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Abstract. The absorption of electromagnetic radiation by small conducting discs is caleulated
for the case of ballistic electron motion, using a semiclassical analysis valid at frequencies small
compared to the plasma frequency wy. For a smooth walled dise there are complicated resonance
structures, and the absorption coefficient has a low-frequency cut-off at a critical frequency cwe,
which corresponds to the frequency of a circumferential classical orbit of an electron at the Fermi
surface. For frequencies satisfylng e < @ < wy, the absorption coefficient is proportional to
w if fluctuations due to resonances are averaged over. We also consider a rough-walled dise
and some more general shapes: the proportionality to w rather than the expected e?isa general
feature. .

1. Introduction

The interaction between electromagnetic radiation and small metallic particles has been
subject to intensive investigation, both theoretically and experimentally. At low frequencies,
the dominant effect is absorption rather than scattering. Most theoretical analyses of this
problem are based upon the Mie theory [1] for the interaction of an electromagnetic wave
and a dielectric sphere; a metal particle is regarded as having an imaginary dielectric constant
proportional to its conductivity, The application of the Mie theory is only justified if the
spherical particle can be regarded as a homogeneous system described by a bulk dielectric
constant, and its applicability is questionable if the motion of the charge carriers is ballistic,
i.e. if the bulk mean free path of the charge carriers exceeds the size of the particle. A
large part of our motivation for this research was to advance our understanding of how to
analyse dissipative phenomena in systems with ballistic electron motion.

The case of ballistic motion of the charge carriers has usvally been treated by replacing
the bulk conductivity with an effective conductivity derived from the Drude formula
{discussed clearly by Ashcroft and Mermin [2]). The relaxation time 7. for scattering
from impurities is replaced by a bounce time 1, ~ 4/vg, where ¢ is the radius and v
the Fermi velocity, which is the typical interval between collisions of the charge carrier
with the boundary of the particle. This approach was first introduced by Kawabata' and
Kubo [3], who showed (by comparison with a more precise calculation) that it provides
qualitatively correct results for absorption above the plasma frequency. In a recent paper
(4], we examined the applicability of this effective conductivity ansazz at frequencies below
the plasma frequendy, where screening of the applied electric field is significant. We found
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that the physics of this situation is complex, with the results depending on the details of
the shape of the boundary of the particle and on an additional material-dependent parameter
which does not appear in the effective conductivity approximation. Because of the delicate
dependence on the shape and composition of the small metal particles predicted by our
theory, we felt that it would be interesting to examine this problem for a two-dimensional
system {metal discs). Microfabrication procedures could be used to produce very uniform
and well characterized samples, whereas spherical particles of well controlled size might
be very difficult to prepare. This is not a trivial extension of our earlier work, because in
contrast to the three dimensional case the screening charge is not confined to the boundary
of the disc. A very surprising consequence of this difference is that for frequencies w
which are small compared to the plasma frequency w,, but large compared to the bounce
frequency wy, the absorption coefficient y is proportional 10 w. This is in contrast to the
¥ ~ w?* dependence predicted by the effective conductivity approximation. If the boundary
of the disc is smooth enough to allow specular reflection of the electrons, there are also
complicated resonance structures superimposed on the y ~ w relationship, which we analyse
in detail.

Our approach can be summarized as follows. We model the metallic disc as a gas of
independent fermions with charge e and isotropic effective mass m, confined to a plane
and trapped inside a circle of radius ¢ by a confining potential, which is infinite outside
the circle and zero inside it. An independent-particle approximation is used, which is valid
at high electron densities (which ensures that the Fermi energy is large compared to the
Coulomb interaction) and at low temperatures {which ensures that scattering interactions
are suppressed by the lack of empty states below the Fermi energy). Each electron is
regarded as moving in a self-consistent effective potential which includes the effect of the
time-dependent externally applied electric field. Because the potential is time dependent,
the energy of the electrons is not a constant of the motion, and we will compute the mean
squared change in the energy of the individual electrons resulting from the time dependent
perturbation. There is a relationship (discussed in section 2) between this quantity and the
increase of the total energy of the electron gas (which is proportional to the absorption
coefficient). )

Our calculation uses two types of semiclassical approximation, both of which are
justified if the radius a is large compared to the Fermi wavelength. Firstly, we use the
Thomas-Fermi method to calculate the effective potential. Secondly, we use a classical,
rather than a quantum mechanical, method to calculate the change in the energies of
the electrons induced by the time-dependent perturbation. Both of these semiclassical
approximations are discussed in section 2.

