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Abstract
An exact formula is derived, as an integral, for the mean square value of the
winding angle φ (with −∞< φ <∞) of Brownian motion (that is, diffusion)
after time t, around an infinitely long impenetrable cylinder of radius a, hav-
ing started at radius R(>a) from the axis. Strikingly, for the simpler problem
with a = 0, the mean square winding angle around a straight line, is long
known to be instantly infinite however far away the starting point lies. The frac-
tally small, fast, random walk steps of mathematical Brownian motion allow
unbounded windings around the zero thickness of the straight line. A remedy,
if it is required, is to accord the line non-zero thickness, an impenetrable cylin-
der, as analysed here. The problem straightaway reduces to a 2D one of winding
around a disc in a plane since the axial component of the 3D Brownian motion is
independent of the others. After deriving the exact mean square winding angle,
the integral is evaluated in the limit of a narrow cylinder a2 � R2, highlighting
the limits of short and long diffusion times addressed by previous approximate
treatments.
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1. Introduction

A freely diffusing point in three dimensions, that is, one executing mathematical Brown-
ian motion has mean square displacement Cartesian components

〈
Δx2

〉
=

〈
Δy2

〉
=

〈
Δz2

〉
=

2D Δt in an infinitesimal time Δt, where D is the diffusion constant, leading to an isotropically
spreading Gaussian probability density. The projection of the motion onto, say, the x, y plane,
is thus planar diffusion with the same diffusion coefficient. In polar coordinates, cylindrical or
planar, the angle coordinate diffusion depends on the radius coordinate r through

〈
Δφ2

〉
= 2DΔt/r2 (1)

and r is itself changing, so the angular spreading is more complicated than that of the Cartesian
components. This polar angle can be of interest if the central axis (around which the angle is
measured) has topological significance, as in the examples mentioned below. For this, one
allows the polar angle, the winding angle of the trajectory about the axis (or the point origin
in 2D), the freedom to vary from −∞ to ∞ rather than being restricted to a range of 2π.
Optionally one can visualize the 2D diffusion as taking place on Riemann’s flattened helicoid
surface, free to wind to its different sheets.

It would be expected that this problem of polar coordinate evolution, being so easily
stated mathematically, might have physical interest. Such winding problems do indeed arise:
in optics (edge diffraction), quantum mechanics (the Aharonov–Bohm effect), and polymer
physics (linking entanglement). Historically there were several largely independent (though
closely related) mathematical analyses (Spitzer 1958) (diffusion), (Aharonov and Bohm 1959)
(quantum mechanics), (Ito and McKean 1965) (diffusion), (Edwards 1967) (polymers) in these
fields around the middle of the last century, all in apparent ignorance of the pioneering ‘complex
plane of unrestricted angle’ method developed for optics by Sommerfeld (Sommerfeld 1896,
1964). In all these, the need for polar coordinates arises because there is a point-like (in 2D)
or straight-line-like (in 3D) feature or obstacle around which the winding is of interest. (The
2D and 3D versions are either equivalent or very closely related in all these different contexts.)
Another slightly more recent point-winding work, notable for its unusual point of view is that
by Michael Berry (Berry 1980) based on a favourite technique of his: using the Poisson sum-
mation formula to convert between an angular momentum sum and a topological windings
sum. Recent generalizations of point or line-like winding problems with exact results are to be
found in Hannay (2019a, 2019b).

There is a long known but particularly striking feature of polar angle evolution in this free
Brownian motion (that is without obstructions); its mean square angle change after any time
t > 0, however small, is infinite. This arises from the fractal nature, the infinitesimal, infinitely
frequent, random walk steps of Brownian motion, and applies whatever the starting radius R
is from the origin (or axis). Formally the infinity comes about because the spreading Gaussian
probability density centred at a point at radius R is non-zero at the origin for any t > 0. This
suffices: the rate of increase of the mean square angle

〈
φ2
〉

is, from (1) together with the fact
that 〈φΔφ〉 = 0, the integral over all r > 0 of 2D/r2 × 2πrdr × probability density, which
therefore diverges non-integrably at the origin.

This possibly unphysical feature is remedied, in perhaps the simplest way, by according a
non-zero radius a to the obstacle (point or line), creating an impenetrable reflective cylinder
(or disc in 2D). Mathematically this means that the probability density obeys the Neumann
condition of zero gradient, zero flux through the boundary. The corresponding problem with

2



J. Phys. A: Math. Theor. 55 (2022) 234007 J H Hannay and M Wilkinson

Dirichlet boundary condition of perfect absorption, which therefore loses probability, was stud-
ied somewhat differently (Rudnick and Hu 1987). Some subsequent literature, for both Neu-
mann and Dirichlet boundary conditions, contains assorted approximate treatments, including
long and short diffusion times (Grosberg and Frisch 2003), (Meerson and Smith 2019), (Huber
and Wilkinson 2019). The last of these, which treats the Neumann case, provides precise agree-
ment with the long time limit (13) of our exact result (8), and is rederived in appendix A under
the title ‘truncated free space model’.

