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Abstract. We Eonsider the energy levels of a generic quantum mechanical system with 
Hamiltonian H depending on a parameter X. I f  the energy levels E, ,  are plotted as a 
function of X, the curves do not cross. The points of closest approach are called avoided 
crossings; these have a distinctive geometry and are important because they determine the 
limits of applicability of the adiabatic theorem. This paper describes some theoretical 
results on the parameter space density of avoided crossings, for systems with the spectral 
statistics of the Gaussian orthogonal ensemble (GOE). These results are in good agreement 
with numerical experiments. 

1. Introduction 

Figure 1 is a graph of the energy levels of a generic quantum mechanical system (to 
be described later), plotted as a function of a parameter X which enters into the 

E 

X 

Figure 1. Illustrating the dependence of the energy levels E o f a  typical quantum mechanical 
system on a parameter X. The curves never intersect each other, but they d o  approach 
each other at events called avoided crossings (in this picture there is one apparent crossing, 
but this is an artefact due to the finite width of the lines). The system is the GOE random 
matrix model described in 5 2: the dimension of the matrix is N = 15 and the variance 
parameters are CL = (T = 1. 
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Hamiltonian. The graph has two distinctive features: the curves intersect with probabil- 
ity zero, but they do approach each other as if they were going to cross, as shown in 
figure 2. This paper will describe some universal statistical properties of multiple 
avoided crossings, such as those shown in figure 1: the density of avoided crossings 
will be calculated as a function of the gap size and asymptotic slopes, and the theoretical 
results are shown to be in good agreement with numerical experiments. The avoided 
crossings are of physical importance because they determine the limit of applicability 
of the adiabatic theorem (Bohm 1951). This theorem states that, if the parameter X 
is varied sufficiently slowly, the modulus of the amplitude ( n ( X )  I $) remains almost 
constant, where In(X)) is the nth eigenstate of the instantaneous Hamiltonian, 
H(X(t)) .  The condition for the adiabatic theorem to be valid is that for each pair of 
energy levels 

for all X ,  where X is the rate of change of X .  The adiabatic theorem breaks down at 
narrowly avoided crossings, where the E,,,  - E n  is small (Zener 1932). The density 
of avoided crossings determines how frequently this breakdown is expected to occur 
(Wilkinson 1988). 

X 

Figure 2. An isolated avoided crossing. The avoided crossing is characterised by three 
parameters: AE is the size of the gap and A, B are, respectively, the difference and mean 
of the two asymptotic slopes (broken lines). 

It is by now well established that ensembles of random matrices can be used to  
model the statistical properties of energy levels of generic or typical quantum systems, 
i.e. systems without any symmetries or constants of motion which enable quantum 
numbers other than the level number to be assigned. The theory of these random 
matrix ensembles and their successful application to nuclear spectroscopy are described 
in a reprint volume edited by Porter (1965). These theories have also been applied 
successfully to systems with a chaotic classical limit (Bohigas et a1 1984). Although 
the full range of systems for which random matrix theories are valid has not yet been 
established, they certainly form an important universality class. Both the theoretical 
and the numerical work described in this paper use the Gaussian orthogonal ensemble 
(GOE) as a model for a generic system with time-reversal symmetry. A parameter- 
dependent version of the GOE model is described in § 2. 
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Figure 3. The empirical probability distribution ( a )  and cumulant distribution ( b )  of the 
asymptotic difference in slopes of energy levels undergoing an avoided crossing, compared 
with the theoretical predictions (full curves). Only avoided crossings for which n,AE < 0.3 
were included. The sample size was 1557 and the width of the bins is 0.5. 

If the system has symmetries, or constants of motion in addition to the Hamiltonian, 
the energy levels do cross as a parameter is varied: this is caused by the vanishing of 
some of the off-diagonal matrix elements of aH/aX. These systems are not considered 
further in this paper. 

