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Abstract. Harper's equation, a model for Bloch electrons in a magnetic field, has a band
spectrum when the dimensionless magnetic field § is a ratiopal number p/q. This paper
considers the definition of generalized Wannier functions, which can be used to represent the
Bloch bands of the spectrumn of the rational Harper equation by means of a von Neumann
fattice. One representation of these Bloch bands can be extended to the irrational case, and
taking matrix elements in this basis leads to a renormalization-group transformation acting on
the Hamiltonian. The results in the present paper considerably extend a previcus analysis of this
renormalization-group transformation, in that the formalism is suitable for systematic calculations
of the renormalized Hamiltonian, and that the transformation preserves the rotational symmetry
of the Harper Hamiltonian in phase space.

1. Introduction

1.1, Physical background

Harper’s equation
Vi1 + Y1 + 2c0s(2nfn + 8 = Evy (1.1}

is a Schridinger equation in the form of a difference equation with periodic coefficients. It
is a realistic single-band model for an electron moving in a plane, with a spatially periodic
potential, and a uniform magnetic field perpendicular to the plane. It was originally derived
[1] using the Peierls substitution [2], and it can also be obtained by taking matrix elements
of the Hamiltonian in a Landau level basis [3,4]. In the Landau level picture, the parameter
B is given by g8 = h/eBA, where B is the magnetic field, A is the area of the unit cell, 2
is the Planck constant and ¢ is the electron charge. In the Peierls substitution picture, § is
given by the reciprocal of this quantity. Throughout this paper it will be assumed that (1.1)
represents a perturbed Landau level.

Harper’s equation is of considerable mathematical interest because of the structure of
its spectrum. When § is the ratio of two integers, there is a band spectrum with ¢ non-
overlapping bands, with dispersion relations &£, (k, §) (where k is the Bloch wavevector and
v an index labelling the band). When 8 is irrational, the spectrum is a Cantor set of zero
measure, with an intricate non-self-similar hierarchical structure, which was predicted by
Azbel [5] and observed in numerical experiments by Hofstadter [6], Various techniques
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have been used to analyse the structure of the spectrum: methods which are applicable to a
general class of models representing Bloch electrons in a magnetic field inciude semiclassical
approaches [5,7-11] and renormalization-group methods [12-18]. There are also a variety
of bounds and exact equalities which are specific to Harper’s equation and a small class of
related models described by three-term recursion relations [19-22]. This paper is a synthesis
of two different renormalization-group approaches described in earlier papers {14, I5] by
the same author. The primary motivation for the work reported here was to deal with some
technical difficulties with the method described in [15], which have been a barrier to further
applications of this approach.

The ideas developed in this paper will refer more naturally to another representation of
the Hamiltonian corresponding to the Schrédinger equation (1.1) as a function of operators
# and p satisfying the canonical commutation relation. The Hamiltonian

H = H(%, p) = 2(cos p + cos %) (1.2)
is equivalent to (1.1) if it is quantized using the Weyl rule and if
%2, pl=in h=2np. (1.3)

The £6le of the Weyl quantization rule in representing Bloch electrons in a magnetic field by
Hamiltonians such as (1.3) is discussed in [23], where it is shown that rotational symmetries
of the crystal lattice are represented by rotational symmetries of the Hamiltonian in phase
space. In this paper, the symbol & will be used for the physical Planck constant, and % for
the dimensionless quantity 27 8.

This paper will make extensive use of phase-space representations such as (1.2), and
the following operators, which will be termed phase-space translation operators, will play
an important rdle:

T(X, P) = expli(P% — X p)/R]. (1.4)
These operators have a non-commutative algebra

T(X1, P)T(Xq, Po) = expli(X2P1 — X\ P2)/20)T (X, + X2, P + Py)
= expli(X2 P, — X\ Pp) /1T (X2, P)T (X1, P (1.3)

and they are relevant to this problem because their algebra is of the same form as that of
the magnetic translation operators introduced by Zak [24].

As well as applying to Harper’s equation, the results will be applicable to a class of
Hamiltonians which can be represented as a Fourier series, with coefficients Hp:

P?:ngwmgwflmcxp[i(mi—nﬁ)]: f: i Hyn T (nh, mh). (1.6)

H=—00 M==00

The Fourier coefficients are assumed to decay rapidly as n, m — oo.
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1.2, Discussion of earlier work

This paper is primarily a development of a renormalization-group method discussed in [15].
In this earlier paper it is shown that the spectrum of Harper’s equation in the neighbourhood
of a rational value (p /g, say) of § can be approximated by quantizing the dispersion relations
Ey(k, ) of the g bands of the rational spectrum, by means of the Peierls substitutions
gk — %', g8 — p'. The canonical operators X’ and p’ have a renormalized Planck constant
k' = 278, which depends on the quantized Hall conductance integer M, of the band (the
quantized Hall effect for this problem is analysed in [25]). The dependence of g" on M,
explains the ‘clustering rules’ discovered empiricatly by Hofstadter [6].

These results were derived by introducing a set of generalized Bloch states |B,(k, 8)},
which are defined for irrational 8, and which are obtained from the rational Bloch states by
varying the phase parameter 4 as a function of position. In the limit £ — p/q, the matrix
elements of the Hamiltonian in the basis of generalized Bloch states are the same as those
of a renormalized Hamiltonian which is obtained by a Peierls substitution of the dispersion
relation.

There are a variety of difficulties with the method described in the earlier paper, which
the calculations presented here gvercome.

(i) The method presented in [15] cannot readily be adapted to calculate corrections to
the lowest-order approximation, Hee ~ E,(8' /g, B'/9).

(i1) The phases of the Bloch states are arbitrary, and the results of the renormalization-
group transformation depend upon the choice of these phases: it is necessary to quantify
the effect of gavge transformations which change the relative phases of the Bloch waves.

(iii) It is desirable to find a form of the renormalization-group transformation which
preserves the four-fold rotational symmetry of the Harper Hamiltonian.

This latter point is particularly important, because if the rotational symmetry is
preserved, the spectrum is eipected to be a Cantor set of measure zero, whereas if this
symmetry is not preserved by the renormalization-group transformation, the spectrum could
be a Cantor set of finite measure [14, 15].

Another earlier paper [14] showed how the renormalization-group transformation can be
set up in a way which naturally preserves the rotational symmetry of the Hamiltonian, using
a generalized Bloch-state basis constructed out of Wannier functions translated throughout
phase space to form a generalized von Neumann lattice. This calculation was restricted to
the case where the quantized Hall conductance integer M, of the band is zero; this restriction
arises because it is not possible to construct conventional Wannier functions when M, #£ 0
[26]. The calculations presented here involve the construction of a von Neumann lattice of
generalized Wannier functions, which can be defined for arbitrary values of M,,. There are
. considerable technical complications because the construction of the von Neumann lattice
is necessarily anisotropic, and the symmetry of the Hamiltonian is obscured at intermediate
points of the calculation.

1.3. Plan of paper and summary of new results

This paper describes a refinement of the earlier calculations which is much more suitable
for explicit calculation of the corrections to the renormalized effective Hamiltonian as a
series in AB = 8- p/q, and which shows how the rotational symmetry of the Hamiltonian
can be explicitly preserved by the renormalization-group transformation. The plan of the
paper is as follows.

