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Abstract
Experiments investigating particles floating on a randomly stirred fluid show
regions of very low density, which are not well understood. We introduce a
simplified model for understanding sparsely occupied regions of the phase
space of non-autonomous, chaotic dynamical systems, based upon an extension
of the skinny bakers’ map. We show how the distribution of the sizes of voids
in the phase space can be mapped to the statistics of the running maximum of a
Wiener process. We find that the model exhibits a lacunarity transition, which
is characterised by regions of the phase space remaining empty as the number
of trajectories is increased.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Very small particles floating on a chaotically stirred liquid [1, 2] show regions where there is
accumulation into regions of very high density, which are well described by fractal measures
[1, 3]. These experiments also show regions of very low density, which were characterised
in the paper by Larkin et al [2], but which are not yet well understood. Figure 1 illustrates
the lacunarity of these chaotic attractors, by plotting 107 trajectories of a dynamical system
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Figure 1. A model for particles floating on the surface of a randomly stirred fluid
exhibits regions which are very sparsely occupied. This simulation represents the model
discussed in [5] (with compressibility parameter β = 0.5 in the notation of that paper).
We plot positions of M = 107 trajectories, at a representative large time, which were
initially a uniform random scatter. Note that there are substantial voids, which contain
no trajectories.

which mimics the motion of particles floating on the surface of a randomly stirred fluid (the
equations defining the model are the same as those considered in [4, 5], see appendix A for
further details). The concept of lacunarity, characterising the tendency of some complex sets
to have sparsely populated regions, was introduced by Benoit Mandelbrot in his classic book
on fractals [6], but its influence has not been as far-reaching as the fractal dimension. This is
perhaps because there is not a single agreed definition of how lacunarity should be quantified:
see [7, 8] for a discussion of some definitions of lacunarity.

The fractal dimension concept has been extended to ‘multifractal’ measures, which are con-
sidered to have different scaling exponent α in the vicinity of each point, and with the set of
points with exponent α being a fractal with dimension f (α) [9, 10]. If this model is valid, the
function f (α) is obtained by a Legendre transform of the Renyi dimension, as discussed in
[9, 10]. The extent to which our results are consistent with this model is considered in our con-
cluding remarks, section 6. A recent paper [11] considered sets arising as attractors of chaotic
dynamical systems, and showed evidence that distribution of low densities has a power-law
probability density function (PDF). The exponent of this power-law was termed the lacunarity
exponent. However, the model considered in that work was fundamentally different because
its dynamics was many-to-one (as a result of folds or caustics), whereas here we consider a
dynamical system which is invertible. The theoretical arguments supporting the power-law
described in [11] are critically dependent upon the non-invertible nature of the systems which
were considered there.
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This paper will introduce and analyse a simple model for invertible, non-autonomous,
chaotic dynamical systems, such as the surface flow of a chaotically stirred fluid. The model is
an extension of the skinny bakers’ map, which is used as a minimal model for discussing frac-
tality of chaotic attractors [3, 12]. Our model, which will be referred to as the strudel model,
differs from the skinny bakers’ map in two respects. Firstly, unlike the skinny bakers’ map,
it is invertible: there are no inaccessible regions of the phase space. Secondly, the discontinu-
ities are introduced at random positions. Introducing this random element has two advantages.
Firstly, it makes the phase space homogeneous, after averaging over the random parameters of
the map. Secondly, the randomness facilitates our analysis of the system by enabling the use
of statistical methods.

Here we describe sparse regions by considering the distribution of M � 1 trajectories, and
considering the statistics of the size ε of the trajectory-free void surrounding an arbitrarily cho-
sen point. We characterise the distribution of ε by determining how the expectation value of
its logarithm, 〈 ln ε〉 varies as a function of ln M. We show that the distribution of ln ε may be
mapped to determining the running maximum of a Wiener process with drift. At very large val-
ues of M there is a linear dependence: 〈 ln ε〉 ∼ −γ ln M, for some exponent γ, which depends
upon the parameters of the model. We find that the value of γ is equal to zero for some regions.
When γ becomes equal to zero, the voids in the distribution of trajectories are not filled when
we add more trajectories, whereas the voids are filled by adding more trajectories when γ > 0.
We say that the edge of the region where γ = 0 marks a phase transition, which we term the
lacunarity transition.