An isolated avoided crossing is parametrised by three variables: the size of the gap 
at the closest approach of the energy levels, and two variables describing the asymptotic 
slope of the curves (see figure 2). In the case of a system of multiple avoided crossings, 
these asymptotic slopes can still be defined for avoided crossings with a very small 
gap, because the geometry is locally like that illustrated in figure 2. Section 3 will 
describe a theory for the density of avoided crossings as a function of these three 
parameters. The theory is restricted to small values of the gap parameter AE, because 
for large As the slope parameters are not well defined. 

The results of numerical experiments are compared with the theoretical predictions 
in P 4. 

2. A parameter-dependent random matrix model 

The model is based on the Gaussian orthogonal ensemble (GOE) ,  which is an ensemble 
of real symmetric N x N matrices I? with the following properties: 

(i) the matrix elements Hi, are independently Gaussian distributed; 
(ii) the probability density of the ensemble is invariant under orthogonal transfor- 

mations, fi + fit = d-lfid, where d is an orthogonal matrix. 
Porter (1965) argues that this ensemble is appropriate for describing the spectral 

statistics of typical systems with time-reversal symmetry, and shows that it is uniquely 
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realised by choosing the variances and means of the H,, as follows: 

( ( H ~ / - ( H , ) ) ~ ) = ~ ~ ( l + a , / )  (2.1) 

( H , , )  = constant x 6,) (2.2) 

where ( ) denotes an ensemble average, a,, is the Kronecker delta and  p is a constant. 
Without loss of generality, we can take the constant in (2.2) to be zero, so that the 
distribution of eigenvalues is symmetric about E = 0. The density of states is given by 

in the limit N + E .  This result is called Wigner's semicircle law (Porter 1965). 
Our aim is to modify the GOE described above so that the matrix elements depend 

smoothly on  a parameter X. To achieve this we obtain the matrix elements by smoothing 
a white noise signal with an  appropriate filter function: 

(2.4) 

where p,, = 1 + ( J 2  - l)al,, and the W ,  are uncorrelated white noise with unit intensity: 

(2.5) ( WI,(X) w, ( X ' ) )  = SI, a,, S ( X  -X') .  
It is convenient to use a 'causal' filter function f (X) ,  i.e. one which is zero for X < 0, 
since this facilitates the numerical simulation of (2.4). 

The existence of derivatives of the matrix elements with respect to X is related to 
the smoothness of the filter function f ( X ) :  if f (X)  has a discontinuity in its nth 
derivative, then dnH, , /dXn exists but is not continuous. For the calculations described 
here it was sufficient for the second derivative of the HI, to exist, so that f ( X )  should 
have a continuous first derivative. The simplest causal function satisfying this require- 
ment is 

The constants a, 6 are chosen such that the variance of the Hu is given by (2.1), and 
the variance of the derivative is given by 

(( 2) 2, = ( 1 + a, ) 2 

where (+ is a constant. The values of the constants a, 6 which satisfy these conditions 
are evaluated in the appendix. 

The theoretical results described in 9 3 assume that we know the statistical distribu- 
tion of the matrix elements 

where In), Im) are eigenvectors of the Hamiltonian H. In the context of our random 
matrix model, these matrix elements are 

(2.9) 
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where 4; is the ith component of the nth eigenvector of the matrix fi. From (2.7), 
we see that the derivative matrix dfi ' l ' /dX is representative of a GOE with variance 
parameter IT', and from (2.9) we see that (df i ' /dX), ,  is an orthogonal transformation 
of ( d H / d X ) , , .  I t  follows from the definition of the GOE that the matrix (dfi ' /dX), ,  
is also representative of a GOE. The matrix elements (dI?/dX),, are therefore indepen- 
dently Gaussian distributed, with variance 

(2.10) 

3. Theory of density of avoided crossings 

In the neighbourhood of an isolated avoided crossing, the dependence of the energy 
levels E' on the parameter X has the form of a hyperbola 