After having discussed the model, in section 3 we present a detailed calculation of the
absorption coefficient for discs with a smooth boundary. In section 4 we discuss some
generalizations, indicating the universality of the ¥ ~ « relationship, and we present an
analysis of absorption by a rough-walled disc. Section 5 briefly discusses the experimental
observability of the results.

2. The semiclassical approach

We assume that although the conducting disc is small enough for the electron motion to be
ballistic, it is large enough for a semiclassical analysis to be applicable, in which information
about the the classical dynamics of the electrons is used instead of quantum states.
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The electrons are assumed to behave as a set of independent particles whose dynamics
is determined by a single-particle effective Hamiltonian of the form

H = p%/2m + Vo(r) + Vi(r) sinwt 2.0

where the time-dependent term represents the effect of the externally applied electric field
of magnitude £(¢) = & sinet, which we will assume to be polarized along the x axis, in
the plane of the disc. The potential V)(r) experienced by an electron due to the applied
field is not simply e£x because of the screening effect of the other electrons, which we
will consider in due course. One approach to analysing the effect of the time-dependent
perturbation would be to calculate the eigenfunctions and eigenvalues of (2.1) at t = 0, and
to apply time dependent perturbation theory; this would be a difficult calculation, because of
the necessity to calculate matrix elements of the perturbation. Under suitable conditions it
is possible to simplify the calcuiation by making use of the correspondence principle. This
is justified when two conditions are satisfied: firstly, the scale size of the fluctuations of the
potential energy should be large compared with the de Broglie wavelength, and secondly the
typical spacing of the energy levels should be sufficiently small that they can be regarded
as a guasi-continoum. Both of these conditions are satisfied for a sufficiently large disc.

The change AE(r) in the energy of a single electron at time ¢ will therefore be calculated
classically: -

7 ! aH !
AE() = f dt’ 5 = W [ dt’ Vi(r(t') coswt’ (2.2)
Jo o

where r(z) is the classical trajectory of the electron.
In [4] we obtained a semiclassical formula for the total energy absorbed AET(z) by the
electron gas due to the action of the perturbation:

AEr() = R QEr)AE*(Er)) (2.3)

where {AE?(Eg)} is the second moment of the ch‘anges' in energy AE(t) experienced by
individual electrons in the neighbourhood of the Fermi energy, and £2(E) is the weight of
the energy shell at energy E:

QUE) = f dr f dp 5(E — Hy(r, p)). 24

The quantity #~2§2(Eg) is the density of states n(E) per unit area per spin at the Fermi
energy multiplied by the area of the particle. For a disc of radius a, this is

B 2Q(Er) = na’n(Er) = ma® /21, (2.5)

The calculations performed in [4] and here show that A Er depends linearly on time, apart-
from unimportant periodic fluctuations, so the average value of dEt/dt is a constant. The
absorption coefficient y(w) is clearly proportional to the time-averaged energy absorption
(dEr/dt) in a single particle. We envisage that the most probable application of these
results would be to a layer of discs on a surface. Because there is no standardized definition
of y(w) for this geometry, we will only quote results for the rate of absorption of energy
by a single disc. .
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Before applying equations (2.2)—(2.5) we must develop a theory for the effective
potential Vi(r) due to the externally applied electric field. For this we will use the Thomas—
Fermi approximation [2], in which it is assumed that the effective potential V;(r) (assumed
small) varies slowly on the length scale of the Fermi wavelength (the validity of this
assumption will be discussed in more detail later). The small perturbation Vi(r) of the
effective potential causes a change in the density of electrons én(r)

Sn(r) = (2—;—)

where N(EE) is the integrated density of electrons for a free electron gas with Fermi energy
Ep, including spin:

wm 2.6)

Er

N(Eg) = mEg/nh>. 2.7

The change én(r) in the density of the electron gas results in a corresponding change
8q = edn in the charge density. If the disc is sufficiently large, we can assume that
the change §g(r) in the charge density is that which would be predicted by classical
electrostatics. Because we are only interested in frequencies o which are small compared
to the plasma frequency, we can assume that 8g is the same as for a conducting disc in a
static electric field: this is [5]

degfr cosB_
m/at —r?