In section 2, it is shown how the Bloch bands of the rational case can be characterized
in a way which makes it possible to extend the definition of the Bloch states to irrational
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values of 8. It is shown that the Bloch bands of the rational dispersion relations can be
derived from a set of N, normalizable functions, where N, is related to the guantized
Hall conduction integer M, by the formula 1 = pN, + g M,. Section 3 shows how these
normalizable functions can be used to form a set of generalized Wannier states [¢(”)) the
Bloch waves are generated from these Wannier functions by using translation operators
of the form (1.4) to generate von Neumann lattices, and combining the states of the von
Neumann lattices with the appropriate phases,

Section 4 considers the calculation of matrix elements of the Hamiltonian and similar
operators in the basis formed by the generalized Bloch states. These matrix elements
are those of a difference operator in the Bloch wavevector &, with periodic coefficients.
Explicit formulae for the Fourier coefficients are obtained in terms of the matrix elements
{qbﬁ’f)!'f'(X , P)Ip{™). Section 5 shows that the matrix elements of the Hamiltonian are the
same as those of a renormalized operator, periodic in canonical variables ¥/, 5/, with a
renormalized commutator [£/, §'] = i#’. The renormalized operator is related to the original
by a linear transformation of the Fourier coefficients defined in (1.6).

Section 6 studies the effect of a 7z/2 rotation of the Hamiltonian in phase space. For a
particular choice of gauge (defining the relationship between the phase of rotated and un-
rotated Bloch states), the Wannier functions ]gbff")) of the rotated Hamiltonian are obtained
in terms of those of the original Hamiltonian |¢f1")). If the Hamiltonian is invariant under
rotation, these relations are shown to imply a rotational invariance of the renormalized
Hamiltonian. The rotational invariance depends on a surprising operator identity discussed
in appendix B.

Finally, section 7 summarizes the important results, and points to future work on this
problem.

2. Generalized Bloch states

In this section the Bloch states of the rational case are characterized, and their extension to
irrational 8 is described. For clarity of presentation, and because of necessary changes in
notation, there is some overlap between this section and {15]; the approach adopted here is,
however, more transparent and the result in section 2.3 is entirely new,

2.1. Bloch states obtained by sampling an analytic function

When 8 is the ratio of two integers, 8 = p/q, Harper’s equation has a translational
invariance corresponding to increasing n by 4. In this ‘rational’ case, Bloch’s theorem is
applicable and the eigenstates are Bloch waves, with a Bloch wavevector &;

Y = ¢ p(ikn}U,(k, 8) Upty = Uy. (2.1)

The eigenvalues form g non-overlapping bands, with dispersion relation €,(k, &), where the
index v =1, ..., q labels the bands. The eigenstates are periodic, up to a complex phase,
in both & and &, with periods 2z /g and 27 p/q, respectively. It will be useful to represent
the Bloch states by means of Dirac bra and ket vectors; the ket vector [B,(k, 8)) will be
used to represent the Bloch state in the vih band with wavevector & and phase parameter 8.
The Bloch states are only defined up to a multiplicative complex phase factor e®*-#), It is
possible to choose the phases of the Bloch states such that they are an analytic function of
the parameters & and 8. It may not, however, be possible to choose the phases so that the
Bloch waves are periodic on the Brillouin zone. The states can always be made precisely
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periodic in &, but states separated by the period of the Brillouin zone in the % direction may
differ by a phase factor:

[By(k +27/q, 8)}) = explix (§)1{Buk, 8))
[Buk, 8 +2mp/q)) = |Bu(k, 8)). 22)

Because of the periodicity in 8, x(§ + 2np/g) — x(8) = 2n M, for some integer M,. The
integer M, is termed the Chern character of the fibre-bundle formed by the Bloch states,
and the quantized Hall conductance carried by the vth band is o)} = M,e?/h [25). It will
be convenient to choose the phase x(8) as follows

x{(8) = Mygd/p. (2.3)

If the Bloch states are an anajytic function of 3, the amplitudes ¢+, defining the Bloch states
can be obtained by sampling an analytic function r, (x; k)

Y = Wo(xa; £) Xp =2mfn + 6. 24)

The Bloch states produced by this construction are clearly periodic in 8. For consistency
with (2.1), the function vr,(x; k) is a Bloch function:

Yo (x; k) = €2y (2 k) U,(x +2np; k) = Uy(x; k). (2.5)

Harper’s equation is unchanged under the transformations § - § + 27 /¢, n — n — An,
where An satisfies pAr + gAm = 1 for some integer Am. This implies that, with an
appropriate choice of phase of the Bloch waves, U,{x + 27 Am; k) = U,{x; k). Comparing
this with (2.5), it is clear that, with a suitable choice of phases,

U +2m k) = U (x; k). {2.6)

When (2.6) is satisfied, the following representation for the function ¥, (x; k) can be used:

=]
Yo(xs k) = 3 ap(k)et @7
n=~00
where % = 278, Equation (2.7) can also be written in the form

00

Yu(x; k) = (x| (&) W) = > an(k)lk + k) (2.8)

n=—co

where [k) denotes an eigenstate of the momentum operator: p = —ih%, plky = klk).
We now consider how to make (2.8) consistent with (2.2) and (2.3). Because x and §
are related by (2.4), the phase in (2.2) depending on § becomes a phase depending on x:

Yix; k4 2m/q) = expligM,x/ pl(x; k). (29

From (2.9), shifting & by 2w /g increases the momentum k of the state by M, gh/p = 2x M,
therefore

(=]

Wik +21/9)) = Y @)k + nk + 27 M.,). (2.10)

n=—00
To summarize: equation (2.4) relates the amplitndes v, to an analytic function v, (x; k).

The Bloch wave property of v, (x; k) = {x|¥,{k)} and the periodicity in k& are described
by (2.8) and (2.10), respectively.



8128 M Wilkinson

" 2.2. Generalized Bloch states

It will be useful to define generalized Bloch states for which 8 need not be a rational
number. Generalized Bloch states can be defined which are periodic (up to a phase) in a
Brillovin zone of size A8 = 7 in the § parameter, and Ak = &, in the k parameter (where &,
will be determined shortly), The generalized Bloch states are defined by a set of amplitudes
¥, which are obtained by sampling the continuous function v, (x; k) as prescribed by
(2.4). When B is irrational, the |,| form a quasiperiodic rather than a periodic sequence.
Equations (2.5)-(2.8) continue to be valid for the generalized Bloch states. Equations (2.9)
and (2.10) must be replaced by

Yo (s k4 ) = My, (xs k) @.11)
and
Wk + )l = Y an(k)k + nh + 27 M,) (2.12)

indicating that the periodicity of the Brillouin zone in k is now .
The value of «, can be determined as follows. From (2.8),

=]

ok + )y = Y anlk + )& + K, + nh) (2.13)

n=—00

and consistency between (2.12) and (2.13} therefore requires
ky =2 M, + N (2.14)

for some integer N,.

It is desirable to define generalized Bloch states which approach the Bloch eigenstates
in the limit 8 — p/gq: this requires that x, — 2m/g in this limit, and (2.14) therefore
implies that N, satisfies .

1 =gqM,+ pN,. (2.15)

The gap labelling theorem [27] and the Stfeda formula [28] imply that a solution of (2.15)
exists for which N, is an integer.