E *( X )  = Eo + B( X - X,) * f[ AE' + A'( X - XO)?] (3.1) 

A derivation will be given shortly. The parameters can be interpreted as follows: AE 
is the size of the energy gap, B and A are, respectively, the mean and difference of 
the asymptotic slopes of the two curves, and Eo and X, describe the position of the 
avoided crossing. Our aim will be to derive an expression for the density of avoided 
crossings expressed as a function of the three parameters AE, A, B. This density, 
N(A,  B, A E ) ,  is defined as follows: the number of avoided crossings per unit parameter 
X, per energy level, with A, B, AE in the intervals [A, A+dA],  [B, B +dB],  [ A E ,  
AE +dA&], is N(A,  B, A E )  dA d B  dAE. 

The density of avoided crossings can be calculated by the following method. We 
assume that the energy levels E,  and the matrix elements of the operator a H / a X  have 
been evaluated at X = 0. Using these values, we can calculate the parameters of avoided 
crossings with X, close to zero: this is done by applying degenerate perturbation theory 
to pairs of energy levels which are very close together. The density of avoided crossings 
is then given by the probability that a pair of levels exhibit an avoided crossing with 
Xo between 0 and AX, divided by the size of the interval AX. If A', B', AE'  are the 
actual values of A, B, A E  for a given avoided crossing, then 

N(A,  B, A E )  dA d B  dAE 

= lim P I O < X o < A X , A < A ' < A + d A ,  
A X - 0  

(3.2) x B < B' < B + d B, AE < A & '  < A E  + ~ A E ]  

where P [  ] denotes a probability. 
In order to calculate the probability appearing on the R H S  of (3.2) it is necessary 

to know how the parameters of the avoided crossing, Xo, A', B', A E ' ,  are related to 
the eigenvalues E, and the matrix elements (aH/dX),,, and also the probability 
distribution of these latter quantities. 

Consider first the relationship between the parameters of the avoided crossing and 
the energy levels and matrix elements. Assume that the eigenvalues E,, and En+, are 
very nearly equal at X = 0. In the neighbourhood of this point, the two energy levels 
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can be described by degenerate perturbation theory: the energy levels are eigenvalues 
of the 2 x 2  matrix 

It is sufficient to use a linear approximation to model the X dependence of the matrix 
elements: 

e - = e ; + e ; X = E , +  - X (3 nn 

e+=e;+e:X=E,+, +(g) x 
n + , . n + ,  

h = h , X = ( z )  aA X. 
n . n + ,  

(3.4) 

(3.5) 

(3.6) 

The energy levels and matrix elements on the R H S  are evaluated at X = 0, so that 
h(0) = 0. The eigenvalues of (3.3) are given by 

(3.7) E*(X) = ; ( e + +  e - )  *f( e* + 4h2)”2 

e = e+ - e- = e,  + e,  X. 

where 

(3.8) 

Equation (3.7) is of the same form as our standard parametrisation of the avoided 
crossing, (3.1). Substituting (3.4)-(3.6) into (3.7), and comparing the resulting 
expression with (3.1), we find the following equations relating the parameters of the 
avoided crossing to the energy levels and matrix elements at X = 0: 

A = (e:+4h:)”2 (3.9) 
Xo= eoe, /A2= eoe,/(e:+4h:) 

A &  = ( e :  - A2Xi)”2  = 2h,e,/(ef+4h:)”2 

E = j( e: + e ; ) .  