In the present paper we supply an exact formula, as an integral, for the mean square winding
angle, starting at a point at radius R, with the Neumann boundary condition applied on the disc
(or cylinder) boundary with radius a centred on the origin. In the limit of a narrow cylinder
a2 �R2 the exact formula integral can be evaluated in terms of special functions, and simplified
further in the two limits of short and long diffusion times. For the narrow cylinder, the exact
result is matched pretty well by the ‘truncated free space model’ (specifically, by equation (A2)
in appendix A).

Brownian motion, that is, diffusion, has, via the formula (1) for the mean square change in
winding angle, a uniquely simple consequence for the accumulated total mean square winding
angle

〈
φ2
〉
. It is not shared by other statistics, for example

〈
φ4
〉
. The Markov property of the

motion (independence of the future on the past) makes the accumulation simply algebraically
additive

〈
(φ+Δφ)2

〉
=

〈
φ2
〉
+
〈
Δφ2

〉
. Suppose that after time t the diffused probability den-

sity P(r, t) is known, and the
〈
φ2
〉

is also known. Then the mean square angle
〈
(φ+Δφ)2

〉
after time t +Δt instead of t, is dictated by P(r, t). It supplies, via (1), the increment of

〈
Δφ2

〉
,

re-starting from each point r reached after time t, weighted by P(r, t).
As a very brief example, one can straightaway extract the leading term in the long time limit

t →∞ since eventually the P(r, t) approximates a Gaussian exp [−r2/4Dt]/(4πDt) that has
spread to be so wide that its centre can be taken as the disc centre. Then from (1), d

〈
φ2
〉
/dt ≈∫∞

a exp[−r2/4Dt]/(4πDt)(2D/r2)2πr dr = E1(a2/4Dt)/(2t) ≈ −log(a2/4Dt)/(2t) for large
t. The indefinite integral of this over t is log2(a2/4Dt)/4 + constant. With a suitable choice
of constant this matches the leading term from the exact analysis (13) from (8). The growth of
the mean square winding angle is thus very slow in comparison with the linear growth of mean
square displacement.

So the central ingredient for finding the mean square winding angle will be the probability
density P(r, t) in the plane, spreading by diffusion, having started at t = 0 as delta function
at a point at radius R. This diffusion takes place in the presence of an impenetrable disc of
radius a with the consequent Neumann boundary condition of zero radial derivative of P(r, t)
there. Actually, the circular symmetry of the disc means that the considerably easier probability
distribution P(r, t) from an initial ring δ(r − R)/2πR, of radius R suffices in place of P(r, t).
This azimuthal average P, the zeroth component of the angular decomposition of P, is the only
feature required, because P is to be weighted and integrated (2) with the isotropic function 1/r2

arising from the angular diffusion (1). The initial ring spreads (both inward and outward) by
diffusion, producing the circularly symmetric probability density P(r, t), given in (6) below
and accessed as described in the next paragraph. Finally, once the weighted integral of P(r, t)
is found, a time integral of the rate of increase of the mean square winding angle over the
duration of the Brownian motion will yield the desired mean square winding angle (2).

The circularly symmetric spreading probability density P(r, t) is to be accessed via its
Fourier transformΨ(r,ω) with respect to time, which is also circularly symmetric (the specific
relationship is (4) below). This Fourier transform, incorporating a zero probability density for
negative time, is complex like a wave. In fact it has a direct physical interpretation in terms
of a more familiar problem of wave scattering by an obstacle. The wave here is the one that
comes from a ring source of radius R with a strength that continuously oscillates at a definite
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angular frequencyω (like a vertically vibrating circular dipper in a shallow water wave ‘ripple
tank’). Wave scattering theory prescribes the desired solution straightforwardly in principle,
though with awkwardly long intermediate formulas like (5) below. An illustrative example
of the wave method in a simpler context (no disc) is provided in appendix B. An alternative,
scattering-free, route to the same result for P is derived in an appendix C, taking the limit of a
large finite domain (an annulus).