In the limit 8 -+ p/q, the generalized Bloch states resemble the usual Bloch states,
but with a slowly varying value of the phase parameter §. These states may be useful as a
basis set for expansion of an eigenstate of the Hamiltonian. Born—-von Karman boundary
conditions are applied to a finite number A; of n values, the values of £ are restricted to
be multiples of

Ak = 2w /NG, (2.16)

The values of the phase parameter § will also be assumed to be quantized, so that it takes
N, discrete values

§=1In/N, I=1,..., M. 2.17)

This corresponds to considering the problem of Bloch electrons in a magnetic field on a2
finite-sized rectangular lattice, with a total of LN, states in the Landau level [23]. In [15]
it was shown that the generalized Bloch states have the correct density of states to form a
complete set for a band of the spectrum when 8 is irrational.
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2.3. Representation of Bloch waves using normalizable functions

It will be useful to represent the generalized Bloch states in terms of a set of normalizable
functions instead of the Bloch functions ¥, {x; k). It will now be shown that the function
¥, (x; k) can be generated from a set of exactly N, normalizable functions. In section 3,
these functions will be associated with a set of Wannier states [907), u =1,..., N,.
Comparison of (2.12) and (2.13) gives a recurrence relation connecting the functions

a, (k):
an(k) = ap-n, (k + &y). (2.18)

A solution of (2.18) can be obtained in the form @,(k) = F(k + an): it is found that
@ = k/Nys e, ap(k) = Fk + kun/N,). Only coefficients a, with values of # separated
by N, are related by (2.18). A set of N, different functions are therefore required

a4 (k) = F e + nky) w=1,...,N,. (2.19)

This shows that the set of functions a,(k) can be generated from N, normalizable functions
F (k).
i°

3. Generalized von Neumann lattices

In this section, it will be shown that the generalized Bloch states can be obtained from
a set of N, overlapping generalized von Neumann lattices. This will be derived from an
alternative representation of the Bloch states.

3.1. A new representation of the Bloch states

In section 2, the generalized Bloch states were regarded as being defined by & discrete set
of coefficients v,. In this section, another viewpoint wil] be adopted: the generalized Bloch
states will be regarded as a set of functions on the real line, of the form

wBu &) = Y Vab(x —xs)  xy=nh+8 (3.1)

n=-—0o

where g(x) is a suitably defined delta function, and v, = ¥,{x,; k). Note that this
representation is very closely related to the k—g representation [29); the difference is that a
plane wave e** in the k—q representation is replaced by a Bloch wave ¥, (x; k).

To simplify the discussion of the definition and normalization of 8(x), it will be assumed
that § takes A, discrete values given by (2.17), and the relationship between the states
|Buék, 8)) and |y, (k) will be defined as follows

N,
1 L4 R o
18,08} = i S " g tmimiieZnmih |y (k)
y m=1

N,
1 : o
=~ D ¢ RO, 2mm) k) (3.2)
¥ m=1

where T(X, P) is the phase-space translation operator (1.4). Note that, according to (3.2),
8 behaves as a Bloch wavevector for translations along the momentum axis in phase space.
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According to (3.1), the overlap between two of the generalized Bloch states, |B,(k, §))
and | B« (k', 8"}, should vanish if § = 8 mod . It will be instructive to verify this explicitly:

{By(K',&')|By(k, 8))

'I| N\P
Z >~ expl2mi(m's’ — m8) /)y (&) T* (O, 2xm")F(0, 2w m)) iy (K))
3’ m=] m'=1
Ny N, .
1 & & 2 +
=vaz;z_lexp[———h—l (m d )(a 5)}
2mi f5+6 .
<enp -5 (157 - m | @, 20tm = 0. 62
The summation variables s and m' in (3.3) can be replaced by
j=m—m J=(’";m'). (3.4)

It will be assumed that the matrix element in the right-hand side of (3.3) decays very rapidly
as }j| = |m —m'| > oo. The summations in (3.4) will be replaced by a sum over j from
—00 to 00, and a sum over A, values of J, taking integer values if j is even, and half-
integer values if j is odd. For a sufficiently rapid decay of the matrix elements, the error
incurred by altering the summations is O(1/N,)

o0 H 8 5f -
By, B N = 7 Y e [—@ (—J’z—) j] W ()T O, 2 )1 )

B
Y j=—ca
x D exp[—2miJ (8" — 8)/1] + O(1/N). (3.5)
I

It is useful to define the symbol A(§ — &') as follows

AG—5) = Z Q2HiE—8YI/R
Ny &

1 § =8 modh
(3.6)

0 8 # &' modh

where the second equality holds if the values of § and &' have the discrete values given by
(2.17). Note that the symbol A(§—4’) is really a version of the Kronecker delta symbol, with
the arguments represented as real variables, discretized by (2.17), rather than as integers.
With this definition, the final expression is

(B (K. 1By R B) = AG—8) 3 (- 1)”Jexp[ 2;” (a—ﬂ) ,}

2
j=—ce
X (W () T(O, 27 ) 19, () 37

where § — §' = Nh, and, in this and subsequent expressions, the O(1 /Ny) error term is
dropped, because only the limit Ay — oo is required. The term (—1)"/ arises because,
when j is odd, the summation in (3.5) is over half-integer values of J. This result confirms
the orthogonality of states with different values of .
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3.2. Generalized von Neumann lattice basis

Using (3.2), (2.8) and (2.19), the generalized Bloch state |B,(k, §)) can be written in the
form

N, N
1 ¥ . A v
Bl 8)) = =iz 3 e (0, 20m) 3 4w )
¥ m=1 u=1
W) = Y FPGk+nie)lk + (N, + ph). (3.8)

n=—0d

The states |1,[rff’(k)} are Bloch states, with periodicity 2 /N, and are periodic (up to a phase
factor) in & with period «,; shifting &k by k, corresponds to a boost of their momentum by
2r M, (cf (2.12)). A set of Wannier functions will now be tdentified for the Bloch states
|1[;é”) (k)). The Bloch states can be expressed in the form of an integral

W) = Y f mdk'a(k'-k-(nN,,+u)ﬁ>F;”J(afc’+y)Jk'>. (3.9)

N=—00 Y —

Comparing with {3.8), o and ¥ must be chosen so that ok’ + ¥ = k + nk, when
¥ =k + (nN, + ph: this gives o = «,/Nh, ¥ = —(ypth + 2Ze M k)N A, Now
the Poisson summation formula will be used to re-write the sum of delta functions in (3.9):

oG

> 8K —k— (N, + wh) = _—; expl2mim(k’ —k — ph)/NoR). (3.10)

n=—00 Ny m==00
Using this result, (3.9} can be re-written in the form
2

—1 . o -
lw‘&u)(k)) - 7 Z e—ﬁﬂlm(k-ﬁ-#ﬁ)/f\’uﬁf di! Fﬁ”)(ak' + y)e%lmk /N“ﬁlk.'}- (311)
12 -0

M=—c<

Noting that the momentum eigenstates [k} satisfy T(X, 0)|k} = e~1X*/A{%), equation (3.11)
. can be written in the form

V0 = 5= m;w expl—2rim{k + uk) /N RIT (=27 m /N, O) |6 () ¢.12)
where

63 (k)) = f " aw F» (3.13)

-3

kp(k' — uh) - 22 M, ,
( N7 ) k).