Section 2 will introduce the strudel model, and describe its backward iteration as well as
forward iteration. Section 3 discusses a succession of models for distribution of the void size ε,
and section 4 discusses the lacunarity transition, where the distribution of ε changes abruptly
in the limit as the number of trajectories M is increased. Section 5 discusses our numerical
results, which show good agreement with the theory of section 3, despite the quite brutal coarse-
graining approximations which are used. Section 6 contains some concluding remarks on the
relation to earlier work and prospects for extension of the theory to more physically realistic
models.

2. Strudel model

2.1. Definition of model

The skinny bakers’ map [12] is a piecewise linear map, which mimics the stretch-and-fold
action of a typical chaotic system. The unit square is stretched to twice its length in the
x-direction, while being contracted by more than a factor of two in the y-direction. The
stretched region is then cut into two halves which are placed in the upper and lower halves of
the unit square. The unit square is, therefore, mapped into two rectangles, both of dimension
1 × β/2, where β ∈ [0, 1]. The resulting attractor is the Cartesian product of the unit interval
and a fractal Cantor set. The fractal dimension of the attractor is d = 1 + ln 2/(ln 2 − ln β).

Our model is a variant of this skinny baker map, which we shall refer to as the strudel
model. It is an invertible two-dimensional random dynamical system, which is designed to have
regions of very low density, and to be simple enough to facilitate making analytical approxi-
mations to the distribution of sizes of empty regions. It also has the advantage that, by virtue
of being a map rather than a flow, it is suited to efficient numerical work. The operation of the
map is illustrated schematically by figure 2. The map depends upon two parameters, p ∈ [0, 1]
and β ∈ [0, 1]. It acts on a point (x, y) in the unit square, as described by equations (1) and (2)
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Figure 2. Illustrating the action of the strudel map. At the first step, there is a continuous,
piecewise linear transformation of the y-coordinate of the unit square, which maps a
region of length 1 − p to length β. The lower edge of this region is at a random position,
φn. This region is then stretched along the x-axis, to occupy a 2 × 1/2 rectangle. This
rectangle is cut and the two halves are stacked back into the unit square.

below. In the first step, a unit square is subjected to a continuous, piecewise linear, transfor-
mation of the y component. The square is then stretched by a factor of 2 in the x-coordinate,
and contracted by a factor of 2 in the y-direction. The 2 × 1/2 rectangle is then cut into two
halves, which are moved back into the unit square.

To describe the transformation of the y-coordinate, we define a periodic function, F(x) =
F(x + 1) by specifying its values on [0, 1] as follows:

F(x) =

⎧⎪⎨
⎪⎩

β

1 − p
x x ∈ [0, 1 − p]

β +
1 − β

p
(x + p− 1) x ∈ [1 − p, 1]

. (1)

Also let n be the index of the iteration and let φn be a random number, with a probability density
which is uniform on [0, 1] (and zero elsewhere), chosen independently at each iteration. Then
we define the strudel map as follows:

xn+1 = 2xn mod 1

yn+1 =
1
2

[F(yn − φn) + int(2xn)], (2)

where int(x) is the largest integer less than x. If we set φn = 0 and p = 0, this is the skinny
baker map [12], which has empty regions which occupy a fraction 1 − βN of the phase space
after N iterations. When p > 0, there are no inaccessible regions because F(x) has an inverse
function on [0, 1], but as p→ 0 the density of some regions may be very small.

One motivation for introducing the random phase φn is to eliminate correlations between
different applications of the map. The derivatives of the map of the y-coordinate are either
(1 − β)/2p or β/2(1 − p). Because of the random shift φn, these are applied independently at
each application of the map. We can then give expressions for the Lyapunov exponents of this
model. Small separations in the x-coordinate are doubled upon each iteration. If we also define

ξ1 = ln

(
1 − β

2p

)
, ξ2 = ln

(
β

2(1 − p)

)
(3)

then the logarithm of the small separation in the y-coordinate is incremented by either ξ1 or ξ2

with probability p or 1 − p respectively. The Lyapunov exponents are therefore

λ1 = ln 2, λ2 = pξ1 + (1 − p)ξ2. (4)

We note that if the random φn were not included, the derivatives at successive steps would be
correlated, and it would be impossible to derive the above simple expressions for the Lyapunov
exponents.
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Figure 3. Distribution of trajectories for a realisation of the strudel map. The parameter
values are p = 0.2, β = 0.4. We mapped M = 105 randomly scattered initial conditions
for N = 15 iterations. Note that these are some substantial gaps in the distribution of
the y-coordinate. These correspond to rectangular voids, of dimension 1 × ε. We shall
characterise these voids by calculating 〈 ln ε〉.