The wave Ψ(r,ω) obeys the equation ∇2Ψ+ k2Ψ = −δ(r − R)/(2πR) where the right-
hand side represents a ring source of waves. This equation is the time Fourier transform of
the diffusion equation with a δ-ring of probability introduced at t = 0: d∇2P = ∂P/∂t − δ(t)
δ(r − R)/2πR. The k2 term on the left comes from the Fourier transform of (∂/∂t) with a
change of variables iω = Dk2. (Although physically k can be interpreted as a wavenumber,
with iω = Dk2 as the diffusion dispersion relation, it is mathematically just change of variable;
the Fourier transform is in time, not space.) The boundary condition on the disc is the same
one for both problems, the zero normal derivative, Neumann condition. There is an additional
condition on Ψ(r,ω) arising from the vanishing of probability for negative time. It has already
been incorporated into the description in terms of a ‘source’ rather than a ‘sink’ of waves. Since
the waves come from a source (the oscillating ring) they must obviously be outward-moving
outside R (that is, ∝ H(1)

0 (kr) exp (−iωt) ∼ (1/
√

kr) exp (ikr − iωt) for large r). Inward moving
waves would correspond to zero probability density for positive time instead.

2. Exact formula

For Brownian motion in 2D, the diffusing probability density P(r,t), its mean square winding
angle in the presence of an impenetrable disc of radius a, for a motion of duration t starting at
radius R is given, following (1), by

〈
φ2
〉
=

∫ t

0
dt′ 2D

∫
|r|>a

P(r, t′)
d2r

r2
. (2)

This representation was that used in a recent approximate ‘truncated free space’ model
(Huber and Wilkinson 2019) reproduced in appendix A. It is specific to the mean square statistic
(as mentioned above) and seems more manageable, analytically, than the more flexible one used
by Rudnick and Hu (1987) for the same problem with an absorbing boundary condition. The
latter involves awkward derivatives of Bessel functions with respect to their order.

As explained in the introduction the probability density can be replaced without approxi-
mation by its azimuthal average, which is that from an initial ring instead of the initial point

P(r, t) ≡ 1
2πr

∫
|r′ |>a

P(r′, t)δ(|r′| − r)d2r′. (3)

This is to be accessed via its Fourier transform, specifically:

P(r, t) =
1

2πD

∫ ∞

−∞
Ψ(r,ω) exp (−iωt)dω

=
1

2πD

∫
∨
Ψ(r,−ik2D) exp (−k2Dt)(−2iD) k dk

=
1
iπ

∫ ∞

−∞
Ψ(r,−ik2D) exp (−k2Dt) k dk (4)
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for t > 0, or zero for t < 0. Here ∨ denotes a symmetrically bent contour of integration arising
from the change of variables iω = Dk2. It runs from left to right, with a right angle bend
at the origin. It can be straightened to become the real axis for t > 0, and fully folded up
vertically for t < 0, yielding zero. It is the wave Ψ(r,−ik2D) that obeys the wave equation
∇2Ψ+ k2Ψ = −δ(r − R)/(2πR) mentioned in the introduction (being the Fourier transform
of the diffusion equation). It has a continuous ring source at radius R, characterized by having
a jump of radial gradient of (−1/2πR) across the circle of radius R. It is to be solved with
Neumann boundary conditions (zero gradient) on the disc radius a. The circular symmetry
means the solution is everywhere a linear combination of the two Bessel functions J0 andY0.
Also required, as explained in the introduction, is that the waves must be outgoing in nature
outside radius R (∼H(1)

0 (kr) = J0(kr) + iY0(kr)) consistent with there being a source of waves
and having zero value of the probability density for t < 0. Inside the source ring, radius R,
the wave has to be a (different) linear combination of the Bessel functions J0(kr) andY0(kr)
satisfying the Neumann boundary condition (the presence of the disc means that there is no
need to exclude the Bessel function Y0(kr) since its infinity at the origin is inside the disc). The
result is the rather formidable looking expressions for Ψ (soon to be simplified):

Ψ = J0(kr)

[
H(1)

0 (kR)(∂/∂a)Y0(ka)

4i(∂/∂a)H(1)
0 (ka)

]
− Y0(kr)

[
H(1)

0 (kR)(∂/∂a)J0(ka)

4i(∂/∂a)H(1)
0 (ka)

]
for r < R,

Ψ = H(1)
0 (kr)

[
J0(kR)(∂/∂a)Y0(ka) − Y0(kR)(∂/∂a)J0(ka)

4i(∂/∂a)H(1)
0 (ka)

]
for r > R· (5)