(3.10) 

(3.11) 

(3.12) 

Next, consider the probability distribution of the quantities e, ,  e , ,  h ,  appearing in 
the RHS of these four equations. We expect the matrix elements of aH/aX to be 
representative of the GOE (see discussion at the end of 0 2). The quantities e:, e ;  and 
h, are therefore independently Gaussian distributed with variances 2 a 2  and u2, respec- 
tively (cf (2.1) and (2.2)). The mean values of e: and e ;  are identical (and have been 
set equal to zero in our random matrix model). It follows that h, e,,= e : - e ;  and 
B = f( e: + e ; )  are independently Gaussian distributed, with variances v-, 4 a 2  and 2a2, 
respectively. The mean values of h ,  and e ,  are zero, but the mean of E need not be 
zero, although it is zero in our random matrix model. The joint probability density of 
these quantities is therefore 

P[el, h, ,  B ]  de, dh,  d B  

p[-(e:+4h:+2B2)/8a2] de, dh,  dB. (3.13) 
The other quantity appearing on the RHS of (3.9)-(3.12) is e,, the separation of the 
two eigenvalues at X = 0. The probability density for this quantity is called the level 

- - (2.rr)-3/22-3/2u-3 ex 
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spacing distribution, and has been intensively studied in random matrix theory. For 
GOE matrices, the form of P[eo]  is known exactly for small e, (satisfying nee,<< 1 ,  
where no is the smoothed density of states) 

(3.14) 

(Dyson 1962). The level spacing, e,, is independent of the other variables, e , ,  h , ,  B, 
because they are related to two independent random matrices, H and d H / d X ,  respec- 
tively. The overall probability density for the variables appearing on the RHS of 
equations (3.9)-(3.12) is therefore the product of (3.13) and (3.14). 

N(A,  B, A E )  dA d B  dAE 

P[ e,] de, = bT2n6eo de, 

We can now write down an explicit expression corresponding to (3.2): 

= lim LIX de,  lx dh, IX d B P [ e , ,  h l ,  Bl / o ~ d e o P [ e o l  
AX-OAX --x -X - X  

x 6 (A - A‘) 6 ( A  E - A E ‘) 0 ( X ; )  0 (AX - X ; )  (3.15) 
where A’, A & ’  and Xh are functions of e,, e , ,  h ,  given by (3.9)-(3,11), respectively, 
and O ( X )  is the unit increasing step function. In the limit A X  + 0, the ‘top hat function’ 
in (3.15) obtained by taking the product of two 8 functions can be replaced by a Dirac 
delta function, and the probability density of B can be factored out of the integral 
immediately: 

N(A,  B, A E )  dA d B  dAE 
X oc 

= P[BI d B  [-= de, dh, P[e,  9 hl lom de, 

x P[eo]8(A-A’)6(A& - A E ’ ) ~ ( X ~ )  dA dAE 

P[B] d B  = ( 2 ~ ) - ” ~ 2 - - ” * 6 ’  exp(- B 2 / 4 a 2 )  dB. 

where 
(3.16) 

(3.17) 
The evaluation of the triple integral in (3.16) is facilitated by making a change of 
variables ( e , ,  h , )  + ( r ,  e):  

e, = r cos 0 (3.18) 
Using these new variables, and substituting the probability densities from (3.13) and 
(3.14), we obtain 

N(A,  B, A & )  dA d B  dAE 

h ,  = $r  sin 8. 

= P [ B ] d B ~ ~ o x d e o e o ~ 0 2 H d ~  2 4 a  l O x d r r  

xexp( -r2 /8a2)S(r -A)6(e , s in  e-AE)6(eocos B/r)dAdAE. (3.19) 

6(eo cos @ / r )  = ( r / e o ) 6 ( (  0 - ~ / 2 )  mod T )  

Using the result 

(3.20) 
we can evaluate to integrals over ( r ,  e), then the integral over e, 
N(A, B, A & )  dA d B  dAE 

A 
e, 

de, e,AS(e,-A&) -exp( - A 2 / 8 a 2 )  dA dAE 

7 

= P[ B] dB5 A’ exp( -A2/8a’) dA dAE 
24a’ (3.21) 
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where P [ B ]  is given by (3 .17) .  This expression is only valid for small A E  satisfying 
Asno<< 1 .  