where (r,8) are plane polar coordinates and the electric field is taken to be along the x
direction. Note that, in contrast to the conducting sphere, the charge density extends inside
the disc rather than being confined to a thin layer at the boundary. This justifies the use of
the Thomas—Fermi approximation, everywhere except at the edge. Combining (2.5}-(2.7),
we obtain

3q(r,0) = (2.8)

4egh? recosf
me falI—r%

This potential has a divergence at the edge of the disc. The simple Thomas-Fermi approach
would break down here, because the potential is not slowly varying, but this approximation
is expected to be adequate throughout the interior of the disc. The divergence is integrable,
in the sense that the energy AE(t), computed from (2.2), will remain finite (except for
the special case of the trajectory around the circumference of the disc). The comrections to
(2.9) near r = a need not therefore be considered. This completes our description of the
semiclassical approximations involved.

Vi{r) =

.- (2.9

3. Calculation of the rate of absorption

To calcuiate the rate of absorption of energy we use (2.2) and (2.9) to calculate the second
moment of the change in the single-particle energies, and then apply (2.3).

For the unperturbed classical motion the total energy E and the angular momentum J
are constants of the motion. Figure 1 illustrates a typical trajectory. The polar angle 8 is
incremented by an amount 2¢ between bounces. The angle ¢ is related to J by

J = mavgcos¢ G.1
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Figure 1. Dlustration of a classical trajectory for a particle bouncing inside a smooth disc and
the definition of the angles ¢ and 6.

and the corresponding time between bounces T is 7
T = (2a/ve)sing. ) _ (3.2)

Simple geometry shows that the rad1a1 coordinate r is a penodxc function of time with
period t: :

2 - ) .
@) = a\/ 1+ B UFI ————2th:1"¢ . 3.3)

where ¢ is measured from Lhc most recent bounce. The polar angle 8 has the time dependence
(vrt/a)cosg
V14 (opt/a)? — (Qugt/a) sing
1 —(vgt/a)sing
1+ (vet/a)? — Qugt/a) sing

where 8 is the polar angle of the previous bounce. It is useful to separate the motion in
the & direction into a secular component and a periodic component:

sin(f — &) =
3.4
cos(B —6p) =

') =00 — 6o —26t/T. _ ' (3.5)

where 8'(z) is periodic with period 7, and 6y is the polar angle of the initial bounce. Using
(2.2) and (2.9), an expression for AE can be obtained:

2 ! Y ' +
AE() = 4% weoé'of dt,r(z }cosewt’ cos @(1 )_ . 36)
. /a2 —_— rZ(tr)

This expression is not directly tractable analytically but can be expanded as a Fourier series.
Substituting for 8 from (3.5) gives

: for(t)ycos6'(2') cos m?’ cos(fy —I— 201 /1)
AE(@)=C [ _ﬂ dt T —
f‘f | r (') sin 0'(t") cos wt’ sin(f + 24’ /1:)]
—f dr
0 ya —r2(th

3.7
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with € = 4h%wegEy/me. The parts of the integrands which are periodic with period 7 can
now be written as Fourier series:

r(r) cos8'(t)

‘/—r_z(t- n;m ax(¢) exp(2rint /7)

(3.8)
———-—-—-——r(;) smi?) ";mb =(@) exp(Zmint /T).
Using the expressions (3.3) and (3.4) allows a, and b, to be obtained as
_ -T T _ ~2winT
a (@) = Tone. A dT[ cos(2¢T) + 17 cos[2¢(1 T)]]e
I —
= L [ dr T cos(2¢T)ycos(RrnT) = a_.(¢)
smq)
(3.9
—2xinT
b)) = 251n g |: 1} sm(2¢T) + sm[2¢(1 T)]:|
= —-_-- f dr sin(2q,'>T) sin(ZrnT) = —b..(¢)
sing Jg :

where T is the scaled variable t/7. These coefficients can be obtained numerically and
can also be formally expressed in terms of confluent hypergeometric functions [6, 7). After
some algebra, the integral (3.7) can be obtained as