The Wronskian relation J0(kR)(∂/∂R)Y0(kR) − Y0(kR)(∂/∂R) J0(kR) ≡ 2/(πR) has already
been used to simplify the (common) denominator. With its Bessel functions of kr, (5) satis-
fies the wave equation ∇2Ψ+ k2Ψ = 0 other than at r = R. It is constructed to have zero
normal derivative at r = a, and is outgoing at infinity. Also it is straightforward to show, that it
has the required jump of gradient (−1/2πR) at r = R. As a wave it is complex valued, but, as
in the disc-free example in appendix B, some algebra shows that the imaginary part is an even
function of k so that, multiplied by exp (−k2Dt)kdkand integrated over all k, it is eliminated.
The real part has odd and even pieces. Only the odd piece contributes, and it can be extracted
using J0(−z) = J0(z) and Y0(−z) = Y0(z) + 2iJ0(z) for z > 0. The unit step functions implicit
in (5), distinguishing r < R and r > R disappear, and the result is a real integral over positive
k only

P(r, t) ≡ 1
2π

∫ ∞

0

(J0(kr)Y1(ka) − Y0(kr) J1(ka)) (J0(kR)Y1(ka) − Y0(kR) J1(ka))
J1(ka)2 + Y1(ka)2

× exp (−k2Dt)k dk. (6)

As a brief check on this, for a zero radius cylinder (a= 0) one has (since Y1 infinitely dominates
both numerator and denominator, and cancels) (6) reducing to

P(r, t) =
1

2π

∫ ∞

0
J0(kr) J0(kR) exp(−k2Dt) k dk

=
1

2π
1

2Dt
exp

(
− (r2 + R2)

4Dt

)
I0

(
rR

2Dt

)
. (7)

DLMF NIST (2017), [formula 10.22.67] which is a long known result e.g. Kleinert (2006)
for P with no cylinder present, but still with azimuthal averaging. A one-line derivation of it
(A1) is supplied as part of the ‘truncated free space model’, appendix A.
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Figure 1. Mean square winding angle (radians2) as a function of time (specifically
Dt/a2). The two pictures show different time ranges, and for each there are three pairs
of curves shown, appropriate to values of the ratio R/a = 1, 3, 9 of start radius to disc
radius. For the left picture each pair of graphs compares the exact formula (8) with the
truncated free space model (A2). Not shown, since they coincide visually with the exact
curves, are numerical simulations of the Brownian motion. For the right picture each
pair of graphs compares the exact formula (8) with the long time asymptotic formula
(13). Not shown are curves for the truncated free space model (A2), since, over most of
the plot, they coincide visually with the exact curves.

Proceeding to the formula for
〈
φ2
〉
, only the exponential in (6) depends on time so the time

integration from 0 to t in (2) can be implemented straightaway, and only the single J0(kr) and
Y0(kr)depend on r. Therefore, from (2) and (6) we have our exact result (with sample graphs
given as the solid curves in figure 1):

〈
φ2
〉
≡ 2

∫ ∞

0

dk
k

(
1 − exp (−k2Dt)

)

×
({∫∞

a J0(kr)dr/r
}

Y1(ka) −
{∫∞

a Y0(kr)dr/r
}

J1(ka)
J1(ka)2 + Y1(ka)2

)

× [J0(kR)Y1(ka) − Y0(kR) J1(ka)] . (8)

The two braced functions have no name, but are recognized functions (of ka here) with doc-
umented convergent series [DLMF NIST 2017 formulas 10.22.39 and 10.22.40] and straight-
forward asymptotic expansions. The three factors in the integrand separated by the symbols ×
are of the respective forms: a function of k and t, of k and a (in fact of ka), and of k and a and
R. These will play a part in the evaluation of the k integral in the limit described in the next
section. First though, there follows a brief comment on each of the three factors separated by
the two symbols ×.

In front of the first × symbol there is an everywhere positive function of k (>0) (as well
as of time t; this is the only appearance of t). Graphed against k it has a single extremum and
infinite area under it due to the long tail. For small and large k respectively it has the forms kDt
and 1/k.

Next the function of the product ka (large bracket) is an everywhere negative function.
Graphed against k it has a single extremum and finite area (− 1

2π/a). For small and large ka
respectively it has the forms 1

2πka (γ + log( 1
2 ka) and −2/(ka)2 where γ is Euler’s constant.

Finally, after the second × symbol, the function of the three quantities k, a, R, (the square
bracket) has the small k form (−2/πka) coming from the Y1 Bessel function, and is oscillatory
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with amplitude decaying proportional to 1/k for large k. This square bracket factor contains the
only R dependence of the integrand.