4. Numerical experiments 

It would require an  immense amount of data to verify (3.21), the expression for the 
joint density function N ( A ,  B, E ) ,  since this depends on three variables. Instead, 
numerical experiments were carried out to test two partial statistics derived from (3 .21) .  
The first of these partial statistics was the density of avoided crossings with gap sizes 
between 0 and  As,  irrespective of the values of A and  B. This partial density is given 
by 

F ( h )  = 16‘ dAs’ dA J-: d B  N ( A ,  B, A&’)  

= ~ .rr ($n)”2an~As .  (4.1) 

Evaluating F(Ae)  checks that N(A,  B, A E )  is independent of A s  and verifies that 
the prefactor is correct. The second partial statistic was the probability distribution 
of A at avoided crossings with gap sizes less than A s :  

P[A] dA = - loAf dAs’ 5‘ d B  N ( A ,  B, As) d A  
F(AE) - X  

1 
A’ exp( - A’/8u2) dA -~ - 

4&G73 

for small A s .  This statistic was examined because the dependence of N on A is 
non-trivial, vanishing quadratically as A + 0. The partial probability of B is Gaussian 
(cf (3 .17) ) :  since this result is not surprising no numerical results will be given for this 
statistic. 

To test the statistics (4.1) and (4.2), the parameter-dependent matrix model 
described in § 2 was programmed on a computer, using a random number generator 
to provide a discrete simulation of the white noise sources, W,,(X). The eigenvalues 
of the resulting random matrices were evaluated at small intervals AX. Avoided 
crossings were identified by searching for the discrete values of X at which the 
separation of two eigenvalues had a local minimum. I f  two eigenvalues E *  had a 
local minimum separation at X, = nAX, the parameters X o ,  A, As were calculated 
using the following equations, where A n  = ( E ? ( X , , ) -  E-(X,))*: 

Xo=Xn -[AX(An-l - A n - l ) / 2 ( A n + j  +An-, - 2 A n ) ]  (4.3) 

A = [ ( A n + ]  -An-l)/4(Xo-Xn)AX]1’2 (4.4) 

A E  =[A, - A 2 ( X o - X , ) 2 ] ’ ” .  (4.5) 
These expressions are easily derived from the standard form for an  avoided crossing 

(3.1). The value of A is only meaningful if As is small and  the avoided crossing is 
well separated from its neighbours. Only avoided crossings between states in the 
central region of the spectrum were included, where the density of states is close to 
its maximum value (cf (2 .3) ) :  

no = dK/ ~ p .  (4.6) 



Statistics of multiple avoided crossings 2803 

In the numerical experiments, I used random matrices of dimension N = 31, with 
variance parameters U = p = 1, and only avoided crossings for which the lower eigen- 
value was between the 10th and the 22nd (inclusive) were included in the statistics. 
The parameter X was varied from 0 to 200, enabling several thousand avoided crossings 
to be identified. Results for F, the number of avoided crossings per unit length with 
gap size less than A&, are shown in table 1. There is good agreement with the predicted 
values, even for quite large values of A B ,  where the theory is expected to break down. 
When noA&<< 1, the theoretical values overestimate F by a few per cent. This is 
probably due to the fact that the density of states is not constant, and  the maximum 
value, given by (4.6), was used to calculate Fpred. The probability distribution of A is 
compared with the theoretical prediction in figure 2. Only avoided crossings for which 
noA& < 0.3 were included ( a  sample of 1557). Again, there is good agreement with the 
theoretical prediction. 

Table 1. Comparison of computed values of F, the number of avoided crossings per unit 
length with gap sizes less than 16, with the theoretical value Fpred calculated from (4.1). 
The dimension of the matrix was N = 31 and the variance parameters were I* = D = 1; ncr  
is the total number of avoided crossings for which the lower level lay between the 10th 
and the 22nd between X = 0 and X = 200. 