We emphasise that the voids will be determined by computing N � 1 iterations of the map
with M � 1 randomly scattered initial conditions, using a particular choice of the sequence
{φn, n = 1 . . .N}. After N iterations the sizes of the void regions are determined. This process
is then repeated for a different randomly chosen sequence of the phases, φn. The objective is
to understand the statistics of the void regions, averaged over different realisations of the φn.
For a given realisation of the φn, the distribution of the phase points after N iterations is highly
inhomogeneous. However, the averages over distributions of the φn must be homogeneous in
phase space.

For completeness, we also mention Renyi dimensions. Two of these are easily determined.
If p > 0, the box counting dimension is d0 = 2 after any finite number of iterations, because
there are no inaccessible points (and hence no empty boxes). The information dimension as
estimated by the Kaplan–Yorke formula [13] is

d1 = 1 +
λ1

|λ2|
= 1 +

ln 2∣∣∣p ln
(

1−β
2p

)
+ (1 − p) ln

(
β

2(1−p)

)∣∣∣ (5)

(provided that λ2 < 0, which is always true, as shown in appendix B). The distribution of points
generated by this map is a random scatter in the x-direction, but highly inhomogeneous in the
y-coordinate. An example is shown in figure 3. The striated texture of this image resembles the
fine structure of the foliations shown in figure 1.

2.2. Pre-images

Consider the distribution obtained from M � 1 points, which are initially uniformly scattered
on the unit square, after N � 1 iterations. Because the iteration of x is a Bernouilli map, which
has a constant function as its invariant density, these points end up uniformly scattered in the
x-coordinate. The distribution of values of the y-coordinate, however, becomes highly inho-
mogeneous, as illustrated in figure 3. Let us sort the y-coordinates of the points representing
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trajectories into ascending order. If we then pick a point at random, it can be placed inside
a rectangular void, of dimensions 1 × ε, with trajectories on the upper and lower edges. The
values of the gap size ε in the y-coordinate are random variables. We can characterise the lacu-
narity of the distribution of trajectories by determining the PDF of ε, or by determining its
statistics.

Considering the forward propagation of a randomly chosen phase point would be a difficult
approach to characterising voids. This is because sparse regions arise from the expansion of
small areas, which could represent a very small fraction of the phase space. In order to under-
stand the origin of sparse regions at a particular point in time it is much easier to follow a
trajectory backwards in time from a randomly chosen point. The linearised map in the vicinity
of this trajectory should be calculated. Those points which have a contracting neighbourhood
in the backward-propagated map correspond to sparse regions.

To understand the statistics of these void regions, notice that all of the pre-images of a void
are also empty regions (because if the pre-image were to contain a point, this point would not
be mapped into the void region). If we follow the evolution backwards by N steps to the initial
configuration, all of the pre-images are also empty. After n steps backwards, the area of the
pre-image of the 1 × ε rectangle is denoted by An, and the area of the initial empty region
is AN. Because the initial distribution is a random scatter of M points in the unit square, the
probability of an area A in the initial configuration being empty is P(A) = exp(−MA), so that
the probability of the area of the N step pre-image being a large multiple of 1/M is very small.
This implies that, (apart from rare exceptional cases), the large gaps in the y-coordinate arise
as a consequence of having small areas of the pre-image.

Let us consider the sequence of pre-images of a rectangular region of size 1 × ε which
has its lower edge at y, after N steps backwards. To facilitate the discussion, we proceed by a
sequence of stages: first we obtain an expression for the pre-image of a point, then use this to
understand the pre-images of horizontal and vertical line segments, which can be combined to
understand the pre-image of a rectangle.

The forward map is defined by equation (2), with F(x) defined by (1). We define a function
G that is the inverse of F:

G(F(x)) = x (6)

that is

G(x) =

⎧⎪⎨
⎪⎩

1 − p
β

x x ∈ [0, β]

1 − p+
p

1 − β
(x − β) x ∈ [β, 1]

. (7)

We extend the definition of G(x) to the whole real line as a periodic function with unit period.
Noting that equation (2) implies that int(2xn) = int(2yn+1), we have 2yn+1 − int(2yn+1) =
F(yn − φn), so acting on this relation with G we obtain

yn = φn + G(2yn+1) − int(2yn+1), (8)

where we use the fact that G(int(2yn+1)) = int(2yn+1), because, by inspection of (7), if
z ∈ [0, 1), then G(int(z)) = G(0) = 0, and if z ∈ [1, 2) then G(int(z)) = G(1) = 1. Equation (8)
has the nice feature that it is independent of the xn coordinate. Also, because the function G
has been constructed to be periodic with unit period, we can simplify further by applying the
following backward iteration:

ỹn = φn + G(2ỹn+1) (9)

6
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and recover the value of yn by subtracting the integer part. (This follows from noting that,
because G(x + 1) = G(x), the values of yn and ỹn always differ by an integer. Because
yn ∈ [0, 1], the value of yn can be obtained from ỹn by subtraction of its integer part.) The
forward iteration of the x-coordinate is a Bernouilli map, for which every point has two pre-
images which differ by 1/2, but in (2) the value of yn+1 depends upon int(2xn), so that the
pre-image of xn+1 for the map is in fact well-defined.

Next consider the pre-images of horizontal and vertical line segments. From the
x-component of (2), the pre-image of a horizontal line segment of length Δx is an interval
of length Δx/2. The pre-image of any vertical line which crosses the horizontal line y = 1/2
consists of two vertical line segments, with horizontal separation equal to one half, and with
the y coordinates equal at the point of discontinuity. Finally, building a rectangle of dimen-
sions Δx ×Δy as a Cartesian product of two line segments, the pre-images of this rectangle
are either one or various rectangles. Their width is Δx/2, and the total height of the pre-image
rectangles is determined by applying (8) to the upper and lower edges.

Consider the backward iteration of an 1 × ε rectangular region, where the lower and upper
edges are two successive values of the y-coordinate after N iterations, differing by ε, with the
lower edge at yn. After N backward steps, this maps to a set of rectangular regions, each one
of which has width Δx = 2−N. The sum of the vertical extent of each fragment is Δỹ, which
is iterated according to

Δỹn = G(2yn+1 + 2Δỹn+1) − G(2yn+1) (10)

(obtained from taking the difference of between two instances of equation (9), starting with
ΔỹN = ε. The pre-image of the 1 × ε rectangle is a set of rectangular regions of total area

AN = 2−NΔỹN . (11)

If ε 	 1, the iteration of (10) can be approximated by linearisation, using G(2y + 2Δỹ) −
G(2y) = 2G

′
(y)Δỹ + O(Δỹ2)), so that after N steps of backward iteration the total vertical

extent of the pre-image area is

ΔỹN ∼ 2N ε

N∏
i=1

G′(2yn). (12)

Thus Δỹn typically grow under iteration, and the approximation (12) ceases to be valid when
Δỹ is of order one.

We note that the Lyapunov exponents for the backward propagation are different from the
forward Lyapunov exponents. Defining ξ̄ = ln 2G′, we see that ξ̄ takes two possible values,
which occur randomly and independently in the sequence of yn values:

ξ̄1 = ln

(
2(1 − p)

β

)
probability p1 = β

ξ̄2 = ln

(
2p

1 − β

)
probability p2 = 1 − β. (13)

The Lyapunov exponents of the backward iterated map are then

λ̄1 = βξ̄1 + (1 − β)ξ̄2, λ̄2 = − ln 2. (14)

7
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3. Model for distribution of void sizes

3.1. Representation in logarithmic variables

Consider the pre-image of a rectangular region of size 1 × ε after n backwards iterations. It
is mapped to a set of rectangular regions of total area An = Δx ×Δỹ. While Δỹn 	 1 its
evolution is well approximated by

An ∼ ε

n∏
j=1

G′(2y j), (15)

where G′(2y j) takes one of two values, (1 − p)/β or p/(1 − β), with probabilities p1 = β or
p2 = 1 − β, respectively. AfterΔỹ has grown to be of order unity, the area An = ΔxnΔỹn of the
pre-image set stabilises, at a value denoted by Ã. The size of the open interval, ε, is determined
by the condition that Δỹn never exceeds unity, while the area of the pre-image reduces to 1/M
or less.