3. Limit of narrow cylinder a2� R2, highlighting short and long times

The integrand in (8) for the mean square winding angle simplifies in the limit of narrow cylin-
der: a (cylinder radius) � R (starting radius) allowing analytic (albeit obscure) evaluation. The
limits of small and long diffusion times yield results in terms of elementary functions. First the
scaled integration variable ρ = kR can be introduced, then the quantity ka becomes ρa/R and
the quantity k

√
Dt becomes ρ

√
Dt/R. The two Bessel functions J0(ρ) and Y0(ρ) in the square

bracket of (8) have a width scale of order unity, decaying and oscillating for large ρ. Thus the
functions of ka, namely J0(ka) and Y0(ka) and the large bracket in (8), are all explored only
for small values of their argument ρa/R. Substituting the forms given in the previous section
for this small argument limit:

〈
φ2
〉
≈ 2

∫ ∞

0

1 − exp (−ρ2Dt/R2)
ρ

(πρa
2R

(
γ + log

( ρa
2R

))

×
[

J0(ρ)

(
− 2R
πρa

)
− Y0(ρ)

ρa
2R

]
dρ. (9)

Further, the Y0 term can be ignored in the small a limit because of its a2 prefactor (both
of the integrals

∫∞
0 Y0(ρ)ρ dρ(= −2/π) and

∫∞
0 Y0(ρ)ρ log (ρ)dρ are finite numbers if naturally

interpreted). In contrast the J0 term tends to infinity from the log(a) term.
This integral can then be evaluated exactly, though it is rather long and involves one

somewhat obscure term at the end:

〈
φ2
〉
≈ 2

∫ ∞

0

(−γ − log
(

1
2ρa/R

)
ρ

)(
1 − exp (−ρ2Dt/R2)

)
J0(ρ)dρ (10)

= 2
(
−γ − log (a/2R)

)
E1(R2/4Dt)

− 1
4

(
−π2

6
+ (γ − log (4))2 + log (R2/Dt) (2γ + log (R2/16Dt))

)

+
1
2

(γ − log (R2/Dt)) E1(R2/4Dt) +
1
4

L′′(−R2/4Dt), (11)

where the double prime means second derivative of the Laguerre function with respect to order
at order equals zero. The bottom two lines of (11) come from the piece of (10) with its first
bracket replaced by −log(ρ)/ρ. The top line is simpler and comes from that bracket replaced
by

(
−γ − log(a/2R)

)
/ρ. Perhaps most interesting are the short and long diffusion time limits

of mean square winding angle.
First the limit of the mean square winding angle around a narrow cylinder (10) for short

diffusion time t is evaluated. Part of it, 2
(
−γ − log (a/2R)

)
E1(R2/4Dt), from the top line of

(11), exposes and resolves the apparent immediate infinity of the mean square winding angle
around a line (zero radius cylinder) as a clash of limits. The −log(a) gives infinity, and the
exp(−constant/t)/t (from E1) gives zero. For any finite time their product gets large for small
a, but if t is small a needs to be extremely small, of order exp(−t constant exp(constant/t)).

The remainder, coming from the lower two lines of (11), though not relevant for the clash
of limits, is interesting in that it supplies the expected initial linear growth of the mean square
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winding angle that is present even if the cylinder radius a is zero. It is most easily accessed
from the log part of (10) directly

2
∫ ∞

0

(
− log (ρ)

ρ

)(
1 − exp (−ρ2Dt/R2)

)
J0(ρ) dρ

≈ −(2Dt/R2)
∫ ∞

0
log (ρ)J0(ρ)ρ dρ = 2Dt/R2, (12)

where the exp has been expanded for small t, and the resulting integral has been interpreted in
a natural way with a temporary (not shown) Gaussian convergence factor exp(−ερ2) yielding
exp(−1/4ε)

(
−Ei(1/4ε)− 2 log(2ε)

)
/4ε. This has the limiting value −1 as ε tends to zero.

Now the large t limit of (11) is considered (that is: the narrow cylinder, long time limit
a2 � R2 � Dt of the exact formula (8)). The obscure term L′′(−R2/4Dt) has a large t form
1
2 (R2/4Dt)2 which vanishes in the limit, so it is ignored like other such terms. The rest of the
terms have standard large t expansions yielding

〈
φ2
〉
≈ 1

4
log2

(
R2

4Dt

)
+

(
1
2
γ + log

( a
R

))
log

(
R2

4Dt

)
+ γ log

( a
R

)
+

1
4
γ2 +

1
24

π2.

(13)

This result agrees with that from the ‘truncated free space’ model of (Huber and Wilkinson
(2019) (after the correction of an additive constant in the model result). It is re-derived in
appendix A, leading to (A6) which is identical to (13).

