contained in the
vth sub-band.

The motivation for (¢) and (d) is that we want to decouple the vth sub-band from
the rest of the spectrum, so that taking matrix elements of the Hamiltonian
between these states provides a complete description of the sub-band. We will
construct a set of states that satisfy these requirements by using a perturbative
argument, in which the small parameter ¢ is the deviation of £ from an initial
rational value, ¢ = | #—1/q|, and we will only be able to show that these states
are a complete set for sufficiently small . I will not give a fully detailed account
of this work here, because a complete account of this and other work will be
published elsewhere (Simon & Wilkinson 1985).

Our first step is to introduce a set of states satisfying all of the requirements
except (d). We note that when the Chern class (quantized Hall conductance) is zero,
the number of states per unit area in phase space remains constant as Planck’s
constant (the magnetic field) is altered ; this result can be seen by using the Stréda,
formula (Stréda 1982). This suggests that we can still use a von Neumann lattice
of states based on the same square lattice of spacing 2. One way of justifying this
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is to consider a finite but arbitrarily large system with periodic boundary
conditions, with exactly the same number of von Neumann lattice states as are
required to form a complete basis. These states arc then a complete set provided
they are linearly independent. Let | v,> be the generating state of the von Neumann
lattice when =g, =1/q, and |v') =|v'(f)) be any state which has a well
localized Wigner function, and which tends toward the original generating state
|vyy as f—f, = 1/q. The set of states

|n,m; vy = T2rn, 2mm)|v"> (3.18)

certainly satisfies conditions (@) and (b), and for sufficiently small ¢ = | f—1/q|
they are linearly independent, and therefore also satisfy (c). To see that this is the
case, first note that in the rational case, B, = 1/q, the von Neumann lattice of
Wannier functions is orthonormal. When we go to the irrational case, the
normalization matrix is no longer exactly unity. and has additional terms of
size o(¢). Since the states forming the lattice are well localized, the off-diagonal
terms in the normalization matrix are short ranged, and the normalization matrix
cannot suddenly become singular. For sufficiently small ¢, therefore, the states
(3.18) are linearly independent, and remain a complete set.

Now we will modify the states (3.18), so that they also satisfy condition (d). We
will multiply the state |»"> by a projection operator f,(H) to obtain a new state
|v>, which will be used to generate our final basis set

|v> = f(H) v, (3.19)
|, m; vy = T(2nn, 2nm) f,(H) | v'>. (3.20)

In (3.19) A is the Hamiltonian (for the irrational field) and f,(£) is a function that
is unity for values of ¥ contained in the spectrum of the vth sub-band, and zero
throughout the rest of the spectrum (again, we mean the spectrum at the irrational
value of ). This ensures that condition (d) is satisfied.

We must check that in applying the projection operator we do not lose any
of the properties (), (b) and (c). It is easy to see that condition () is still satisfied.
Condition (b) is rather more difficult, and causes us to be careful about how we
choose the projection function f,(£). Because the vth sub-band is flanked by a pair
of gaps, the function f,(E) can be chosen to be a smooth function of E (see
figure 4). This implies that the projection operator f,(H) is localized, and the state
|v> used to generate the lattice remains localized in phase space. A detailed
discussion of this fact will be given in the forthcoming paper mentioned earlier.
Lastly, consider condition c: we note that because f,(H)|v) = |v) exactly in the
rational case, the state |v) differs from |»") only by a small (o(¢)) amount. Since
the states of the von Neumann lattice also remain localized under a suitably chosen
projection operator, they must still be linearly independent for sufficiently small
€, so that condition (c) is still satisfied.

Finally, we comment that a similar approach to forming generalized Wannier
functions can be applied to many systems in which a part of the spectrum is
isolated between a pair of gaps, and that translational invariance is not a
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Frcure4. (a) The dark blocks represent the bands of the spectrum when # = 1/¢. The vth sub-band
is the central one of the three sub-bands shown. (b)) When g is changed slightly, the spectrum
is much more complicated, but the large gaps flanking the vth sub-band persist. (c) The
projection function f,(E) can be chosen to be smooth, so that the projection operator is
localized.

precondition for having well localized Wannier functions. This result was suggested
in a paper by Kivelson (1982), but no general derivation was given.

3.4. Symmetry of the von Neumann lattice

It is desirable that the Wigner function of the state |v) used to generate the
von Neumann lattice should have the point symmetries of the effective Hamiltonian.
As well as being aesthetically satisfying, this will enable us to prove an important
symmetry preservation principle for the renormalization group in §4. The Wigner
function of | ) does not automatically have these symmetries, but because there
is so much freedom in the way |») is defined, it can be chosen in such a way as
to satisfy these symmetry requirements. First I will show how, when £ is rational,
the phases of the Bloch waves can be chosen so that the Wigner function of |»)
has all the required symmetries. Then I will show how these symmetries can be
retained when we extend the definition of the von Neumann lattice to irrational
values of . Because we made a canonical transformation to make the lattice
square, it is difficult to discuss cases in which the Hamiltonian originally had
threefold or sixfold axes, so we will not consider these cases here. We will consider
twofold and fourfold axes and mirror planes, as these are not affected by
transforming to a square lattice.