The states |¢$(k)) clearly have a localized wavefunction if the F{”(k) are analytic
functions. Equation (3.13) implies that the state ]qbf‘“}(k)} is a type of Wannier function,

from which the Bloch wave hlrf,}’)(k)) can be generated. It is desirable to remove the
k-dependence of the Wannier functions. This can be achieved by writing

60Ky = T(0, 2 Mk /)19

o0 kK — uh
Wy = p Fo (S BT 3.14
o f dk’ F) ( N )l ) (3.14)

=00
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Combining (3.14), (3.12) and (3.8) gives the following representation of the | By (k, §)} states:

|B, (k. 5)) = CZ Z Z exp[ ( a+n(k;uh))]

p=1 n=—00 m==-00 v

x 70, 2nm)T (—2mn/N,, VT (0, 27 M,k /1) |6} (3.15)

where C is a normalization constant. The generalized Bloch states can therefore be formed
from a set of N, overlapping generalized von Neumann lattices, generated by applying
phase-space translation operators to a set of ¥, generalized Wannier functions |¢£¢“)). If the
Wannier states |¢S”} are suitably normalized, the normalization multiplier in (3.15) can be
written

= (NN, (3.16)

Note that, except when N, = 1, the von Neumann lattices of states in (3.15) are denser
in the X direction than the P direction and, when M, is non-zero, the states move in the P
direction as the wavevector k in the X direction increases. Physically, this movement can
be interpreted as a Hall current flowing in response to a weak electric field, represented-by
an adiabatic variation of the wavevector [25,30]. The symmetry of the original phase-space
Hamiltonian (1.2) is therefore completely lost at this point in the analysis, except for the
special case when N, = 1 and M, = 0 {which only occurs if p = 1).

4, Matrix elements of translation operators

4.1. Evaluation. of matrix elements

The Hamiltonian &, and other operators of interest such as projections of the Hamiltonian
of the form P = f (I:? ) (where f(x) is a suitable smooth function [15]), can all be expressed
as a superposition of phase-space translation operators T'(N&, M%), such as (1.6). In this
section, matrix elements of these translation operators will be evaluated in the basis of
generalized Bloch states | B, (%, )).

Using representation (3.15):

N2 N
(Bu(K', 8T (X, P)|By(k, 8)) = |CI* Z ZZZZZ

! m n n

2 . »
X exp l:%(m’S’ - ma)] exp [%(}c’n’ — kn)j|

w

o
X exp [%‘(u’ pm}] (65 121687 (4.1)

where © is a product of translation operators

= 70, =27 Mk fie,) T2’ /Ny, VT (0, =2mm"YT (X, PYT (0, 2mm)
x T(=2mwn/N,, )T (0, 2n M,k /x,) 4.2) .
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which can be evaluated using (1.5) as follows

T =c®T(—2n(n —n")/N, + X, 2n(m — m') + 2 M, (k — k) [, + P) (4.3)
with
2rM, (k+ K
© = —(n — —
n (mMN( ") }

2 frn+n ; 2 fm+m

m( 5 )[Zz'r(m m') + P] - ( 5 X. (4.4)
In (4.1), it is convenient to sum over the variables

! i’
I=n—p L=1%" j=m-m  J=TET @4.5)

2 2

Transforming the sums in the same manner as the transformations leading from (3.3) to
(3.5), specializing to X = Nh, P = MH, and using (4.4) and (4.5) gives

(B, (K, 8T (N, MR)|By(k, )} = |C|? Z expl—2ri(8 — & + Nh)J /)

xZex |: 21:1 (842-8’)]]
XZZZex [-E‘-(k K 4 2mf + (u — #-i—M)ﬁ)L:l

=1 p=t

X Zexp[ —2mi ( +E ) {((xey — 2w M, )/ N + MUN}:I

2
xexp[—% (“;M)I}
©

X (¢‘“>|T( ~271/N, + Nk, 27j + Mh + 2 My(k — k') /,)}g3)). (4.6)

The sums over the dummy indices J and L are only non-zero if, respectively, the following
two conditions are met:

8§ —8'+ Nh=0mod#
k=& +2nj 4+~ p'+ MR =0mod Nk = N'NJ 4.7)

for some integer N'. Provided both § and &' are in the range @ to #, as implied by (2.17), .
the matrix elements can therefore be written in the form

(By (K, 8HT (NR, MR)|B, (%, 8))

oo oo s Ny, Ny
—a6-5 3 35 P 3 S

J=—oc l=—00 N'=—00 pu=1 w'=1

x Ak = k' +27f 4 (4 — ' + M — N'N)R) exp{—2misj /R

! 2 !
X exp l:-—z:fl'i (kz_i;k ) (¢ + NMU)] exp l:—% (H -{2-|u, )l]

(@3 | T(=2mwm /N, + Nh, =2 (np+ M1} + MR+ 2 My (k — k') fie, ) |67}
(4.8)
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where A(x) is defined by (3.6), and the factor (—1)*+¥" takes account of the fact that the

sums are over half-integer values of J and L when, respectively, j and ! are odd. Also,

(2.15) has been used to simplify the argument of one of the complex exponentials.
Condition (4.7) can also be written

k—F =1k, +nAk
Ak = 2mp — gh (4.9)

where [ and » are integers (distinct from the dummy integers used in summations in some
earlier expressions). Comparing (4.7) and (4.9),

- j= M+ np NN =p—pu'+M—-—ng+IN, (4.10)
and using (2.15),

3N -p =M\ _ 1

3(n, 1) _det(—q/Nu 1 )“ Ny’ @10
This shows that, provided 2 and % are not rationally related, the summations over n and {
cover N, times as many values of k — k" as the summations over j, N'. Varying p' in (4.7)
between 1 and N, multiplies the number of distinct values of X —&' by N,. The summations
over j, N’ and u' in (4.8) can therefore be replaced by summations over n and /. Making
this replacement, changing the summation variable m to m — M, N, and renaming a dummy
index gives

(B, 8) B (VR MB) B &) = AG—=8) 3 S Ak —k'— Ly — nAAR)

nN=—00[==00

2 E+E
x expl2mis (M, + pn)/i] Z exp [—ZJri( r )m] (=1ym M

Rl ’
4.12)

where
eNM = (—1yem !i(_1)(M—NM»)(u—ﬂ'+M—nq)/Nu exp [_2_;_: (E_'E_”_I) (m— MuN)]

x (PN (=2 (m — NM,)/N, + Nh, —2m(np + Myl)

+ MR+ 27 M, (k — K /1)) 4.13)
and

w' = (1 + M — ng) mod N,,. (4.14)

Equation (4.12) shows that the matrix elements are in the form of a difference operator in
the & variables, with coefficients which are periodic with period «,,. Equation (4.13) gives
the mth Fourier coefficient of the term-coupling wavevector k to k' = k 4+ n Ak, in terms of
the matrix elements of the localized states ltﬁﬂ’)).
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4.2. A more symmetric expression for the Fourier coefficients

‘The formula for the Fourier coefficients (4,13} which defines the matrix elements will now
be written in 2 more compact and symmetric form, Using (2.14), (2.15) and (4.9) to simplify
the arguments of the translation operator in (4.13), and using (2.15) to simplify the phase
factors gives:

Ny
— Z(__ l)p(nN-i-mM-qnm) exp [_
p=l

M,
(1~ 3(ng — M))(mg — N)}

x (@3 1T ((~2mm + Niy)/ Ny, (=270 + Mi, Y /,)160). (4.15)

This result can be further simplified by introducing operators £(A1, A;) which are defined,
for integer values of A| and A,, by the relation

QriM
O 22)8") = exp| Tt Ddha 67, ). @.16)

The operators (A, A2) are clearly analogous to the phase-space translation operators
T(X, P) in that they have the same type of non-commutative algebra:

A A 2iM, [AA = 1AiNT .
:(A,,xz)r(x'l,x;)=exp[ ”;i ”( 2 - ‘ 2)]:(xl+x;,xz+xg). (4.17)
v

Also, note that the f(A;, A2) operators commute with the phase-space translations f(X , P).
Making use of definition (4.21), the coefficient zV¥ can be written in the form
- ( l)p(nN-I-mM—qnm) Z{é(u)ITNMkb(u))
=l
TVM = F(M = ng, N — m@)T ((—=27m + Nk,)/N,, (=270 + Mi,)i/k,). (4.18)