The leading term in (11) is proportional to the square of log(t) as anticipated in the introduc-
tion. A similar leading term was found by Rudnick and Hu (1987) for the absorbing cylinder
case mentioned earlier. A separate, square of log(t) dependence, was found early on Spitzer
(1958) for the winding angle probability distribution (rather than its mean square value here).
It was found to be a Lorentz (or Cauchy) distribution for the long time limit with a zero radius
cylinder. That distribution has infinite mean square, so is not informative for the present non-
zero radius cylinder (except insofar as the exact result (8) diverges as a tends to zero; from (6),
the integral of (P/r2)2πr dr diverges due to small r).
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Appendix A. Truncated free space model

Here we present a careful re-derivation of the narrow cylinder, long time limit of the
mean square winding angle around the cylinder in the truncated free space approximation
(Huber and Wilkinson 2019). The model initially considers the cylinder absent, finding the
azimuthally averaged probability density in free space Brownian motion—an azimuthally

8
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smeared Gaussian spreading diffusively

P =

∫ 2π

0

1
4πDt

exp

(
− r2 + R2 − 2rR cosφ

4Dt

)
dφ
2π

=
1

2π
1

2Dt
exp

(
− (r2 + R2)

4Dt

)
I0

(
rR

2Dt

)
. (A1)

(This formula appears above, in (7), as the a = 0 case of the general formula (6).) Now the
cylinder is introduced as a virtual presence. Some of the probability density is inside it as
well as outside it, which is an unphysicality of the model, though after a long time this inside
probability diminishes towards zero. The model simply treats the inside probability as zero,
truncating the free space probability density. The mean square winding angle is then, using (2)
with (7) for P instead of (6):

〈
φ2
〉
=

∫ t

0
dt′ 2D

∫
|r|>a

P0(r, t′|R)
d2r

r2

=

∫ t

0
dt′ 2D

∫ ∞

a

1
2π

1
2Dt′

exp

(
− (r2 + R2)

4Dt′

)
I0

(
rR

2Dt′

)
2πr dr

r2
. (A2)

It is this integral form that is used for the graphical comparison with the exact formula (8)
in figure 1.

The next step rewrites (A2) with a trick of a standard type, adding and subtracting an easy
term (with a view to allowing an integral to be extended to the whole space).

〈
φ2
〉
=

∫ t

0

dt′

t′

∫ ∞

a
exp

(
− (r2 + R2)

4Dt′

)[
I0

(
rR

2Dt′

)
− 1

]
dr
r

+

∫ t

0

dt′

t′

∫ ∞

a
exp

(
− (r2 + R2)

4Dt′

)
dr
r
. (A3)

The second line here is the main contribution to
〈
φ2
〉

requiring the analysis that follows below.
It tends to infinity as t tends to infinity or as a tends to zero (the former being expected for
on-going diffusion, and the latter being the striking infinity for a narrow line-like cylinder
highlighted in the main text). The first line of (A3), on the other hand, is upper bounded by
a constant, π2/12, which is the value obtained in the relevant limit where t = ∞ and a = 0.
(Then the t′ integral, gives log(2C/(C +

√
C2 − 1)) where C = 1

2 (r/R + R/r) and the r one
yields the π2/12 in the next equations (A4) and (A5)).

〈
φ2
〉
≈ π2

12
+

∫ t

0

dt′

t′

∫ ∞

a
exp

(
− (r2 + R2)

4Dt′

)
dr
r

=
π2

12
+

∫ t

0

dt′

2t′
exp

(
− R2

4Dt′

)
E1

(
a2

4Dt′

)
(A4)

=
π2

12
+

∫ ∞

R2/4Dt

exp (−s)
2s

E1

(
a2

R2 s

)
ds

≈ π2

12
+

∫ ∞

R2/4Dt

exp (−s)
2s

(
γ + log

a2

R2 + log(s)

)
ds

=
π2

12
+

(
γ + log

a2

R2

)
E1

(
R2

4Dt

)
+

∫ ∞

R2/4Dt

exp (−s)
2s

log (s)ds

9
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=
π2

12
+

(
γ + log

a2

R2

)
E1

(
R2

4Dt

)

+

([
1
4

exp (−s)log2(s)

]∞
R2/4Dt

+
1
4

∫ ∞

R2/4Dt
exp (−s)log2(s)ds

)
. (A5)

Here, after the top line, there is only one further approximation step: that in the fourth line,
replacing E1 by the first two terms of its series. The other steps are: introducing a changed
variable to get the third line and integrating by parts (differentiating the exp part) to get the
fifth line. Finally in the sixth line, we can approximate E1 as before, and take the lower limits
in the long bracket as zero with vanishing error as t tends to infinity. The square brackets term
then vanishes, and the final integral has the known result π2/6 + γ2. In all one has

〈
φ2
〉
≈ 1

4
log2

(
R2

4Dt

)
+

1
2
γ log

(
R2

4Dt

)
+ log

( a
R

)
log

(
R2

4Dt

)

+ γ log
( a

R

)
+

γ2

4
+

π2

24
. (A6)

This reproduces the result equation (23) of Huber and Wilkinson (2019) apart from the
additive constant π2/12 (from (A4)) which was missed in that analysis. With the corrected
constant, the result (A6) for the narrow cylinder, long time, limit of the truncated free space
model (A2), equals that, (13), from the exact formula (8) in the same limit.