When g = 1/q, The eigenstates are Bloch waves |k, d; v>, and we find that the
state | v) used to generate the von Neumann lattice is given by

[v) = N1 2|k, 8;v). (3.21)
k 9
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In the limit A4 — 0o, therefore, the state | v) is obtained by integrating the Bloch
waves over the ‘Brillouin zone’ in (k,d) space. This equation (3.21) does not
uniquely define |v) since the overall phases of the Bloch waves are arbitrary. I
will show how to constrain these phases so that the Wigner function of |v) has
the required symmetries; these constraints still do not uniquely determine |v).
We can simplify the notation slightly here by denoting the Bloch state |k, d; v)
by | K> ; we will suppose that the Chern class is zero, and that | K) is analytic,
periodic function of K = (k,d). The set of point symmetries is generated by a
rotation R, and possibly also a reflection M, acting in the phase plane. In §2.2 the
method of associating quantum mechanical operators R and M with these
symmetry operations was shown. We find that when we apply a symmetry
operator, for instance R, to a Bloch state | K), the result is (apart from an overall
phase factor) a new Bloch state | Ky ». We can see this by the following argument
The Wigner function of the state |k, 8; v) can be shown to consist of a square
lattice of 8 functions, located at the points (2, Ppm) = (6+nh, kfi+m#) in the
phase plane, and the amplitudes of these ¢ functions are periodic in both n and
m with a period of ¢ lattice spacings. When we act on a state | K) with an operator
R or M, the Wigner function of | K) is transformed classically, so that this lattice
of 8 functions is rotated or reflected in the phase plane to give a new lattice,
corresponding to another Bloch state | Ky ) or | Ky ». Thus we can write

RIK) = ei9r®) | K. 5 M|K) = el™mB | K\, (3.22)

where the phases ¢y (K) and ¢y (K) are analytic and periodic functions of K.
Suppose we now make a phase transformation of the Bloch waves

| K" =e"®|K), (3.23)
with 6(K) chosen so that ¢, ¢y vanish
RIK) =|Kg), M|K)=|Ky. (3.24)

The set of Bloch waves | K’) is now completely invariant under all the point
symmetry operations. The state |v) will then be invariant under K, and if
necessary also under M,

Rlvy=M|v)=|v), (3.25)

and its Wigner function will therefore have all the required symmetries. The
method for choosing the phase transformation 6(K) is discussed in Appendix D.

Now let us consider how the state |v)> can be chosen to have the correct
symmetries when f is made irrational. Recall from §3.3 that there are two steps
involved; first we choose a state |1’ to act as the generating state of the von
Neumann lattice. This state is arbitrary, apart from the property that it must tend
toward a generating state | v, for the rational hold case as #—1/q. The second
step is to act on the state |»’) with the projection operator f.(H) to ensure
orthogonality between sub-bands.

First, let us consider the choice of the state | v"). Suppose that | v,) is a generating
state for the rational case # = 1/¢, and has all the required symmetries in the phase
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plane. We will define the state | v’ as follows: if W, (x, p) is the Wigner function
of |v,>, we write

W, (x,p) = W, (cx, cp), (3.26)

where the scale factor ¢ is chosen so that the Wigner function still represents the
density matrix of a pure state after # = 21/ has been changed:

¢ = (fig/H)t = (pq)*. (3.27)

The definition (3.26) of the state |1’} automatically ensures that it has the
required symmetries. We must now show that the final generating state

|v> = f,(H)|v") also has these symmetries. Suppose that the projection operator
is expanded as a power series in H:

Sl =% 4, " (3.28)

It can be shown that the product of two operators with a given set of point
symmetries in phase space also has these symmetries. By using (3.28), therefore,
the Wigner function of | v) can be written as a sum of terms, each having the point
of symmetry of the Hamiltonian.

4. THE RENORMALIZED EFFECTIVE HAMILTONIAN

In this section we take matrix elements of the Hamiltonian between the Wannier
functions |n; &; v), and find that the resulting Schrodinger equation is a difference
equation with periodic coefficients. We can interpret this Schrodinger equation as
resulting from quantizing a new effective Hamiltonian, ", which is also a periodic
function of a phase-plane coordinates. If the Wigner function of the generating
state | v) has the point symmetries of the original effective Hamiltonian, then the
symmetry of A is the same as that of A. This renormalization group can there-
fore preserve the symmetry of the Hamiltonian. The unusual spectrum associated
with Hamiltonians with fourfold symmetry is explained by the attracting fixed
points having twofold symmetry; because of the preservation of symmetry,
fourfold symmetric Hamiltonians are stuck on a critical surface.

4.1. Matrix elements in Wannier function basis

Now we calculate matrix elements of the Hamiltonian A between the Wannier
functions | #; &; v>. When f is rational, of the form p = 1/q, these matrix elements
are independent of n, as expected. When £ is irrational, however, we will find that
the Schrddinger equation in this reduced basis is again a difference equation with
periodic coefficients (cf. Harper’s equation (2.16)). Since, in the irrational case, the
Wannier functions |n; 8; v) are no longer exactly orthogonal within the band,
we must also calculate the normalization matrix elements between these states.
We will express the matrix elements between the |n;8;v> states, i.e. the
Wannier functions, in terms of states of the von Neumann lattice | n, m vy. This
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allows the effects of symmetries to be investigated. Using the relation (2.26), we
find
(n; 8 v HIn'; 85 v)