Ct & o [ expiRpt/T + wt + 2wnt /Ty — 1
—_—— i6ly
AE = 3 E {c,,((;b)e [ 26 + @7 + 21m)

expi(24t/T — wt + 2xnt/t) — 1 ]
i(2¢ — wt + 2xn)

H==00

Zige| €XPI{(—2¢t/T + wt + 2mnt/r) — 1
+da(d)e o[ (—2¢ + wt + 271)
+ expi(—2¢t/t — wt + 2mnt/7) — 1:”
i(—2¢ — wt + 2n)
where the real coefficients ¢, () and d,(¢) are defined by ¢, (@) = a,(@)+ib, (@), du(¢) =
a,(¢) — ib,(¢). By grouping complex conjugate pairs of terms and using the symmetry -
properties of a, and b,, (3.10) can be expressed in a more convenient form involving
summing over positive values of n only:
Creo(@) [ cos by sinfwt + 2¢¢ /1) + sin fy(cos(ws + 2¢t/7) — 1)
2 |: (T + 2¢)
+ cos 8y sin(—wi + 2¢t /) + sin Gp(cos(—wt + 2t /7) — 1):|
(—mr + 2¢)

(3.10)

AE =

E Cn (qb} Y 2¢ . [cos & sin(2mrnt /T + 20t /T * wi)

n=1

+ sin Bg(cos(ln'nt/'c + 2¢t/r + wt) — 1]

Zd,, @ 2¢ - cos Gosin(2mnz /T — 29t/7 % wi)

n=1

— sinfg(cos(Rrnt/t — 2¢t /T wt) — 1)} (3.11
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where terms with both signs are included in the sum. Equation (3.11) has resonances at
values of ¢ for which the denominators vanish. The analysis given below shows that
these resonances do not overlap, so that in the neighbourhood of a resonance a valid
approximation to AE is obtained by retaining only a single resonant term. The average of
AE? is dominated by contributions from the resonances, and because only one of the terms
is large at any one value of ¢, this average will be approximated by sum of the squares of
the individual terms of (3.11); cross terms will be neglected. It is convenient to average the
squared terms over the initial angle 6;. This gives

C?c? sin? 120t /T +wt)  sin® 1 (2¢t/T — wi)
2 ~ 2 2 2
(8E%q = = [ (@) ( (cor + 2¢)? (~ot + 2¢)2 )
2 sin® 2(2¢n?/1: + wt + 2mnt /1)
+ nZ.—l: (¢)( ot +2¢ + 27n)?

* sin® (29t /t — wt + 2mnt /)
(—w7 +2¢ 4+ 27n)? )

T 20 - 21
2 sin” 3 (—2¢1/7 + wt + 2wnt /1)
+ ; & (¢)( (0T —~ 2¢p + 2mrn)?
sin® £ (~2¢t/7 — wt + 27nt/7)
(—wt — 2¢ + 2mn)?

)} = LC % F (9) (3.12)

where { )g, denotes an average over 6. The expression (3.12) explicitly shows the resonance
properties referred to above. When there is a resonance between the field frequency and
the classical motion of the electrons, one of the denominators in this expression becomes
small. The resonance conditions are

T rwr=d2kr 2 —er=2%r  k=0,1,.... . (3.13)

Similar resonances also occur in the case of ballistic electrons in a sphere, discussed in [4].
The interpretation of these resonances is discussed in more detail below.
To obtain the value of {AEZ?(?)) is necessary to perform the phase space average

[ da AE?3(E — Eg)
fda 8(E — Eg)
where the « are the phase space coordinates. A suitable canonical set of coordinates for this

calculation is (E, J, to, fo), where t; is the initial time coordinate of the particle, measured
from the previous bounce. The relation between (x, ¥, py, py) and (f, &) is

(AE%) =

(3.14)

X — pelo/m=acosby Y — pylo/m=asinby. (3.15)

The average over & has already been performed in (3.12). The denominator of (3.14) can
readily be evaluated by converting the integral over J to an integral over ¢. giving

1 /2 k1
—fdoz 8(E — Ep) =f - d¢ mavpsinqbf dty = wma? -(3.16)
2z —gf2 0
where the range of ¢ is set to account for positive and negative values of J. Performmg
the integral with respect to fy and substituting for T gives the numerator as
4ma*C? [“/2
—rf2

d¢ sin*¢ F(¢). g3.17)