It is convenient to use logarithmic variables:

X1 = lnΔx, X2 = lnΔỹ. (16)

The backwards evolution of X1 is trivial, and the evolution of X2 follows from equation (12):
after N backwards steps we have

X1 = −N ln 2, X2 = ln ε+ N
N∑

j=1

ξ̄ j, (17)

where the ξ̄ j take one of two values as specified by equation (13).
Note that the condition Δỹ � 1 corresponds to the constraint X2 � 0. In terms of the

logarithmic variables, the condition that Ã � 1/M is

X1 + X2 � − ln M, (18)

and the dynamical process describing the evolution of the pre-image is therefore a random
walk in X2, as a function of X1. The initial condition is (X1, X2) = (0, ln ε). The point moves
to the left in (X1, X2) space by ln 2 at each step. The motion proceeds until (18) is satisfied,
and we choose the largest value of ε so that X2 never exceeds zero. When Δỹ = 1, the area is
AN = ΔxΔỹ = 2−N , so that the number of backward iterations is

N =
ln M
ln 2

(19)

(which achieves Ã = 1/M) or greater (which results in a smaller pre-image). The trajectory in
(X1, X2) space is illustrated in figure 4.

3.2. Modelling by Wiener process

Next we make a further simplifying assumption, which enables us to approximate the statistics
of the void sizes by simple analytic formulae. The motion of X2 as a function of X1 defined
by equation (17) is a biased random walk. It can be modelled as a Wiener process, x(t) where
t ≡ −X1 and x ≡ X2. This Wiener process has a drift velocity v and a diffusion coefficient D.

8
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Figure 4. Schematic illustration of the dynamics determining void size, expressed in
logarithmic coordinates, equation (16), as represented by equation (17). The trajectory
starts from (0, ln ε) and makes a biased random walk, until it exits the triangular region
X1 + X2 < −ln M. The value of ε is chosen so that the trajectory never enters the region
X2 > 0.

The mean and variance of the change in x over one timestep,Δt = ln 2, are vΔt = p1ξ̄1 + p2ξ̄2,
and 2DΔt = p1ξ̄

2
1 + p2ξ̄

2
2 − v2Δt2, so that

v =
p1ξ̄1 + p2ξ̄2

ln 2
=

λ̄1

ln 2
(20)

and

D =
1

2 ln 2

[
p1ξ̄

2
1 + p2ξ̄

2
2 − (p1ξ̄1 + p2ξ̄2)2

]
. (21)

For each realisation of the Wiener process, we must determine the largest value of x0 = ln ε < 0
such that if x(t) starts at x0, it remains negative for all times t up to

T = N ln 2 = ln M. (22)

Alternatively, we can shift the initial condition and consider a Wiener process which starts at
x(0) = 0, and then −ln ε is the maximum value of a Wiener process x(t) in the time interval
t ∈ [0, T]. This alternative approach is illustrated schematically in figure 5.

3.3. Estimate for mean value

Now let us estimate the mean value of x0 = ln ε, using the Wiener process model. If the dif-
fusion coefficient were D = 0, and v > 0, and we were to release a particle at x0 = −vT, then
it would reach x = 0 when t = T. In this deterministic case we would have 〈x0〉 = −vT. On
the other hand, if v = 0 we would expect that the maximum displacement would be of order√

DT . If diffusion is significant, but v = 0, we might, therefore, anticipate that

〈x0〉 = −
√

2DTF(Y), (23)

9
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Figure 5. Schematic illustration of the dynamics determining void size, expressed in
logarithmic coordinates, where the biased random walk is approximated by a Wiener
process. We require the statistics of the running maximum of the Wiener process x(t),
up to time T, which is equal to −ln ε.

where F(Y) is a function of a dimensionless variable

Y = v

√
T

2D
(24)

and where F(Y) ∼ Y as Y →∞. In the appendix C we show that the function F(Y) is

F(Y) = Φ′(Y) +Φ(Y)
1 + Y2

Y
− 1

2Y
, (25)

where

Φ(x) =
1√
2π

∫ x

−∞
dy exp(−y2/2) (26)

is the cumulative distribution function of a Gaussian with unit variance. The limiting
behaviours of F(Y) are

F(Y) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y Y � 1√
2
π

Y = 0

1
2|Y| −Y � 1

. (27)

4. Lacunarity transition

We have proposed a theory for the statistic 〈 ln ε〉, where ε characterises the size of a void region.
In the limit as the number of trajectories M approaches infinity, the dimensionless variable Y

10
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Figure 6. (a) Plots of v as a function of p for β = 0.2, 0.4, 0.6, 0.8. The dotted line
indicates v = 0 for reference. (b) Plot of the (p,β) parameter space of the model. The
purple lines correspond to the locus of the phase transition, with γ > 0 in the region
between the lines and γ = 0 everywhere else.

defined by (24) is large, and according to equations (23) and (27) the theory predicts that

〈ln ε〉 ∼ −v ln M, (28)

where v is given by equation (20), provided that v > 0. This is consistent with the typical size
of ε having a power-law dependence:

ε ∼ M−γ , (29)

where the exponent is γ = v. If γ < 1 this indicates that the voids are larger than would be
expected for a random scatter of points, for which the separation of the ordered y-coordinates
would be ε ∼ 1/M.