1 2ni
= 7‘:{, = exp{ 7 (0 —8m)}
4n?i (nm—n'm’ ., -
xexp{—(4—>} n',m' v Hln,m;v)
f 2
1 —2m .,
—WmEeXp{ 7 (8m—8m)}

’

XGXP{7< 5 )(m'—m)} {n’—n,m’ —m;v|H|0,0; v)

1 —2mi [0+ . 4% (n+n"\ .
33 e[S ()i (1))

(J+J) mod 2=90

xexp{%a—){} ' —n,j; v H|v)

1 & 2ni(6’—é‘)J}[ {21ri (8+8’) }
J-=Z—oo eXp{ fi =0, +22 eXP % 2 J
X exp{%(n—*-n) }(n —n,jw| H|v)

+ { }e p{ 2mi (8+8')j}
X
j=1, 1+2 144, h 2

Xexp{4“2 (””) }(n’—n,j,v]ﬁlv}]. (4.1)

In the limit A" — 00, we can put

1 2mi(8' —8)J L o0 80,
erxp{ . }JMOA((S a)_{l by (4.2)

sl

so thatin this limit
'8 v|Hn; 8:v)
— 21idj 4m2i .
=A(8’—8)Zexp{ ;;lj}exp{; (n+n) }(n —n,5;v|H|v). (4.3)

J

By setting H = 1, we find a similar formula for the normalization operator.

{n'; 8 ;v n; 8; vy = A8 Zex { 2gi8j}exp{4221<n+n) }(n —n,j,v|v).
(4.4)

As expected, the Hamiltonian and normalization matrix are diagonal with respect
to the label 8, and they are in the form of a Jacobi matrix with respect to n with
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periodic coefficients. In the special case when %/2n = # = 1/q, of course, we find
that the matrix elements depend only on n'—n, so the Hamiltonian can be
diagonalized by Bloch waves.

Now let us consider the constraints imposed by symmetry on the matrix
elements appearing on the right side of (4.3) and (4.4). We can think of these matrix
elements H,,, = {n,m: v|H|v) and N,m = {n.m; v|v) as points on a lattice (cf.
figure 1). Because the Hamiltonian and normalization operators are Hermitian

H, ,=H* .. (4.5)

-n,—m
and similarly for N, .. To use information about symmetries for the crystal lattice,
we will assume that the state | v) has been defined so that its Wigner function has
the point symmetries of the lattice. Fist, we consider rotational symmetries. If two
lattice points, 7, m and n’, m’ are related by a rotational symmetry of the effective
Hamiltonian, we find that
H,,==H,,. (4.6)

n'm’
It is obvious that the magnitudes of these quantities arc the same, but it is less
clear that they have the same phase. To prove (4.6). we need to show that

R)T(R) = T(R') R(0), (4.7)

where R’ is obtained from R by rotation through the angle 6. This relation is easily
shown to be true for Gaussian coherent states, and since these operators act
classically on the Wigner function of a state it is true for any state. apart from
a complex phase factor. Because any state can be expanded in coherent states, (4.7)
is therefore true in general. Since the Bloch dispersion relation, and therefore the
effective Hamiltonian, have inversion symmetry we see from (4.5) and (4.6) that
all of the coefficients H,, and N,,, are real. Finally. if n.m and »’.m’ are points
related by a reflection, we can show that

Hypo = HE, . (4.8)

Since all the coefficients are real, these coefficients are therefore equal. The final
result is that all of the matrix elements H,,,, and N,,,, arc real, and any pair related
by any symmetry operation are equal.

It may be helpful to the reader to remark that, as £ tends toward the original
rational value 1/q. the coefficients H,,, become the Fourier coefficients of the
energy of the Bloch band as a function of k and ¢:

2 H,, e¥ikmemion/h ¢ (k. §). (4.9)
nm p-1/q
Also, in the same limit,
Nom ——> 0,400 (4.10)
p-1/q
4.2. A new effective Hamiltonian

Recall that we began with an effective Hamiltonian H(#, p). which was a periodic
function of # and p (for example (2.14)), and expressed the Schrodinger equation
as a difference equation with periodic coefficients (for example (2.16)). Later, when
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we took matrix elements between the Wannier functions of a sub-band, we found
that the Schrodinger equation remained in this form (see (4.3), (4.4)). Now we will
invert our first operation and express the new Schrodinger equation in terms of
an effective Hamiltonian and normalization operator that are periodic functions
in phase space.

First it will be useful to introduce a new basis set | #; d,; v), which is in one to
one correspondence with the | n; d; v)> basis, but which is orthonormal,

(n'; 0p; v|n; 0y v) =0, 4(8,—07). (4.11)

This is just a formal device to enable us to represent the normalization matrix as
an operator. We will find a new effective Hamiltonian operator A and normali-
zation operator NV whose matrix elements in the |n; 6,; ») basis are the same
as those of the original Hamiltonian # and the normalization matrix in the
|n; 8; v) basis. _

The periodicity of the coefficients of the Jacobi matrices (4.3), (4.4) is different
from the periodicity on the original Schréodinger equation (for example (2.16)). This
suggests defining a new Planck constant #,, given by

hy=2np,, py=1/p—[1/B], B =1/2n (4.12)

The square brackets in (4.12) denote the integer part of 1/8. Also, by analogy with
(3.7), we write
) =nh,+8,, & =9/B, (4.13)

which defines the new coordinate V. Finally we define a new momentum p® by
writing
(&0, p0] = ifi,. (4.14)