Note that the coefficients TV can all be obtained from a set of N2 functions W(X, P),
defined by

N
Wl (X, Py =Y (@D i(n, n)T (X /N, PR/, (4.19)
p=l

In terms of the functions W,f:,}(/'f, P), the coefficients 7,¥M can be written in a form in
which the pairs of integer labels ¥, M and n, m appear in 2 symmetric pattern:

T.’NM = (_l)p(RN+mM—qnm)W(U] (X, ’,D) (420)

nm Axlp
with
n, =M —ng fnp=N—mg
A =—2nm+ Nk, = —Znxn + Mk, 4.21)

It is surprising that the arguments of the T(X, P) operator in (4.19) should have to be
multiplied by different factors in order to obtain (4.20) in this symmetric form. This
asymmetry in the definition of W, ,m. (?c’ P) suggests that it may be difficult to make it
reflect a four-fold symmetry of the crystal lattice. This apparent difficulty is resolved in
section 6,
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5. Renormalization-group transformation

5.1. A renormalization-group mapping of operators

In section 4, it was shown that the matrix elements of the Hamiltonian (1.6), when expressed
in terms of the generalized Bloch states, are in the form of a difference operator in the k
varfable, with step length Ak and with periodic coefficients with period «,. This new
representation of the Hamiltonian is therefore very similar to the original Harper’s equation.
In this section, it will be shown that the matrix elements are equivalent to those of a
"‘renormalized” Hamiltonian of the form

2] o0
A= 3" 3" HYexplitnp' —mi")] = Z Z HWYT  (5.1)

H=—00 M=—0Q A==—Q0 M= —0Q

where
@, p) =i K =208 = 2w ALk, ©-2)

Because the allowed values of 8 (specified by {2.17)) satisfy 0 < & < A, the matrix elements
{4.12) are only non-zero when § = &’. The k values will be considered to form a continuum
from —o0 to oo, but only values 0 < & £ &, are physically distinct. When expanding a state
in terms of the [B,(k, §)} basis, only values which are related by (4.9) are required, since
only these values are coupled by the Hamiltonian. Moreaver, only states with differing
values of # are required, because states with & differing by multiples of &, are physically
equivalent: for this reason only the case where I = 0 in (4.12) is required.

Accordingly, attention will be restricted to a subset of the generalized Bloch states
where k = kg + nAk (and r is an integer). If 27 is not rationally related to #, it is useful
to make a phase transformation of these states:

|Xn) = exp[2mwiépn /]| By(ke + nAk, 8)). G3)

When # is rationally related to 2o, this set of states is closed, and (5.3) would be inconsistent
in that it would equate a state to a multiple of itself which would typically be different from
unity; for this reason the subsequent discussion of this section is specific to irrational values
of B. Using (4.12), the matrix elements of the translation operator TNM = T(Nh Mh) are
then

o

nsanlTumlxnt = 3 exp [-—((n+ An)ak+ko>m] Wi 54

H=—00

Note that the choice of the phase transformation in (5.3) makes (5.4) independent of &.
The matrix elements (5.4) will now be compared with those of the operator

Ty = Z Z "M expli(np’ — miH)] = Z Z ke (5.5)
R==—00 M==—00 H==00 M===00
in the basis of eigenstates of x'. These matrix elements are

Wit = 3 3 wen|i(52)n] g 4m) 66

A=—DOM=—0C
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Now restricting attention to the subset of |x'} states |x;) = |x; + ##'). the non-zero matrix
elements in (5.6) are

00 o0
neanlomlxn) = 3. Y exp[itxg + (v + samRym] oM (5.7
H==00 mM=—00

If 7' is identified with 27 Ak/«,, and x; with ko/«,, these matrix elements are exactly the
same as those in {5.4). The original translation operator f’NM is therefore renormalized into -
a sum £y, of translation operators 7,,,, with a renormalized Planck constant ', The same
reasoning holds for any operator such as Hamiltonian (1.6) which is a sum of the translation
operators Tyys. The renormalized Hamiltonian (5.1) is therefore specified by the Fourier
coefficients

o0 =]
HIJ(,;)I: Z Z HNMI',?,’“M. (58)

N=—oo M==-c0

5.2. Simple results for the renormalization-group coefficients in the rational limit

It is difficult to write down general results for the coefficients t# in (5.8) which define
the renormalization-group transformation. In the rational limit # — 2mp/g however, these
coefficients satify some simple relationships.

In the rational case 8 = p/q, the generalized Bloch states reduce to exact eigenstates,
and the matrix elements of H are, using (4.12) and setting [ =0, Ak =0:

(B, (K, 8 HB,(k, &) = A5 = 8DAk = k) i i i i
=—00 M=—00 #=~0e m=—00
x exp[—2wisnp /i) exp[—2mikm /i, ) Hypt M
=A@ - NAK — kNS E. (k. 8) 3.9
‘where £,(k, 8) is the dispersion relation for the vth band, which has Fourier coefficients

EM . Comparing (5.8) and (5.9), it is clear that the set of coefficients H) defining the
renormalized Hamiltonian therefore approach the Fourier coefficients £ of the dispersion

relation in the rational limit, and that this gives a sum rule for the coefficients r,{‘,'nM :
( ) [=4] o0
v NM
Hiv= 3" > Hyytg! — & (5.10)
== Wes—0a

in the imit # — 27 p/g. Similarly, in the rationaj limit. the Bloch states are orthogonal
(By(K', 8" Bu(k, 8)) = A(k = &YA(S — 8w (5.11)
implying that
% 5 S008mo (5.12)

as i = 2mp/g. By considering matrix elements of integer powers of H, it is also possible
to derive further sum rules analogous to (5.10) relating the coefficients 7.¥¥ to Fourier
coefficients of the dispersion relation.

The two results (5.10Q) and (5.12) were obtained less formally in [15]. It follows directly
from these results that the renormalized Hamiltonian is obtained from the dispersion relation
E,(k, &) by a Peierls substitution.
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6. Rotational symmetry

The symmetry between £ and § of the Harper Hamiltonian is obscured in the Wannier
function representation of the Bloch states (3.15). This is a necessary feature of the
construction of these states, because it is desirable to keep the Bloch states strictly periodic
in at least one of the Bloch wavevectors (k, 8), and if the Chern number M, is non-zero
the periodicity must be lost in the other variable. The aim of this section is to consider
the effect of a sr/2 rotation in the phase plane on the |B,(k, &)) states, and to calculate the
transformation of the Wannier functions ¢} generated by this rotation. It will be shown
that, provided the phases of the Bloch states are chosen to satisfy a particular condition, the
function W) (X, P) defined by (4.19) is symmetric under rotations if the Hamiltonian also

nn'

has this symmetry.

6.1. Rotation of Bloch states

The operator describing a 7 /2 rotation in the phase plane is the Fourier transform operator
{(with an additional scaling by a factor of #). This operator will be denoted by R:

] ®
dx’ e (x|, 6.1
o8 (x'|y) (6.1}

This operator rotates phase-space translation operators by n/2:

{x|Rly) =

RF(X, Py = T(—P, X)R. 6.2)

Now consider the effect of applying the rotation operator to a Bloch eigenstate |B,{k, 8)}
in the rational case. Clearly

HrR|B,(k, 8)) = &,(k, 8)R|B,(k, 8)) (6.3)
where Ay = RAR 'is an operator which can be obtained from H by rotating the arguments
of all of the component translation operators by 7 /2. The state fé]B,,(k, 8)) must, therefore,
be a linear combination of Bloch eigenstates of the rotated Hamiltonian Hg with the same
energy £,(k, 8). The case where Hr = B will be of particular interest.