Appendix B. Free space with initial ring

This example is of an initial probability density that is a sharp circular ring or ridge at radius R
from the origin δ(r − R)/(2πR) diffusing unobstructed in the plane. The example contains, in a
less complicated setting, all the manoeuvres are relevant for the main text problem of diffusion
obstructed by the impenetrable disc (projected cylinder). It makes appearance elsewhere, once
as the zero radius disc limit (8) of the general formula (7) for probability density, and again as
a starting point, (A1), in the analysis in the ‘truncated free space’ of appendix A. In the latter
case it is generated by superposing an infinity of point sources, as in (A1), around a circle.
But to represent it again in terms of waves (which we need in the obstructed problem), one
seeks the time Fourier transformΨ(r,ω) =

∫∞
−∞P(r, t) exp(iωt)dt, of the spreading probability

density (now inwards as well as outwards from the initial ring).
This wave obeys the Helmholtz wave equation with the steady ring of sources on the

right-hand side ∇2Ψ+ k2Ψ = −(1/2πR) δ(r − R). The solution Ψ is now a combination of
Bessel and Hankel functions of order zero with the following properties. The ring delta func-
tion on the right, coming from the analogous term in the diffusion equation, means that Ψ,
though continuous everywhere, has a discontinuity of gradient of (−1/2πR) across the ring at
r = R. As before, to correspond to there being a source, it must be outgoing at infinity, indeed
everywhere outside the ring, thus ∼H(1)

0 (kr). Inside the ring it must be smooth at the origin,
thus ∼J0(kr), without any Y0 (kr)which is infinite at the origin. This part of the wave in the
inner region r < R, can be interpreted as an equal superposition of incoming and outgoing
waves. The solution with these features is

Ψ =
i
4

(
J0(kr)H(1)

0 (kR)Θ[R − r] + H(1)
0 (kr) J0(kR)Θ[r − R]

)
(B1)

10
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with Θ as the unit (Heaviside) step function. Its gradient change at the ring is
(ik/4)(J1(kR)H(1)

0 (kR) − H(1)
1 (kR) J0(kR)), in which the large bracket is a Wronskian (2i/πkR),

so this correctly equals (−1/2πR). The consequent probability density is obtained, analogously
to (4), by multiplying by the Gaussian and integrating (again the ∨ bending of the contour
supplies the time Fourier transform of the probability density)

P(r, t) =
1
iπ

∫ ∞

−∞

i
4

(
J0(kr)H(1)

0 (kR)Θ[R − r] + H(1)
0 (kr) J0(kR)Θ[R − r]

)
× exp (−k2Dt) k dk. (B2)

The long bracket simplifies because its part even in k cancels in the integration. Using
H(1)

0 (ζ) = J0(ζ) + iY0(ζ) and J0(−ζ) = J0(ζ), and Y0(−ζ) = Y0(ζ) + 2iJ0(ζ) (for ζ > 0 and
real), the unit step functions disappear (since Θ[R − r] +Θ[r − R] = 1) and the integral
reduces to one over positive k only

1
2π

∫ ∞

0
J0(kr) J0(kR) exp (−k2Dt) k dk (B3)

(the evaluation of which is given in (6)). That completes the obstruction-free preliminary
example.

Appendix C. Annulus alternative for the diffused ring probability density
P̄(r, t)

An alternative approach to deriving P(r, t) that avoids the complex wave scattering is noted
here. Instead it involves taking the limit of a finite domain: an annulus with an indefinitely
large outer circular boundary of radius L, as well as the inner disc one of radius a. The dif-
fusion equation then has discrete eigenvalues, and the limit L →∞, when they are dense, is
needed. The probability density is given exactly in terms of the (orthonormal) eigenfunctions
ψn(r) = αnJ0(knr) + βnY0(knr), and eigenvalues kn (with decay eigenfrequencies Dkn

2):

Pannulus(r, t) =
∑

n
pn[αnJ0(knr) + βnY0(knr)] exp(−k2

nDt) (C1)

with the real coefficients αn and βn and pn and kn to be found. The Neumann boundary con-
ditions at r = a and r = L are αnJ1(kna) + βnY1(kna) = 0 and αnJ1(knL) + βnY1(knL) = 0.
These determine the eigenvalues kn as follows. Dividing each of these two boundary condition
equations by