0.05 235 0.098 0.1 I6 
0.1 499 0.208 0.233 
0.2 1069 0.445 0.465 
0.3 1557 0.649 0.698 
0.5 2410 1.004 1.163 
0.8 3435 1.431 1.861 

5. Concluding remarks 

The results derived in § 3 are applicable to many other systems besides the GOE random 
matrix model: they should apply to most one-parameter families of quantum systems 
without any symmetries or conserved quantities. In order to apply the theory to other 
systems, it is necessary to know u2, the variance of the matrix elements of dH/dx, as 
well as the density of states n o .  One way to estimate U is empirically from a set of 
values of dE , /dX:  from (2.11, we see that the variance of dE , /dX = (dH/dX),, is 
equal to 2u2 .  I f  the system has a classical limit for which the motion is chaotic, it is 
also possible to calculate U’ from a correlation function of the classical motion 
(Wilkinson 1987). 

All of the results described above refer to time-reversal-invariant systems with GOE 

spectral statistics. If the system does not have time-reversal invariance (due to the 
presence of a magnetic field), the energy level statistics are those of the Gaussian 
unitary ensemble (CUE) .  In  this ensemble the off-diagonal matrix elements are complex, 
with their real and imaginary parts independently Gaussian distributed, each with 
variance $U’, and the diagonal elements are independently Gaussian distributed with 
variance u2 (Porter 1965). Because the off-diagonal matrix elements are complex there 
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is stronger level repulsion, and the density of avoided crossings is proportional to A &  
for small noA E : 

nJv n i A &  
12 U’ 

N(A, B, A & )  dA dB dA& = P [ B ]  dB-- A’ exp( - A2/4a2) dA dA& (5.1) 

where 
P [ B ]  d B  = ( 2 ~ ) - ” ~ u - ’  exp( - B2/202) dB. ( 5 . 2 )  

This result can be derived by a simple adaptation of the method used in 0 3. 
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Appendix 

We wish to choose the smoothing function f (X) in (2.4) so that the variances of the 
off-diagonal matrix elements and their derivatives are respectively p 2  and a2. These 
variances are easily obtained from the correlation function C( AX): 

C(AX) = (H,,(AX)H,(O)) 

= p2 J m  d x ,  Js d x 2 m x  -x,)~(-x2)~w,~xl) w,cx2)) 
-s -cc 

X 

= p 2  J-, dX’ f (X  - X‘)f( -X’), (AI) 

By definition, C(0) is the variance of H,,. The variance of the derivative can be 
calculated as follows: 

d H .  
d X  A X + O  l i m  ( AX 
U =  Hij ( X + AX ) - Hi, (X ) 

1 
((!!%)2) = A X - 0  lim - AX2 {(Hi(AX)+ Ht(0)-2H,(AX)Hi,(O))} 

The correlation function must therefore satisfy the equations 

C ( 0 )  = p2 

C’(0) = 0 

C”(0) = -a2. (A6) 
Using the filter function given by (2.6) and evaluating the correlation function using 

(AI),  we find 
p2a2 

46’ 
C(AX) = - exp(-bAX)(3 +3bAX + b2AX2). 
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This immediately satisfies (A5), and also satisfies (A4) and (A6) with the following 
choice of constants: 

a = 2 . 3 3 ' 4 ( u / p ) s ' 2  b = & u / p .  (A8) 

References 

Bohm D 1951 Quantum Theorv ( N e w  York: Prentice-Hall) 
Bohigas 0, Giannoni  M J a n d  Schmidt C 1984 Ph.vs. Ret.. Let! .  52 1-4 
Dyson F J 1962 J.  Marh. f h y s .  3 157-65 
Porter C E ( e d )  1965 Sraristical Theory ofSpecrra: Nucruarions ( N e w  York: Academic) 
Wilkinson M 1987 J.  Phys. A: Math. G e n .  20 2415-23 
- 1988 J.  Phys. A: Marh. G e n .  21 4021-37 
Zener C E 1932 Proc. R.  Soc. A 137 696-703 