Instead of considering the effect of a rotation on a single Bloch eigenstate, the effect

of the rotation operator on 2 particular linear combination of Bloch eigenstates will be
analysed: this linear combination is of the form

1 1
Su(k, 8)) = — |By(k,8 + 27 . 6.4
| 7 ; ( ila) (6.4)

It will be shown that
RIS, (&, 8)) = [B/®&', 8")) (6.5)

where |B/®)(k, 8)) is obtained by a gauge transformation from the Bloch state [BF (%, 8))
of the rotated Hamiltonian Hg

B®, ) = 40 1B® K, 5)) (68
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and the transformation of the Bloch wavevectors k and 8, induced by the rotation operator,
is

K o=3 § = —F. 6.7

The effect of the rotation operator on the sum of Bloch states |S,(k, 8)} defined by (6.4)
is therefore to produce a single Bloch eigenstate [B/®(%’, §")} of the rotated Hamiltonian
Hr. The transformed Bloch wavevectors are related by a /2 rotation in the Brillouin zone
(6.7), and the phase of the rotated Bloch states differs by a gauge transformation (6.6) from
Bloch states of the standard form (3.15).

It will now be verified that R|S,(k, §)) is a single Bloch state. Specializing (3.15) to
the rational case (i = 2np/q, «, = 21 /q), and splitting the sum over n into a double sum
over r’ and p', with n = Nyn' 4+ 1

Cc & N
18,0k, 8)) = —= D > expl—igm8/ plexpl—2mimj/p)T (0, 2m)
ﬁ =1 m
Nu Nv
x 33y " expl—igh(n' Ny + 1)/ pN,Jexpl—2xin(n' N, + ')/ N,]
r p=1p'=]
x T(—2mn, OT (~2r ' /N, )T (0, g M, k) 657 (6.8)

where C is the normalization factor (3.16). This state vanishes except when m is a multiple
of p. Using (1.5) and (2.15) to commute translation operators and simplify phase factors,
and renaming the dummy indices, this reduces to

|Su(k, 8)) = C Y /P T (2mm, 0) Y " e 4T (0, 2np) T (0, g M, k)
m n

Nu
x Y expl—igkullx ) (6.9)
p=l
where
A N"
1x) = /PT(=2mp /Ny, 0) Y expl—2mip'/N16%). (6.10)
W=

Applying the rotation operator to this state gives (using (6.2))
RIS,(k. 8) = C Y _ expl—igs'm/p]T(0, 22m) Y expl—igk'n}T (=27 pn, )T (g M, &', 0)
m n

Nu
x 3 expligsu]| @) 6.11)
p=1
where
-~ NIJ A
190 = /PT (O, ~2mu/N,) Y expl-2mipp' /N,IRIGL) (6.12)
u'=1

and k' and &' are given by (6.7). The summation over m plays the same réle as that in
(3.2), indicating that the wavefunction of this state is zero except at positions x,, = n# + &',
also, k' is clearly a Bloch wavevector. This state is therefore a Bloch state of the rotated
Hamiltonian, similar to the standard form (3.15), and differing from it by at most a gauge
transformation.
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6.2. An alternative Wannier function representation

In the previous subsection, it was shown that a Bloch wave can also be represented in the
form ¢6.11). This is an alternative representation to (3.15) in terms of a different set of
Wannier functions |${):

|B)(k, 8)) = C Y _ expl—igém/p]T (0, im) Zexp[—igkn]'f‘(—Zern, 0yF (g M8, 0)

Ny
x Y expligus]| (). (6.13)
u=t

The periodicity of this new representation of the Bloch states is described by the relations
|B,(k + 27 /q, 8)} = |B,(k, 8)}
|B,(k, 8 +2mp/q)}) = exp[—igM.k]| B, (k, 8}) (6.14)

which is different from the periodicity properties of the previous Wannier function
representation (3.15) (cf (2.2) and (2.3)):

|Bu(k + 27 /q. 8)) = exp(igM,8/pl|B,(k, &)}

|Bu(k, 8+ 2mp/q)} = |Bu(k, 8)). {6.15}
The phase @(k, 8) appearing in gauge transformation (6.6) therefore satisfies the equations

O(k + 27 /q, 8) — B(k, 8) = —q Mok

Ok, 8 +2mp/q) — 6k, 8) = —qM,8/p. (6.16)

The solution of these equations is of the form 6(k,8) = wkd + x(k,8), where x(%,8)
is periodic with periods Ak = A8 = 2x/g and, by inspection, the coefficient of &J is
o = —g’M, /2w p. The phases of the Bloch waves will be chosen so that the following
condition is satisfied:

1B'® (%, 8)) = expl—ig? M,k8/2x p}| Bk, 8)). (6.17)

Note that, given a choice of gauge for the |B,(k, 8)) states, this relationship defines, via
(6.4) and (6.5), the phase of the |BS® (k, 8)) states.

6.3. Rotations of Wannier functions

Two expansions for Bloch states in terms of Wannier functions have been given, which will
be termed type I (defined by (3.15)), and type II (defined by (6.13)). Equation (6.12) gives
the type II Wannier functions of the rotated Hamiltonian Hp in terms of the type ] Wannier
functions of A. Now the type 1 Wannier functions of the rotated Hamiltonian |¢F) will
be determined in terms of the unrotated set iq&fj”). The result will be expressed as a rotation
operator for the set of Wannier functions.

Appendix A gives a formula for the type I Wannier functions |¢{”) in terms of the
Bloch states |B,(k, §}). The approach will be to use this formula with the Bloch waves
[B®(%, 8)) obtained from gauge transformation (6.17) of the | B/®) (k, 8)) states: the latter
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will be expanded in terms of the type II Wannier functions, which are given by (6.12).
Combining (A4} and {6.17) gives

2 Ny
(Ru} = q ] "IN F ’
by} AnipN,C E’::: exp2ripp /N T 2rp' /Ny, 0)

2nfq 2nplg
X f dk f dé explighu') explig®M, k827 p)
0 0

x 70, —gM,k)1B® (k, 8)) (6.18)

and the Bloch states of the rotated Hamiltonian are obtained by substituting (6.12) and
{6.13} into (6.18). Using a result (B.3) proved in appendix B. this can be written

1

Nv
D explaminp'(NIT (21t /N, OF @, 2mpa) T (2 '[N, 0)

Vel

6 = -

N,
x S(pN)RT (—2mA/N,, 0) ) expl2mia /N, 1165} (6.19)
A=l

where §(7) is a unitary operator which stretches the x axis by a factor of 5
xISmlw) = Valmxl). (6.20)

Commuting a pair of T operators, and using (6.2) and (B.9) to commute all of the T
aperators to the left of the § and the R, this reduces to

L. N, A )
Rudy __ _ : At )
g8 = T #E,=1 ;:S'sl exp(2miu + g’/ Ny] l§.=1 exp[—2miAl' /N ]S(pNIRIG” ).

6.21)
The sum over y' vanishes unless gA + 1 = Omod N,; using (2.15) this condition can also
be expressed as A = —M, u mod N, so that

1 X _ . N
expl2miMy /NS (PN RIGE). (6.22)
w=1

’—

Ry, __
]¢p_ } - m

The rotation operator for the type I Wannier functions is therefore a composition of a phase-
space rotation, a stretching and a discrete Fourier transform acting on the p labels. It will
be convenient to introduce an operator 7 for this discrete Fourier transform:

. 1 & . ,
Plu) = =~ D expl2miMuisst' [ N.ide). (6.23)
v u'=1
Note that the operator 7 acts on a set of states {|¢,}. & = 1, ..., Ny} rather than upon a
single state. With this notation, (6.23) can be written
19F2) = S(pN,)RFIOD). (6.24)

The composition of three operators in (6.24) is a rotation operator for the set of Wannier
functions. Note that this form for the rotation operator depends on the phases of the Wannier
functions peing chosen so that (6.17) is satisfied.
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0.4. Implications of rotational symmetry: the rational case

If the Hamiltonian has rotational symmetry such that # = Hg, then the rotated Bloch
states must be equal to the unrotated states, up to a phase. In appendix C, it is shown
that there exist gauges for which the rotated and unrotated states differ by a fixed phase
8(k,8) = mL/2, where L is an integer. In the following considerations, it will be assumed
that such a choice of gauge has been made. This implies that the rotated Wannier functions
168} must be identical to the |¢{”} set, apart from a phase factor:

(60 = i*S(p NI R(Ro)P16L). | (6.25)

In this equation the fact that the rotation operator R depends on 7 has been shown explicitly,
and for the rational case we set # = fig = 2w p/q. It will now be shown that this implies
that the function W(”)(X P) defined by (4.19) has rotational symmetry in the rational case.

As a preliminary, consider the commutation of operator 7 defined in (6.23) with the
translation operator f(n, n') defined by (4.16):

a

Fi(n,ny = 1(—n', n)F. (6.26)

Note that this is analogous to commutatlon rule (6.2) for the R and (X, P) operators. In
the rational case, the function Wm,, (X. P) is given by setting A /e, = p in (4.19), substituting
(6.25) into (4.19), and using (6.2), (6.26) and (B.9) to commute operators:

WX, P) = Z«p‘"’l?* R & (pN)E(n, nYF(X /N, pP)S(pN,) RP |62

nn'

Nu
= > (eMi(—n', T (=P /N, Xp)pWy = WO (-P, X). (6.27)
je=l

This result implies that, provided the phases of the Bloch states are suitably chosen, the
function W(”) (X, ’P) has exact rotational symmetry in the rational case, under a combined
rotation of the n,n'and X, P variablcs Comparing with (4.20} and (4.21), this implies that
the renormalization coefficients ¥M satisfy the symmetry relation 7,;%:Y = t¥¥. From
{(5.8), it is clear that this syrnmctry ensures that the symmetry of the Fourier coefficients of
the Hamiltonjan H_y 4 = Hyu, is also found in the Fourier coefficients of the renormalized
Hamiltonian: & ’(_",)nl,, = H'™ A four-fold rotational symmetry of the classical Hamiltonian
(or other operator) is therefore preserved by the renormalization-group transformation in the
rational limit # — 27p/q.

6.5. Preservation of rotational symumetry in the irrational case

The four-fold symmetry of W,ff,.) (X, P) can also be preserved in the irrational case by a
suitable modification of the Wannier functions.

If £ is irrational, the translation operator in (6.27) is replaced by 'f‘(X [N Phje,). It
is easy to verify that this symmetry relation would continue to hold if the Wannier functions
satisfied the transformation law

8L7) = i*SBN/x,) RFIGE). (6.28)
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Given a set of Wannier functions for the rational case satisfying (6.25), a set of states [¢Lf")}
satisfying (6.28) can easily be generated by scaling them by a factor »:

8 = SCmlg). (6.29)
Note that the rotation operator satisfies
R = §(ro/B) R(Ro) (6.30)

which follows from the definitions (6.1) and (6.20). Requiring that [¢{7} = .§'+(n)|¢;§"))
satisfies {6.23), and using (6.30) and (B.10), the required scaling factor is found:

n=+2r/qk,. (6.31)

Note that this approaches unity when 8 — p/g. If the Wannier functions are re-scaled
according to (6.29) and (6.31), the functions W,f:? (X, P) are transformed as follows

Ny
WINE, P) > WX, P) =Y (6, sV T (XN, PRI
w=l

Nv
= > {dWNSF (i, 0 VT (X [Ny, PRk ()GL) = Wi (n X, nP). (6.32)
u=l

In order to preserve a four-fold symmetry of the Hamiltonian in the renormalization-group
transformation, the phases of the Bloch waves should be chosen according to the prescription
in appendix C. The function W,f,‘:,) (&', P) then has the correct symmetry in the rational case.
In the irrational case, the arguments of this function should be scaled with the factor 5, as
prescribed by (6.31) and (6.32).

7. Summary and discussion

This paper has been concerned with the definition of a generalized Bloch basis for Harper’s
equation, and with the evaluation of matrix clements of the Hamiltonian in this basis,
showing that they are the same as the matrix elements of a renormalized operator. It is a
more refined and formal version of arguments presented in [15]. The new results contained
in this paper are summarized below, and the important formulae are enumerated.

A significant new result, introduced in section 2, is that the generalized Bloch states
can be generated from a set of N, normalizable functions F.*’(k), where N,, defined by
(2.15), is the gap labelling integer conjugate to the Hall conductance integer M,. In section
3, it was shown that these normalizable functions can be used as a set of Wannier functions
j¢‘&”)) for a von Neumann lattice representation of the Bloch states, This von Neumann
lattice representation is inherently anisotropic (except for the special case where N, = 1
and M, = 0, which was treated in [14]). This anisotropy is a source of severe difficulty
in setting up a version of the renormalization-group transformation which preserves the
four-fold symmetry of the Hamiltonian.

An explicit formula for the matrix elements of translation operators in the basis of
generalized Bloch states (4.12) is derived in section 4 and, in section 3, this is used to
obtain the Fourier coefficients which characterize renormalized operators. After a fong
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calculation, these Fourier coefficients are expressed in terms of matrix elements of the form
(O E(n, rYT(X /Ny, Ph/ky)|9(?), where f(n, n') is a translation operator acting on the 4
Iabels The final formuiae for the Fourier coefficients, (4.18) or (4.20) and {4.21), are quite
simple and symmetric in form, but they do not respect the isotropy of the lattice because
the arguments of the operator T'(X, P) are scaled by different amounts.

Section 6 considered the effect of »/2 rotations of the Hamiltonian in phase space, The
relationship of the Wannier states Iqb’&R"')) of the rotated Hamiltionian to the unrotated set
[¢%) is given by (6.24), under the assumption that the Bloch states are chosen to satisfy a
parncular gauge relationship (6.17). The rotation operator for the Wannier functions contains
a Fourier-transform operator R, and a discrete Fourier transform 7 over the u labels, both
of which might be expected. The surprising feature of this result is that it also contains
a ‘stretching’ operator S(pNu) In sections 6.4 and 6.5 it is shown that this stretching
operator cancels out the apparéent anisotropy in the formulae for the matrix elements, and
that the function W (X P) defining the renormalization coefficients Tl can be made
rotationally mvanant A four-fold symmetry of the Hamiltonian is therefore preserved by
the renormalization-group transformation.

The constraints on the choice of gange imposed in section 2 and appendix C still do not
give a unique choice. An exact formulation of the renormalization-group transformation
requires evaluation of matrix elements of the projection operator P for a band, and of
the projected Hamiltonian Hp = PHP [15]. The calculation of the expansion of the
effective Hamiltonian in powers of 8 — p/g is complicated by the fact that the result is not
unique; gauge transformations of the Bloch states determine canonical transformations of the
renormalized effective Hamiltonian. This question will be weated in detall in a subsequent

paper.
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Appendix A, Wannier states from Bloch functions

This appendix describes how to invert (3.15) to express the Wannier functions in terms of
the Bloch functions. The calculation is specific to the rational case.