Now let us introduce the operators A and NV, which we write in the form

AY = 3 HQy, exp{i(N2© + MpD)},
NM
(4.15)
NO = 3 NQ@,,, exp {i(N2O + MpD)},
NM

which is analogous to the original effective Hamiltonian (1.4). Using (4.13), we have
a correspondence between points along the xV-axis and the states |n; 8,; v). We
define the matrix elements of H® in the |n; 8; v) representation to be the matrix
elements of this operator between corresponding states in the 2V representation.
Taking matrix elements of (4.15) in the xV representation, and using this
definition, we find

(n'3 033 v [ HY |3 8,3 v) = A(8]—9))

x X HY,,_, , expiijo,} exp (i(n+n')h, j}
) ! (4.16)
("5 80 v | NV | dys n) = A(87—6,)

x X N, expijd,} exp (e +n') hy j)
j
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Taking account of (4.12), (4.13), and comparing this result (4.16) with (4.3) and
(4.4), we require that

(5 8 v HV |n; 8,3 v) = (n'; 8 v | H |2 8, V>,}

. (4.17)
(075 0 I ND [n: 81 ) = (n'5 8% v ms 83 ).

This gives us the Fourier coefficients of the effective Hamiltonian and normalization
operators:
HQy, = N, Moy | A1vy, Ny, = <N M. v|v). (4.18)

This completes our renormalization group transformation; (4.15) and (4.18) define
the new effective Hamiltonian, and (4.12) defines the new value of Planck’s
constant.

The renormalization group transformation preserves the symmetries of the
Hamiltonian. In section 4.1, it was shown that the lattices of matrix elements
H,, = <{n,m,v|H|v)and N,m = {n,m,v|v) have all the point symmetries of the
effective Hamiltonian 4. Equation (4.18) shows that these matrix elements are just
the Fourier coefficients of the new effective Hamiltonian, HV. Therefore H® and
H have the same symmetry in their respective phase spaces.

Finally, we note that it is possible to transform to an orthonormal basis. and
so eliminate the normalization operator, N®. This can be done in the usual way,
by multiplying both sides of the Schrodinger equation

(HO —END) | > =0 (4.19)

by (N®W)~% Since N is assumed to be non-singular, (N®)~} exists, and if we write
N® = 1+4¢, we can expand it in powers of é. We recall that the product of two
operators with a given phase-space symmetry (of their Weyl functions) also has
this symmetry. Since the transformation to an orthonormal basis is expressed in
terms of products of operators all having the same symmetry, the symmetry of
the Hamiltonian A(Vis still preserved when we transform to an orthonormal basis.

4.3. Implications of the renormalization group transformation

The renormalization group transformation derived above describes each sub-
band v that has zero quantized Hall conductance in terms of a new effective
Hamiltonian, A", and a new dimensionless magnetic field $, (or a new ‘Planck
constant’, i, = 2n ;). Every sub-band »* of this new effective Hamiltonian that
has zero Hall current can itself be described by a new effective Hamiltonian ¢,
and dimensionless magnetic field £,. The mapping of S is related to its continued
fraction expansion

p=1 = [Ny, Ny, g, ...]. (4.20)
n,+1 -
n,+1
g+ ...
We find that g, = [n,, ny,ny, ...], B, = [ny, 0y, ...], etc. We stress that this trans-

formation can only be iterated when the Chern class of every sub-band in the
sequence is zero. Wannier functions can be defined for irrational fields when the
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Chern class is non zero, but this has not been done in this paper because these
Wannier functions cannot be represented as a von Neumann lattice. By using these
Wannier functions, a renormalization group can be defined for these sub-bands
also, but the renormalization of g is different from the scheme described above.

To understand the meaning of the new effective Hamiltonian, AV, it is useful
to consider the limit in which g is very close to the original rational value, 1/q.
Noting (4.9) and (4.15), we see that

AO(30, p0)y —s¢ (8/2nh, k) 2nh). (4.21)
p-1lq
i.e. in this limit the renormalized Hamiltonian is derived from the dispersion
relation ¢,(k, &) of the Bloch band when £ = 1/¢ by replacing § and & with position
and momentum operators £ and p®. This is very similar to the Peierls
substitution method for obtaining the original effective Hamiltonian (1.4) from the
dispersion relation in zero field.