2
VE -
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The evaluation of (3.17) can be illustrated by considering the first term,

/2 sin?[2(2¢1 /T + wt)]
d¢ sin* 2 . 3.18
fm P e + 297 G19
By substituting y = (¢t/7 + wt/2), the integral for this term can be obtained as
‘ 2 . 4 .2
Upl [ dy .co(qb) sin"¢ sin y_ (3.19)
8a [sing — pcosgp] 2

Taking the slowly varying paris outside the integral allows the integral over y to be
performed giving the value m. Repeating the same procedure for the remaining terms
and combining with (3.16) and (3.17) gives

Baktw?eER .

(AE? = %.jj’l:"’[c&cﬁ*m(ﬁ*) + R -95)

+ Y (@I + HGTNF ) + ™) + N -9y *)]

n=1
(3.20)
with
-~ sin® ¢* _ sin® ¢
@0 = $in ¢* — cos ¢*(¢* F nir) _‘ 1 & wacos¢*/vp (3.21)

where the ¢, ¢7* are the allowed solutions of (3.11); the second equality follows from
(3.13) and (3.2). Using (2.3) (dE7/dr) can be obtained as

dE 4613h2 2 282
(d—:) - [c§(¢3f*)f+(¢a‘*) + 5 (85" f- (5™

melug
+ 3G + BGN LG+ EO + d,%(qb;*))f_w;")].
n=1
(3.22)

The sum in (3.22) is taken over all possible solutions of (3.13) at frequency w.

Figure 2(a) shows numerical results obtained for the lowest six resonance bands of
(3.21); both the individual bands and the total absorption coefficient are displayed. Figure
2(b) shows the absorption coefficient obtained from the first 50 bands. Below the frequency
wg = vp/a there is no absorption. The onset of the lowest band corresponds to synchrotron
acceleration of an electron in a circumferential orbit with ¢ = 0; this band has a ¢!
divergence at the lower edge, corresponding to a (@ — w,)~"/? divergence in the absorption
coefficient. The lowest band has a finite upper cut-off at ¢ = 7 /2, which corresponds to
the electron bouncing along the diameter of the disc. The remaining bands have onset at
¢ = /2 and no upper cut-off. The divergence of the lowest band is associated with the
singularity of the potential (2.9) at the edge of the particle and would be smoothed out in
a more realistic model.

At high frequency it can be seen that both the resonance peak heights and the smoothed
absorption coefficient are proportional to the frequency. This behaviour can be obtained
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Figure 2. Absorption coefficient as a function of frequency: (a) first six bands, with the
individual bands included, (b) first 50 bands. The units of absorption coefficient correspond to
the pre-muitiplier in (3.22) being set to «®.

directly from the asymptotic forms of the coefficients a, and b, in (3.9). For a,, the change
of variable T/ = 2znT gives

B

d ,co87 1

«/ VT 2Jn
where the approximate form is the the large-n limit and the numerical factor is obtained
from the relation of the integral obtained to a Fresnel integral [7]. A similar argurnent for &,
shows that b, — 0 as » — 0. At large values of the resonance index r, r is proportional
to @ so that each new resonance contributing to (3.22) in this limit gives a contribution
proportional to w as observed. It is possible to use the asymptotic expression obtained
above to estimate the -average slope of the absorption coefficient versus frequency plot;
this quantitity is relevant to experiments which might not resolve the resonance structures.
Using (3.23) the asymptotic form of (3.22) is

ay Sin

(3.23)
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(%) = 1Dw*(Is + 1) (3.24)
with D = 4a*h%e2E3 /me*vp and

e sin? ¢
e = fo o ing —oosp@ L))’ (3.25)

Using the resonance condition nw = (we/vE) sin¢ F ¢ gives

/2 sin¢ TUE
= _— v L E 3.2
& fo d¢ wasing/vpF ¢ 2wa (3.26)

where the approximation is the large-w limit, and hence

(3.27)

dt me?

(dE—r) _ 2ma’mlelElw
This average high-frequency absorption is shown in figure 2(b). Using (3.23) it is also
possible to derive the result that the onset of each pair of resonances gives a spike of height
twice the average value.