In the case where v < 0, however, Y →−∞ as M →∞, and the theory predicts that 〈 ln ε〉
becomes independent of M as M →∞, so that γ = 0 in regions where v < 0. Numerical
investigations of equation (20), illustrated in figure 6 below, indicate that there is indeed a
region in the parameter space of our model where v < 0. In this case 〈 ln ε〉 ∼ D/v, which
is independent of M. This implies that when v < 0, there are voids in the distribution of
trajectories which are not filled as we increase their number. The locus where v = 0 in the
parameter space of the model {p, β} ∈ [0, 1]2 represents a phase transition, between a phase
space which fills every region as M →∞ when v > 0, to one which has persistent voids
when v < 0.

The value of v as a function of p for different choices of β is shown in figure 6(a). The line
of the phase transition in the (p, β) parameter space is illustrated in figure 6(b).

The condition for the phase transition to occur has a very simple interpretation. If both
of the Lyapunov exponents of the time-reversed flow are negative, then the neighbour-
hood of any point almost certainly contracts as we go backwards in time. This means
that almost all points are surrounded by a neighbourhood which is increasingly sparse.
Because λ̄2 is always negative, the phase transition occurs when λ̄1 = 0, or equivalently
when v = 0.

11



J. Phys. A: Math. Theor. 55 (2022) 335001 B Cucurull et al

Figure 7. Plots of−〈 ln ε〉 as a function of T = ln M, for β = 0.4, with three different val-
ues of p. These data are compared with the theory, equations (23) and (25): the fractional
error of the theory decreases as |〈 ln ε〉| increases. The dotted lines are the asymptotes of
the theory for very large values of M, showing that even 106 trajectories are not sufficient
to explore the M →∞ limit.

5. Numerical simulations

We evaluated the values of −〈 ln ε〉, after N = 100 iterations of the map. We averaged
Nr = 500 realisations of the map, and in each case we evaluated the set of void sizes ε using
K = 250 evenly spaced initial points. The resulting expectation values of ln ε are compared
with the theoretical prediction, equations (23) and (25) in figure 7 for three different points in
the parameter space of the model. The agreement between the simulations and equation (23)
is excellent in one case (β = 0.4 and p = 0.24), but the other two cases show a small offset
between the simulation and this theoretical prediction, which is approximately independent
of M.

Replacing a discrete random walk by a Wiener process is a ‘coarse-grained’ approximation
of the random walk, which is expected to work well in the long-time limit (equivalently, in
the limit where the number of trajectories is very large). The data in figure 7 indicate that
the fractional error of the approximation is decreasing as T = ln M increases, while |〈 ln ε〉|
increases.

The values of the drift velocity and diffusion coefficient for the three cases illustrated in
figure 7 are:

for p = 0.08, β = 0.4 → v = −0.2634 . . . , D = 1.4040 . . .

for p = 0.16, β = 0.4 → v = 0.2840 . . . , D = 0.7373 . . .

for p = 0.24, β = 0.4 → v = 0.5772 . . . , D = 0.4203 . . . (30)

When v > 0, the asymptotic behaviour as M →∞ is 〈 ln ε〉 ∼ −v ln M, whereas if v < 0,
〈 ln ε〉 ∼ D/v. The data points in figure 7 all appear to be well approximated by a straight line
when M is large. However, this figure also shows the M →∞ asymptotic behaviour as lines,
and even for the largest values of M (up to 10 × 218 > 106), the theoretical expression is still
far from these asymptotes. We conclude that the true asymptotic behaviour is not accessible
even for the very large values of M which are explored in figure 7.
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Figure 8. We evaluated the void sizes, ε, after N = 100 iterations, and determined 〈 ln ε〉.
This was repeated for M = 4, 8, . . . , 219 trajectories, and for values of p and β on a lattice
filling the parameter space. The graph shows a scatterplot of Z = −〈ln ε〉/

√
2DT as a

function of Y = v
√

T/2D, for more than 103 different combinations of values of p, β
and T = ln M. These data are compared with the function F(Y) (solid line), defined by
equation (25).