I have stressed that the renormalization group transformation preserves the
symmetry of the effective Hamiltonian in phase space. The reason for emphasizing
this point is that Hamiltonians with a fourfold symmetry in phase space have
special properties, which the preservation of symmetry by the renormalization
group transformation helps to explain. The most remarkable property of these
Hamiltonians with fourfold symmetry is that the spectrum appears to be a fractal
Cantor set of measure zero, with a remarkable hierarchical structure that is related
to the continued fraction expansion of # (Wilkinson 1984a,b), whereas perturba-
tion theory suggests that the spectrum should be a Cantor set of finite measure
(Avron & Simon 1981). At first sight it appears that the renormalization group
should always predict that the measure of the spectrum is zero: it derives a new
Hamiltonian describing the structure of the spectrum between a pair of gaps (see
figure 5), and there are gaps within the spectrum of this new Hamiltonian. The
measure of the energies that are known not to lie on a gap might therefore be
expected to decrease to zero. The mechanism of the renormalization group
transformation can be reconciled with the expectation that the spectrum is
normally a Cantor set of finite measure, however. If we assume that the
Hamiltonian is mapped by the renormalization group transformation towards a
fixed-point Hamiltonian with no gaps in the spectrum, then this apparent
contradiction is resolved. Hamiltonians of the form f(x, x+a,p), where f is a
periodic function and o, a, constants, have no gaps in their spectrum and the
fixed-point Hamiltonian would be of this type. Thus, under the action of the
renormalization group transformation the periodic dependence of the Hamiltonian
on one direction in phase space becomes weaker and weaker. Now recall that the
renormalization group transformation preserves the symmetry of the Hamiltonian
in phase space. If the initiul Hamiltonian has fourfold symmetry, it cannot than
be mapped towards a fixed-point Hamiltonian depending on only one phase-space
coordinate, whereas a Hamiltonian without ‘isotropic’ symmetry can be mapped
towards such a fixed point without a change of symmetry.

Thus the preservation of symmetry explains why the gaps in the spectrum
do not become vanishingly small as we iterate the renormalization group
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FiaUrE 5. (@) The spectrum of the original Hamiltonian H. (b) The spectrum of the renormalized
Hamiltonian H! is the same as that part of the spectrum of H contained in the vth sub-band.
By iterating the renormalization group transformation, the fine detail in the structure of
the spectrum can be studied.

transformation for a Hamiltonian with fourfold symmetry. These results do not,
unfortunately, provide a full explanation of why the measure of the spectrum is
zero for these systems, since the von Neumann lattice, and therefore the renormal-
ization group transformation, have only been defined for sub-bands for which
the Chern class is zero. We can only use this renormalization group transformation
to study those hierarchies of sub-bands for which the Chern class of every sub-band
is zero.

The renormalization group scheme that has been described here is exact, in the
sense that it could be implemented on a computer with the only approximations
coming from numerical truncations. An approximate version of this method has
previously been described by Suslov (1982) and independently by Wilkinson
(1984b), who used W.K.B. methods to construct approximate Wannier functions
and calculate approximate matrix elements in the semiclassical (%—0) limit. In
these papers the preservation of symmetry was only shown in an approximate way,
in terms of W.K.B. theory, and it was not possible to give a precise criterion to
determine for which sub-bands the von Neumann lattice of Wannier functions
would exist. As well as providing an exact formalism for computation of this
renormalization group, this paper has justified many of the results of the earlier
work by proving that the preservation of symmetry is an exact result, and has
provided a precise criterion for the existence of a suitable von Neumann lattice
basis set in terms of the Chern class of the sub-band.

5. CONCLUSIONS AND SUMMARY

Throughout this paper we have used a one-dimensional representation of the
problem of Bloch electrons in two dimensions in a perpendicular magnetic field.
The three-dimensional problem can be treated in a similar way, reducing it to a
one-parameter family of one-dimensional Hamiltonians. We have discussed the
two-dimensional problem primarily because it is more interesting; the Cantor set
spectrum and the connections with the quantized Hall effect are special to the
two-dimensional system.
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It has been shown that the Weyl-Wigner formalism is a useful tool for the
working on this problem, since it shows how to quantize the Hamiltonian correctly
and how to represent symmetries of the effective Hamiltonian by classical
symmetry transformations of the Wigner functions in phase space. This is possibly
the only problem of physical interest for which the Weyl-Wigner formalism could
be a useful computational tool, since it is very unusual for symplectic (linear
canonical) transformations to have an important physical meaning.

We have considered the Wannier functions of the one-dimensional effective
Hamiltonian, and it has been shown that they can be represented by a von
Neumann lattice in phase space if an only if the Chern class (quantized Hall
conductance integer) of the sub-band is zero.

Von Neumann lattices of Wannier functions can also be constructed even when
the magnetic field is irrational, and the eigenstates of the Hamiltonian are not
Bloch waves. In this case we take as our definition of Wannier functions that they
should be a complete set for their own sub-band, and orthogonal to every state
outside their own sub-band. Since a perturbative argument was used, this result
has only been demonstrated for irrational fields # that are sufficiently close to a
rational field of the form B = 1/q. At present there is no proof that a complete
von Neumann lattice can be constructed for every value of .

Dana & Zak (1985) have considered a problem related to the problem of defining
Wannier functions for irrational fields. They have considered the problem of
defining a set of N different lattices of localized basis states which should be capable
of reproducing the Bloch waves of a set of N different bands. They conclude that
this is possible if and only if the sum of the Chern classes of the NV bands is zero.

It has also been shown that the states forming these von Neumann lattices can
be chosen so that their Wigner functions have the point symmetries of the
Hamiltonian. Threefold and sixfold symmetries have been excluded, partly
because this would have required more complicated notation and partly because
these cases have some special properties that will be discussed in a later
publication.