4. Generalization to other shapes

A surprising feature of the calculation presented above is that the absorption coefficient
is proportional to @ in the high-frequency limit. A naive argument would suggest that,
because the dipole induced by the field is independent of frequency in the low-frequency
limit, the current is proportional to w. If the disc could be characterized by a frequency-
independent resistance, this would imply that the energy dissipated is proportional to w?.
In this section we will look at the explanation for the & frequency dependence from a more
physical viewpoint. It will be shown that this dependence is a general characteristic of
two-dimensional particles, and that it stems from a universal form for the divergence of the
charge density at the edge of a particle.

We first consider the form of the charge density near the boundary. The electrostatic
potential v is constant on the surface of the particle. We consider a system of loca] Cartesian
coordinates in the neighbourhood of the edge of the particle, such that the conducting region
is the plane ¥ = 0,x > 0. The potential is independent of the third coordinate in the
neighbourhood of the edge, i.e. v = v(x, y), and without loss of generality we can set
v(x,0) = 0 for x = 0. Because v'is dependent only on x and y, we can write z = x 4 iy,
and use the fact that if w = kg +iv = f(z), where f(z) is an analytic function, then both
u(x, y) and v(x, y) satisfy Laplace’s equation, V2y = 0. In this context the correct function
is f(z) = z'/2, which gives the following relationships between #, v and x, y:

x =u?—v? y = 2uv 4.D

which can be solved for v(x, y). The potential v(x, ¥} given in parametric form by (4.1) has
the property that the equipotentials are folded around the line y =0, x 2 0, and converge
toward this line in the limit v — 0. The potential in the neighbourhood of a straight edge



Absorption of radiation by conducting discs ' 4163

of a conducting plate will always converge to a multiple of v(x, y). The charge density on
the plate is proportional to the discontinuity of dv/3y at the plate. From (4.1), we find

v ¥

FIE Ry - “2
and that in the limit v — 0, v ~ [y[/+/%, so that

v +1 :

= ==, . . ) . - .43

9 lyow . VX )

The charge density in the neighbourhood of the edge of a smooth plate can therefore be
written in the form

3q(r) ~ C()/VE ‘ (4.4)

where s measures the distance around the circumference, £ measures the distance from the
nearest point on the boundary, and C(s) is a function which must be obtained from the
global solution of the elecirostatic problem. We note for later reference that for a dlSC the
function C(s) is

4./aep€ cosd

C(s) = e 4.5)

where § = af.

‘When the frequency o is large compared to the characterlstlc frequency of collisions
with the boundary w., we will show that the changes in the energy of the electron occur in
the neighbourhood of the collisions with the boundary. In this case the limited information
about the charge distribution contained in (4.4) is sufficient to determine the response of
the system. Consider the change in the energy of an electron which strikes the boundary
at time ¢t = ty,, between t = £, — At and ¢ = #, -+ Ar, where At is small enough to ensure
that there are no other collisions with the boundary. Assume that the electron strikes the
boundary with angle of incidence ¢. Using (2.2), (2.6) and (4.4), the change in the enecrgy
of the electron is

Az 1
dt e
w=a:  AE(D)

The distance from the boundary is £(t) = vp|t — 1) sin ¢. In the limit wty > 1, the energy
transferred is therefore

OE = coswt. : 4.6)

rho oo , Losot ot Th2wl/2 :
$F = —————C -————-—C 5) I coswi; 4.7
mea/upsing (S)f_ \/t - vp sin¢ ) ° 47
where _
) 1 N
I= f dx cosx =+ 2%. (4.8)
—oo  [4/x]

The total energy transferred in time ¢ is the sum of contributions from individual bounces
of the form (4.7). Becanse (4.7) contains the factor w!/2, the absorption coefficient obtained
from (2.3) will always be proportional to @ when w, € @ € @p.