We also evaluated 〈 ln ε〉 for 18 different values of M, namely M = 4, 8, . . . , 219, for all
values of p and β forming a lattice in the parameter space. (The lattice spacing was 0.075,
with p taking values from 0.075 to 0.9 and β from 0.15 to 0.9, making 132 different points in
the parameter space). For each of these 132 × 18 data points we determined v and D from the
values of p and β and T = ln M. We then computed Y = v

√
T/2D and Z = −〈ln ε〉/

√
2DT.

Figure 8 is a scatterplot of Z against Y, compared with the function F(Y), given by equation (25).
There is a good scaling collapse of the scatterplot onto a single line, and this line is in good
agreement with the function F(Y).

6. Concluding remarks

Data from both physical and numerical experiments on non-autonomous chaotic systems indi-
cate that there can be very sparsely occupied regions of phase space. These have previously
been investigated for the case of systems which have folds or caustics [11], but in the case of
systems with invertible dynamics there is very little previous work.

In this paper we considered a simple model, which is susceptible to analysis by mapping the
problem to that of determining the running maximum of a biased diffusion process. The model
system which we consider has uniform distribution of trajectories in its x-coordinate, but a
highly non-uniform distribution of the y-coordinate, as illustrated in figure 3. We considered
M trajectories with uniformly scattered initial points, after N iterations of the map. A randomly
chosen point (x, y) can be positioned in a rectangle of dimensions 1 × ε, which contains none of
the trajectories in its interior, but which does have one trajectory on its upper and lower edges.
The statistics of the gap size, ε, provide a means to describe figure 3. We developed a theory
for 〈 ln ε〉, predicting that 〈 ln ε〉 ∼ −γ ln M as ln M →∞, where γ is a positive coefficient
which depends upon the parameters of the model. This relationship is consistent with ε having
a power-law relation to the number of trajectories, ε ∼ M−γ , but (as illustrated by figure 7)
the approach to this limiting power-law can be so slow that the exponent cannot be seen in
numerical simulations.
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As well as having a power-law dependence, ε ∼ M−γ , in the limit as M →∞, there is a tran-
sient behaviour at finite values of M. We showed that this transient behaviour can be described
quite accurately by a ‘coarse-grained’ approximation of the equations describing our model,
replacing a random walk with a Wiener process.

We argued that varying parameters of this model system can cause a transition, from a phase
in which γ is positive, to regions of parameter space in which it is zero. It is, however, difficult
to observe a sharp phase transition upon varying parameters of the model, because the width
of the transition region, where the limiting slope of the plot of 〈 ln ε〉 versus ln M becomes
established, increases as γ → 0. Equations (23) and (24) imply that the width of this transition
region is ln M∗ ∼ D/v2, so that seeing the change of slope in the transition region required a
very large number of trajectories, M∗ ∼ exp(2D/v2).

In the introduction we mentioned that the concept of multifractal measures appears as if it
may be relevant to our investigation. The power-law relation ε ∼ M−γ is consistent with the
‘multifractal’ model, in that it represents an exponent which characterises the dimension of the
measure in the vicinity of a point. However, the exponent γ is the same for almost all points
in the phase space, rather than different values of γ being realised on sets which have a fractal
structure. Also, as illustrated in figure 7, the convergence towards a power-law as the number
of trajectories increases can be so slow that it is not observable.

Figure 1 showed voids in the distribution of a physically interesting invertible, non-
autonomous chaotic system. It is interesting to consider how the approach used on our simpli-
fied model can be extended to understand the distribution of the distance ε from a randomly
chosen point to the nearest one of M trajectories in more general cases. As in the case of the
simplified model that we have considered here, the simplest way to understand the statistics
of ε is to propagate the dynamics backwards in time. All of the pre-images of this ε ball are
also empty. In particular, the pre-image at time zero does not contain any of the initial random
distribution of trajectories. Because the trajectories were assumed to be randomly scattered at
time zero, the pre-image set at t = 0 is very unlikely to have an area which exceeds 1/M by a
large factor.