Having succeeded in defining a set of Wannier functions for irrational fields. it
is a natural step to calculate matrix elements of the Hamiltonian between these
Wannier functions; this operation gives a new Schrodinger equation describing the
vth sub-band only. We found that this new Schrédinger equation is a difference
equation with periodic coefficients, and that it can be thought of as resulting from
the quantization of a new effective Hamiltonian, which is also a periodic function
of position and momentum. Thus each sub-band with zero quantized Hall
conductance can be described by a renormalized effective Hamiltonian and
Planck’s constant. It is also possible to construct Wannier functions for irrational
fields when the quantized Hall conductance of the sub-band is not zero, and this
also leads to a renormalization group transformation, with a slightly different rule
for the renormalization of the Planck constant. I did not describe this here, because
the construction of the Wannier functions is quite complicated, and they cannot
be represented as a von Neumann lattice. This work will be described in a joint
paper with B. Simon.

The results of this paper are the first description of an exact renormalization
group that can be used to analyse the fine structure of the Cantor set spectrum.
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as well as providing information about the structure of the eigenstates. Previously
Ostlund & Pandit (1984) have described an exact renormalization group applicable
to Harper’s equation, but since they used a transfer matrix approach in which the
energy is a fixed parameter, their method cannot be used to analyse the scaling
properties of the spectrum. Their method is also limited in that it does not allow
for any natural representation of symmetries in phase space. It is also difficult to
extend it beyond Harper’s equation (2.16) to other difference equations of the form
(2.11), which are not limited to having nearest-neighbour coupling.

An important formal property of the renormalization group transformation used
has also been shown, that it preserves the point of symmetry of the effective
Hamiltonian in the phase plane (again, the cases of threefold and sixfold
symmetries have been excluded, which will be discussed elsewhere). It has been
observed that when the effective Hamiltonian has an ‘isotropic’ symmetry in the
phase plane (i.e. has 3, 4 or 6-fold point symmetry), then the spectrum has unusual
fractal structure. The preservation of symmetry by the renormalization group
suggests an explanation of this fact: normally the Hamiltonian is mapped towards
a fixed point at which it depends on one phase-space coordinate, and the gaps in
the spectrum become vanishingly small. When the Hamiltonian has an isotropic
symmetry, however, this symmetry is preserved, and so that Hamiltonian cannot
be mapped towards such a fixed point, which has only twofold rotational
symmetry. The gaps then occupy a finite fraction of the range of the spectrum at
every iteration, implying that the measure of the spectrum is zero.

I wish to thank Professor B. Simon, Professor D.J. Thouless and Professor
M. V. Berry, F.R.S., for useful discussions. Some of the results of section 3.3
overlap with a joint paper to be written by B. Simon and myself.

A major part of this paper forms part of a Ph.D thesis of the University of
Bristol, where I was supported by the S.E.R.C. I also wish to acknowledge the
award of a Weingart Fellowship from the California Institute of Technology.

APPENDIX A

The results of this paper are based on two ideas. The first is that the true
Hamiltonian

H=[p—eAF)]2/2m+ V(r), (A1)

with V(#) a periodic function, can be replaced by an effective Hamiltonian
A,y = H(#, p), with H a periodic function of z and p. The second is that symmetries
of V(x,y) in two-dimensional coordinate space are represented by symmetries of
the one-dimensional Hamiltonian H(z, p) in phase space. In the introduction I gave
a simplified derivation of these two results, starting from the Peierls effective
Hamiltonian. In this Appendix I list some further comments about the reduction
to a one-dimensional representation. The author hopes to publish an expanded
discussion of this representation in another paper.

(@) First we discuss the limits to the validity of the Peierls effective Hamiltonian
(1.1).
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As noted in the introduction, (1.1) is not an exact effective Hamiltonian. For
sufficiently small magnetic fields, however, there exists a modified dispersion
relation e, (k), for which (1.1) gives an exact description of the effect of the magnetic
field on the band. Blount (1962) has given the first few terms in the expansion of

enlk) in terms of B v gy _ ¢ (R)+ Bel (k) + B22 (k) + ... (A 2)

Provided the potential V(x, y) has centres on twofold symmetry, the first correction
€y (R) is zero, so that the corrections to (1.1) are of order B2.

The Peierls effective Hamiltonian should not be applied to degenerate or
overlapping bands, since under these conditions it is not clear how an effective
Hamiltonian can be defined to give an accurate description of the effect of the
magnetic field on the bands. Also, for degenerate bands, the dispersion relation
of each band need not itself have the full symmetry of the lattice, so that the
assumed relation between symmetries of ¢,(k) and symmetries of V(r) would not
apply.

(b) It was also mentioned in the introduction that an effective Hamiltonian can
also be derived when B is very large, and V(x,y) is a weak perturbation, splitting
the degeneracy of a Landau level.

In this case we use a basis of Landau states, labelled by a level number N and
the z-coordinate of the centre of the state. If we take matrix elements of the
Hamiltonian (A 1) between the states of a given Landau level (i.e. one fixed value
of N), we find that the Schrédinger equation is a one-parameter family of difference
equations with periodic coefficients. The Hamiltonian only couples Landau states
with their z-label separated by a multiple of some quantity, which we will call A%,
so that if we write ,, = n#* 4 & the Schrodinger equation is a difference equation
in n, parametrized by ¢ (Rauh 1974, 1975). We saw, in §2, that a Schrodinger
equation of this type also arises when we quantize a one-dimensional Hamiltonian
that is periodic in x and p. Thus we can derive an effective Hamiltonian H(&, p)
describing the effect of the potential V(r) as a perturbation of the Nth Landau level.
It can also be shown that the symmetry of this Hamiltonian in the phase plane
is the same as the symmetry of the potential in real space (Wilkinson 19845). Thus
there is a relation between the symmetry of V(z, y) in real space and that of H(z, p)
in phase space in both the high-magnetic field and the low-magnetic field.