First consider the state
[+ o]

T(0, —gMK) By, 8)) = C ) exp[—igms/p]T(0, 2xm)

M=

o0 N,
x Y expl~igkn]T (~2mn/N,, 0) ) expl—2miun/N,]|¢0). (A1)

p=—0C =1

This state is clearly periodic in both & and §. It is useful to consider the following integral
1 [ 2mpfq . .
=g [ @ [ e expligni? 0. ~aMIB e, )

4
= ’; P 5™ expldmius NI (<2 M, I (4.2)
W=
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This result relates a sum of Wannier functions to an integral over the Brillouin zone. A single
‘Wannier function can be obtained from the |J,} states by performing a further summation:
1 & \ 4n2p

i = ()
N, ECXPEZMML/NUIT@M/NU, Olh) = —7167). (A3)

Combining the above results gives an expression for the Wannier functions in terms of the
Bloch states

2 Ny
2 R M i’ /N,]F Qi /N, 0
J¢p;) 477sz1;€ M,-:l epr NIM#’/ DJ ('.‘TAU'J v )

/g Lrplg .
b4 f dk f dé explighu'1T (0, —g M k)| B, (k, 8)). (A4}
0 0

This expression is analogous to the standard method for constructing conventional Wannier
functions by means of an integration over the Brillonin zone, and it reduces to the standard
result when M, =0and N, = 1.

Appendix B. An operator identity

The operator

Ok, 8) = explig®M.k8/2xp] . Y expl—ig(kpn + sm)/p}

R=r—00 M==—00

x 70, 2nm — qM k)T (~2mpn + gM,8, 0) (B.1)

is easily shown to be periodic in k and $: O + 2m/q,8) = O, 8 =03+ 2rp/q).
The aim of this appendix is to evaluate the Fourier coefficients of this operator:

" 2nfq nplg ) N
Onpy = f dkf dé expligkpN + M)/ plOk, &) (B.2)
0 0

and to relate them to a unitary operator 3‘(:;) which describes a dilation of the x coordinate
axis by a factor of i: {x|3(M)|¥) = ,/M{nx|¥). It will be shown that, when 2 = 2 p/g,

dxip 1 4 - R
——T(0, 2z MYT(2a N/N,, 0)S{pN,). B.3
qzm(ﬂ )T (2 N/N,, 0)S(pN,) (B.3)

To derive this result, consider the coordinate representation of Ox w ¥} for an arbitrary state

[¥):

Ony = —

=]
(1O, $)|) = explig®M k(8 — x)/2zp] Y expligm(x — 8)/p]

m=—00

x Y exp[—igkn){x + 2xpn — g M\ 8i¥). (B.4)

n=—00
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Using the Poisson summation formula, the sum over m can be expressed as a sum over
delta functions:

(x| Ok, 8)|¥) = —2’;—” explig”Mok(s — x)/2mp) D 8(x —2mpm/q — &)

m=—0a

x Y expl—igknl{x + 2mpn — gM,8|¢). (B.5)

==00

Now note that, for any function f(8):

oo 2aplq o
Z ./; dé f(8)8(x —2mpm/jg — &) = ds F(8¥(x — &) = f(x). (B.6)
It follows that
2rply .
fo d8 explig M8/ plx| Ok, )
2np ) = .
= — - oxpligx/p] ) expl-ighn](x +2mpn —qMxly).  (B7)

Finally, integrating over k gives

xiq o)
dk expligkN] Z: exp[—~ikn](x — 2wpn -+ gM x|y

H==-0a

- 2n .
Onm = ——&“E EXPllqu/Plfo

2
i expligMx/pl{x — 2mpN — gM, x|y}

Am2p

1
g PN,
4np 1

= J‘D—M(XIT(O,27rM)T(27fN/Nu,0)S(PNu)]¢) (B.8)

from which (B.3) follows immediately, X i
It is useful to note the rule for commuting the § and T operators:

expligMx/plix — 2n N[Ny |S(pN,)|¢)

SeTix, Py = TxX/n, P)Sm). (B.9)

This result |§ easily hobtained from definitions (1.6) and (6.20), by calculating the matrix
element {x|T(X, PYS(n|¥}. Similarly,

RSt = S /mR. (8.10)
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Appendix C. Construction of a rotationally invariant gauge

In section 6.2, it was shown that the Bloch states of the rotated Hamiltonian can be obtained
from those of the unrotated Hamiltonian as follows

1 . e .
(B!, 8)) = — explig® M k8/2npIR Y | 1Bk, § + 2j/q)) = Ru[Byk. 8)}  (C.1)
JP e
where k& and &' are given by (6.7), and the second equality defines the rotation operator for
the Bloch states Rg. If HR = H, the rotated Bloch states must be equal to the unrofated
states, apart from a phase factor:

|BR(k, 8)) = explif(k, 8)]|By(k, 5)) €2

where 8k + 2 /q,8) = 6(k,8) = 8(k, 8 + 2m/g). A gauge transformation of the Bloch
states will now be constructed for which the function @(k, §) is a constant, i.e. a function
x (k, 8) will be determined such that the gauge-transformed states

| B, (k, 8)) = explix (k, 1| B, (k, 8)) (C3)
satisfy
1B'®(k, 8)) = Ra|B,(=8, k) = exp(ifo)| B. (k. 8)}. (C4)

where &; is a constant. Combining (C.2), (C.3) and (C.4) gives a relationship between the
functions x (k, 8) and @k, 8):

x(k,8) = x(=8,k) + 6(—4,k) — ép. (C.5)
To construct the solution of this equation, the function x (k, §) is Fourier expanded

(=] S0
X0, 8= 3" " Xumexplignk + m8)] (C.6)
R=w00 M=—00

and 8 (k, §) is expanded in the same manner with coefficients &,,,. In terms of the Fourier
coefficients, (C.5) reads

Xnm = Xm.—n + P, ~n — n0Bmoo. (C.7)
Except for the special case of ygo, the coefficient x,,, is related to three other coefficients,
Xm—ns X—n—m 31d X—pn by (C.7). The choice of one of the coefficients (¥, say) is
arbitrary, but once this has been chosen the other three coefficients are determined by three
iterations of (C.7}. Coefficient yqq is arbitrary.

For this to be a consistent solution, a fourth iteration of (C.7) should give the original

coefficient Y. Clearly, this requires that the four Fourier coefficients 8., 85 —r, B—s,—m
and 8_, , should sum to zero for all {n, m) except (0, 0): equivalently

Bk, 8) + 6(8, —k) + B(—k, —8) + 8(—3, k) = constant , (C.8)
This condition is satisfied if 74| B, (k, 8)} = |B,(k, 8)} in which case the constant in (C.8)
is 2w L, where L is an integer. Equation (C.8) can be verified as follows, In section 6.3,

the Wannier functions of the rotated Hamiltonian were shown to be related to those of the
unrotated Hamiltonian by application of an operator

Ry = FS(pN,)R. (C9)

It 15 clear that 'R.g = I, where I is the identity operator. The Wannier functions of the
four-times rotated Hamiltonian are therefore identical to those of the unrotated Bloch states,
and the four-times rotated Bloch states must therefore be identical to the original states:
this verifies {C.8). A solution for the gauge transformation y (k, 8§) can therefore be found
such that the phase change under rotation of Bloch states, defined by (C.2), is 8§ = wL/2.
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