4164 M Wilkinson and E J Austin

We illustrate the application of (4.7) by re-deriving (3.27). From (4.7}, the total energy
change experienced by an electron with angular momentum J in time 7 is

4«/3rawh Eoé‘o
AED) = §E; = COSs wi; cos & 4,9
@) ; s mes/vpsing Z ! 49

where #; and 6; are the times and polar angles of the N = (¢/7) collisions with the walls.
The sum in (4.9) should be evaluated as a geometric series, leading to the same type of
sum over resonances as was treated in section 3. We will adopt a simpler procedure, and
treat the sum as if the terms were uncorrelated. In appendix B of reference [41, we show
that this procedure is justified in the high frequency limit, where the resonances are dense.
We therefore write

ﬁ4 ’4 2 ﬁ4
= LT G | o oty icos?6) = & (4.10)

AE*(t
( e m?*e*vpsing m2e?sin® ¢

In order to use (2.3) we require the phase space average of AE%(r). 1t is convenient to
use the canonical coordinates E, #y, J, 6y discussed in section 3: {4.10) is already averaged
over 0, and averaging {sin"? @) over # and J gives

(AE*(D)) = dnh*ciE2wr fmPe?. 4.11)

Finally, using (2.5) and (2.3), the rate of absorption is

(4.12)

me?

(a’ET) _ ma’telElo
dt [

which is in agreement with (3.27).

It is also possible to perform a similar calculation for a dlSC with ergodic motion. For
this calculation we assome that the charge density is the same as for a smooth-walled disc
but that surface roughness causes angular momentum conservation to break down so that
the collision angle ¢ is different for each bounce. Repeating the above calculation with this
assumption gives

ltS:rrcu"t4 1
2
{AE“(D) = 2e2v1: Zcos wi; cos’ E?JIS PN
dmantelEln 1
T m2elup (lsin¢|> (*.13)

where the #; are the bounce times and N is the number of bounces, tvg/(d) with (d} the
average distance between bounces. This involves averaging d = 2asin¢. Using the phase
space coordinates (E, J, fy, 6p) as before gives the average over ¢ as

_2a[7,08 Isin gl _ 16

—_ 4.14
f:ﬁzdrp sinfg 37w @19
Similarly,
()= Pt lindl @19)
| sin | fﬁzdgb sinf¢p 7
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Combining these results gives
{AEXt)) = 3nhteiEiw/me’ - (4.16)

and

(dET)__ dwa’h*e}fiw L am

ds me?

This result is very similar numerically to that for the average {dEt/dt} for a smooth disc;
unlike the smooth disc there are no resonances. It may appear surprising that this result
does not depend upon the nature of the ergedic motion. This is related to the assumption
that the frequency is much higher than the bounce frequency: the rapidly oscillating term
cos wt; in (4.9) makes successive bounces against the boundary appear to be uncorrelated.

5. Concluding remarks

Our results indicate that for frequencies « satisfying @ > @ = vr/a and @ < w,, the
absorption coefficient of a two-dimensional conducting particle with ballistic electrons is
proportional to frequency. This conclusion depends on the electron motion being ballistic,
but it is not dependent on the shape of the particle or on whether reflections at the boundary
are specular. This is a surprising conclusion because it is at variance with the prediction of
the Kawabata~Kubo ansatz, which predicts an w? dependence.

We aiso gave a detailed analysis of the semiclassical model for a disc with a smooth,
specularly reflecting boundary. In this case we found that the response is determined by
resonances between the classical motion and the applied field. There is a low-frequency
cui-off at the synchrotron frequency e, = vg/a. The first resonance, at «,, corresponds to a
synchrotron acceleration of the electrons in a circumferential orbit. This resonance diverges
in the simple Thomas—Fermi approximation because of the divergence of the effective
potential on the boundary, whick would be removed in a more sophisticated theory, The
other resonances do not diverge and in the limit @ 3> @, they overlap and sum to an average
e dependence.

These resonance effects are dependent on the particles being quite precisely circular
in shape, and upon the reflections of electrons at the boundary being specular. This may
be experimentally realizable in conducting discs prepared by lithography of semiconductor
systems in which a two-dimensional electron gas is confined to a surface layer. Because
the density of charge carriers is low in semiconductors, the Fermi energy is small and the
Fermi wavelength is correspondingly large. If the Fermi wavelength is large compared with
the scale size of the irregularities of the boundary, reflections will be specular. At least
one experiment has been done involving transport in a laterally structured two dimensional
electron gas which can only be explained convincingly by assuming ballistic motion of
independent carmriers with specular reflections at the boundaries [8].
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