(¢) Finally we comment on the relation between the symmetry of the potential
in real space and that of the effective Hamiltonian in phase space.

For the low field, the effective Hamiltonian (1.4) has the same symmetry in
phase space as the Bloch dispersion relation ¢,(k) in k space. If we use the
uncorrected form of ¢ (k), the symmetries of this function clearly reflect those of
V(r) (except that e,(k) always has inversion symmetry because of time-reversal
invariance). If we incorporate the field-dependent corrections, (A 2), this is no
longer obviously true. Similarly, for the high field, it is possible to derive a
corrected effective Hamiltonian that gives an exact description of the splitting of
the Landau level, including the effects of coupling to other Landau levels. In both
cases, it should be verified that these corrections do not destroy the correspondence
between the symmetry of the potential and that of the effective Hamiltonian. The
author hopes to discuss this point in a later publication.
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APPENDIX B

In the text the Chern class, defined by (3.5), is described as the Hall conductance
integer of the sub-band. This remark needs some qualification. The Chern class of
the true wavefunction in the magnetic Brillouin zone is always equal to the
quantized Hall conductance integer (Thouless et al. 1982). This is not, however,
always equal to the Chern class of the wavefunction of the effective Hamiltonian,
as defined by (3.5). For the high field, the two definitions are the same, but for the
low field, the Chern class of the true magnetic Bloch states differs from the Chern
class defined by (3.5). The difference between these cases is due to differences in
the relation between the solutions of the effective Schrodinger equation and the
real one.

We will consider Harper’s equation (2.16) as an example of an effective
Schrodinger equation

Ynsrt Y +2a cos 2rpn+8)y, = Eyr,,, (B1)

and will compare the interpretation of the quantities involved for the high and
low field.

First, let us consider the low field. Recall that the basis set used to derive the
Peierls effective Hamiltonian is a lattice of Wannier functions for the crystal in
zero magnetic field (modified by the appropriate phase factors because of the gauge
A(r)). Assume that the lattice is square, of unit spacing. The amplitude of the
Wannier state at position (n,m) is ¥, ¢™. Thus & ranges from 0 to 2r, and the
amplitude i, represents the amplitude of the solution on a row of fixed lattice
sites. As mentioned earlier, £ is the number of flux quanta per unit cell.

For the high field, the amplitudes i, represent the amplitude of a particular
Landau state, which moves along the z-axis as ¢ varies. In this case ¢ only ranges
from 0 to# = 2n8. The parameter /7 is now the inverse of the number of flux quanta
per unit cell (Rauh 1974, 1975).

The amplitudes yr,, therefore behave differently when we change the parameter 4.
For the low field, they are fixed in space, whereas in the high field, they move
through space as ¢ is varied. Thus, even though the same effective Hamiltonian
can be used in each case, the periodicity of the wavefunctions in ¢ is different.
For the high field the wavefunction is periodic in & with period # = 2rf, and when
we increase d by %, we must associate yr,,,, for the new value of & with ¥, for the
old value. This is equivalent to using the representation introduced in §3, where
amplitudes yr,, are obtained by sampling a continuous function with phase 8. The
definition of the Chern class introduced in §3 therefore corresponds to the Chern
class of the true wavefunctions for the high field.

For the low field, the situation is different. The wavefunctions are now periodic
in & with period 2r, and when ¢ is increased by 2m, there is no need to re-assign
the labels of the amplitudes y,, because they have remained fixed in space. For
this reason, the Chern class of the solutions is different even though the effective
Hamiltonian (B 1) may be the same as for the high field.
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Finally, I point out a couple of useful facts about the Chern class. First, Stréda
(1982) gives a very simple formula for the quantized Hall conductance:

Oy = €(0N/OB). (B 2)

In this expression A" is the total number of states per unit area below a given gap
in the spectrum, and o, is the total Hall conductance of all the occupied bands.
This formula usually provides the simplest way of calculating the Chern classes
of the sub-bands. Secondly, we note that by using (B 2) we can make a connection
between the Chern class and the gap-labelling theorem (Avron & Simon 1983). If
4 is the fraction of the states of the band filled, then this theorem states that the
filling fractions at the gaps in the spectrum are characterized by pairs of integers

n,m: o = M1, (B3)

We can use (B 3) to calculate 4" in (B 2); note that the total number of states in
the band changes with B for the high field, but is fixed for the low field. We find
that for the low field the Hall conductance integer (the sum of the Chern classes
of all the occupied bands) is n, whereas for the high field it is m. This clearly
illustrates the difference between these two cases.

AprPENDIX C

In this appendix, we examine the power-law decay of the Wigner function
W,(z,p) and of the coefficients a,,, when the Chern class, M, is non-zero. Recall
that the Wigner function of the state |v) cannot be made well localized because
the Bloch states |k, d; ) cannot be obtained as an analytic and periodic function
of k and . The singularities of the phase of the Bloch states can be either dislocation
points or line discontinuities.