Consider the form of the pre-images of a small ball of radius ε. The evolution of this set
under backward time evolution is, at least initially, described by the linearisation of the flow.
In many examples, including the case illustrated in figure 1, the pre-image of a ball is initially
transformed into an ellipse with one principal axis increasing and the other one decreasing,
such that the area is contracting. Eventually, the linearisation approximation fails, when the
size of the larger principal axis of the ellipse approaches unity. Upon further backward prop-
agation, the pre-image set is a string-like object, which eventually becomes foliated so that it
covers the whole of the phase space with uniform density. When this happens, the area remains
approximately constant as we propagate backwards in time, because the dynamics preserves
the total area. This picture is quite analogous to our treatment of the strudel model, but the
machinery of the calculations will be more complex. We expect to explore the generalisation
to more complex dynamical systems in a subsequent paper.
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Appendix A. Advective flow model

The trajectories shown in figure 1 are generated by numerically solving the two-dimensional
flow

x(t +Δt) = x(t) + u(x, t)Δt, (31)

with the random velocity field u(x, t) defined as

u = ∇ ∧ψ + β∇φ, (32)

where β is a compressibility parameter, ψ(x, y) is a random stream function and φ(x, y) is a
random potential. In the simulations of figure 1 we used β = 0.5 and the fields ψ(x, y) and
φ(x, y) were chosen to be independent, have zero mean values, and have the same Gaussian
correlation function, with rotationally and translationally invariant statistics.

Appendix B. Proof λ2 is negative

The Lyapunov exponent λ2(β, p) is

λ2 = p ln

(
1 − β

2p

)
+ (1 − p) ln

(
β

2(1 − p)

)
(33)

for β ∈ [0, 1] and p ∈ [0, 1]. To show that λ2 is always negative we will show that its maximum
is −ln 2 (independent of the value of p). We find that ∂λ2/∂β = 0 is satisfied when β + p = 1,
and that λ2(1 − p, p) = −ln 2. Furthermore,

∂2λ2

∂β2
= −

(
p

(1 − β2)2
+

1 − p
β2

)
< 0, (34)

which is negative for all values of p and β, and so λ2(β) is a concave function, which takes its
maximum at β = 1 − p.

Appendix C. Derivation of expectation value of maximum of Wiener process

In [14] there is an analysis of the solution of the advection diffusion equation, with drift velocity
v and diffusion coefficient D. It is shown that the flux onto an absorbing point at x̄ from a source
at x = 0, t = 0 is

J(x̄, t) =
x̄√

4πDt3
exp

[
− (x̄ − vt)2

4Dt

]
. (35)
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The probability that a particle has a maximum excursion which is less that x̄ before time t is
equal to the probability that it is not absorbed onto that surface, namely

P(x̄, t) = 1 −
∫ t

0
dt′ J(x̄, t′). (36)

The corresponding probability density for x̄ is p(x̄, t) = ∂P/∂ x̄, so that the expectation value
of x̄ is

〈x̄〉 = −
∫ t

0
dt′

∫ ∞

0
dx̄ x̄

∂J
∂ x̄

(x̄, t′) =
∫ t

0
dt′

∫ ∞

0
dx̄ J(x̄, t′). (37)

That is, defining Z = v
√

t′/2D and Y = v
√

t/2D,

〈x̄〉 = 1√
4πD

∫ t

0
dt′

1
t′3/2

∫ ∞

0
dx̄ x̄ exp

[
− (x̄ − vt′)2

4Dt′

]

=
1√
2π

∫ t

0
dt′

1
t′

∫ ∞

−v
√

t′/2D
dω

[√
2Dt′ω + vt′

]
exp

(
−ω2

2

)

=

√
D
π

∫ t

0

dt′√
t′

∫ ∞

−Z
dω ω exp

(
−ω2

2

)

+
v√
2π

∫ t

0
dt′

∫ ∞

−Z
dω exp

(
−ω2

2

)

=

√
D
π

∫ t

0

dt′√
t′

exp

(
−Z2

2

)
+ v

∫ t

0
dt′ Φ(Z)

=
4D
v

1√
2π

∫ Y

0
dZ exp

(
−Z2

2

)
+

4D
v

∫ Y

0
dZ Z Φ(Z)

=
2
Y

√
2Dt

[
Φ(Y) − 1

2
+

Y2

2
Φ(Y) − 1

2
√

2π

∫ Y

0
dZ Z2 exp

(
−Z2

2

)]

=
√

2Dt

[
2
Y
Φ(Y) − 1

Y
+ YΦ(Y) − 1

Y
√

2π

×
(
−Y exp

(
−Y2

2

)
+

√
π

2
(2Φ(Y) − 1)

)]

=
√

2Dt

[
Φ(Y)

(
Y +

1
Y

)
+Φ′(Y) − 1

2Y

]

=
√

2Dt F(Y), (38)

where F(Y) is the function specified in equation (25). There are other sources which could be
used to obtain (23) and (25), for example a book by Borodin and Salminen ([15], see part II,
ch 2, equation (1.1.4), p 250), although there is an error in the published formula.
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