First we will consider the case in which the Bloch states have a line discontinuity.
To see the relations between the tails of W (z,p) and the wavefunction ¢,(x), we
can use the formulae

|p,(2) * = Jdp W, (x.p), €1

l&mv=}ummm. (C 2)

In (C 2), §,(p) is the wavefunction of | v) in the p representation, and is the Fourier
transform of ¢, (x). A discontinuity in the phase of the Bloch waves along a line
k = const. causes ¢,(x) to be poorly localized, with a 1/x decay. By (C1),
therefore, the Wigner function has a 1/2? decay law. Similarly, a discontinuity
along a line & = const. causes ¢,(x) to be discontinuous, so that ¢, (p) has a 1/p
decay law, and by (C 2) the Wigner function has a 1/p? decay. Despite the Wigner
function being well localized in the conjugate direction, these decays are so slow
that the expansion (3.9) is not absolutely convergent. Any other type of line
discontinuity leads to localization properties that are at least as bad as the two
cases described.
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Now let us consider the other type of phase singularity, the dislocation point.
Consider a dislocation of strength N at the point (£*, §*) in the Brillouin zone, and
let (R, ) be radial coordinates in the (k, §)-plane measured from this point. Without
loss of generality, we can assume that the phase of the Bloch wave is NO in the
neighbourhood of the dislocation:

[k, 8; v) = N0 | k* 6% v) +o(R). (C3)

Instead of calculating the power-law decay of the Wigner function, and deducing
the decay law of the coefficients a,,,, in this case it is easier to calculate the
amplitudes a,,,, directly. Using (2.26), (3.6), and (3.9), we find

A = N 712 2 exp{—2mi[kfin+ (nm—8) m]/h} {k,8; v]|x). (C4)
5 K

In the limit A" — 00, the summations become integrals, and the amplitude a,,,, is
essentially just the Fourier coefficient of the periodic function <{k,d; v|y)>. The
decay of this Fourier transform at large »n, m is determined by the singularity of
this function at the point (k*, §*). From (C 3), therefore, we see that the coefficient
@, decays at the same rate at the Fourier transform of the function

f(R,0) = N9, (C 5)

The Fourier transform f(k, 6) of this function decays as 1/k%. The coefficients a,,,,
therefore have an inverse-square decay, so that once again the expansion (3.9) is
not absolutely convergent. The Wigner function W (x, p) has some complicated
fine-grained structure, but this result, together with (3.13), shows that when
W,(z, p) is smoothed out by convoluting it with W, (x, p), it has a 1/r* decay law.

ArPENDIX D

Recall that if the effective Hamiltonian has rotational or mirror symmetries,
represented by operators R or M, then the Bloch waves satisfy

RIK) = expliggr(K)} | KR), (D 1)
MK = oxpligy(K)} | K. (D 2)
The Bloch wave | K) = |k, d; v) is associated, via the operation of evaluating its
Wigner  function, with a lattice of points in  phase space
(@ pms Prm) = (8+nk, (k+m)h). The ‘rotated’ Bloch state | Ky ) resulting from the
action of R on | K) is identified by remembering that the rotation operator acts

classically on this lattice of points.
Our aim is to find a phase transformation

K" =e"® | K), (D3)

so that the phases ¢ (K), ¢y (K) vanish,i.e. R| K'Y = |Kg>, M| K'Y = | Ky>. This
requires that 6(K) satisfy the equations

Br(K) = 0(Ky)—0(K). (D 4)
$u(K) = 0(Ky) —0(K). (D 5)
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I will not try to give a general prescription for solving these equations for 6(K),
but, instead, will illustrate the method by finding #(K) in two particular cases.

The first case we consider is when there is fourfold rotational symmetry, and
no mirror symmetry, so that (D 2) and (D 5) do not apply. The angle §(K) must
be a linear combination of ¢y (K), ¢y (Ky), ¢pr(Kg:), and ¢y (Kgs). These four
quantities are not linearly independent; because B4 = 1, we have

Pr(K)+ dr(Kg)+ dr(Kg:)+ dr(Kgs) = 0. (D 6)

Let us choose to eliminate ¢ (Kg:), and write §(K) as a linear combination of the
other three values. Substituting into (D 4), and solving for the coefficients, we find

O(K) = —i[3¢r(K) +2¢x(Kg) + dr(Kg2)]. (D7)

For our second example, we consider the case in which there is both twofold
rotational symmetry and mirror symmetry. In this case, §(K) must be a linear
combination of the eight values of ¢\; and ¢y at the four symmetry-related points,
Le. of ¢g(K), ¢r(KR), ¢pr(Ky), dr(Kgry), and the corresponding values of ¢y,
Using the results

R2=1, M*=1, RM= MR, (D 8)

we can find linear relations between these eight phases, analogous to (D 6):
Pr(K)+¢r(Kg) =0, $r(Ky)+Pr(Kry) = 0. (D 9)
Pu(K)+du(Ky) =0, dy(Kg)+¢u(Kgy) = 0. (D 10)
Pr(K)+du(Kg) = ¢y(K) — Pr(Ky)- (D 11)

Let us take ¢g(K), du(K), ¢pr(Ky) as the three independent variables. We find
that the following solution to (D 4) and (D 5)

0(K) = i[¢r(K) + ¢r(Ky) = 2¢m(K)]. (D 12)

The same methods can be used to find §(K) in all the other cases. In the most
complicated example, where there is fourfold symmetry and mirror symmetry, of
the sixteen values of ¢y and ¢y, only six are linearly independent.
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