√
α2

n + β2
n one has the simultaneous equations cos γ J1(kL) + sin γ Y1(kL) = 0

and cos γ J1(ka) + sin γ Y1(ka) = 0, where a ‘phase angle’ γ has been introduced. The solu-
tions are pairs of numbers kn, γn, represented graphically as the intersections of the zero
contours in the k, γ plane of each of the two functions on the left hand sides of the simul-
taneous equations. Figure 2 shows, for example, the eigenvalues kn for an annulus with a = 1
and L = 5. The intersections come in degenerate (vertically separated) pairs corresponding to
± the same eigenfunction. The lowest eigenvalue, call it k0, is zero, and its eigenfunction is a
constant 1/

√
π(L2 − a2).

Higher eigenvalues kn with n � 1 (which have eigenfunctions with n concentric nodal
circles in the annulus), become more and more evenly spaced in k as the contours become
straighter forming a uniform lattice. The straightness and spacing come from the trigonomet-
ric form of J0 and Y0 for large argument J1(x) ≈

√
2/πx cos(x − 3π/4), and Y1(x) ≈

√
2/πx

sin(x − 3π/4). The simultaneous equations thus become cos(kL − γ − 3π/4) = 0 and

11
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Figure 2. Annulus eigenvalues (a = 1, L = 5) as the horizontal coordinate k of inter-
sections of contours representing boundary conditions at r = L and r = a (dashed). The
vertical coordinate γ (with –π < γ < π) is an abstract ‘phase’ as described in the text.

cos(ka − γ − 3π/4) = 0; then the gradients of the two types of contour dγ/dk are respectively
equal to L and a. The ultimate spacing Δk is given by setting the difference of these gradients
times Δk equal to π, thus Δk = π/(L−a).

The normalization condition for each eigenstate is

∫ L

a
[αnJ0(knr) + βnY0(knr)]22πr dr = 1. (C2)

For n = 0 (with its k0 = 0), β0 = 0 and α0 = 1/
√
π(L2 − a2). For n = 1 the values α1 and

β1 are complicated since k1L is of order unity, not large or small as L →∞. The same holds
for all low values of n, indeed any fixed value of n. However as L →∞ the eigenvalues kn

become dense (the steep set of lines in figure 2 becoming steeper and more closely packed). In
the absence of bad behaviour of the normalization for the low states, any finite number of them
can be ignored. For any fixed k (not n), in the large L limit the integrals (C2) are (infinitely)
dominated by their slowly decaying large r tails. One has for the three terms in the integrand
of (C2):

∫ L
a J2

0(knr)2πr dr ≈
∫ L

a Y2
0 (knr)2πr dr ≈ 2L/kn and the cross term is of order unity and

therefore negligible. Combining this with the Neumann condition at r = a, one has for large n

αn = Y1(kna)
√

kn/2L/
√

J2
1(kna) + Y2

1 (kna)

βn = −J1(kna)
√

kn/2L/
√

J2
1(kna) + Y2

1 (kna). (C3)

The Neumann condition at r = L in principle determines the exact values kn as illustrated
in figure 2, but the only feature that will be needed when they become dense as L →∞ is the
density. As has already been noted the asymptotic density (for ka � 1) is 1/Δk = (L−a)/π.
The density for smaller k values, ka � 1, is 1/Δk = L/π (since the dashed contours are in their
curved zone, nearly horizontal). As L →∞ both extremes are L/π to leading order.

Finally to find the pn one uses the initial condition, a delta function ring at radius r = R.
The orthonormality of the eigenfunctions ψn means that the delta function can be represented
by

∑
m ψm(r′)ψm(r) = δ(r − r′)/2πr′ with r′ = R. Then the coefficients pn are given by

pn =
∑

m
ψm(R)

∫ L

a
ψm(r)ψn(r)2πr dr. (C4)
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The integral yields δmn so pn = ψn(R) = αnJ0(knR) + βnY0(knR) and thus

Pannulus(r, t) =
∑

n
[αnJ0(knR) + βnY0(knR)][αnJ0(knr) + βnY0(knr)]

× exp(−k2
nDt). (C5)

Replacing the sum with an integral
∑

→
∫

L/πdk and substituting for αn and βn

Pannulus(r, t)

=
1

2π

∫ ∞

0

[J0(kr)Y1(ka) − Y0(kr)J1(ka)][J0(kR)Y1(ka) − Y0(kR)J1(ka)]
J2

1(ka) + Y2
1 (ka)

× exp(−k2Dt)k dk. (C6)

The L has cancelled out and this reproduces (6) for P(r, t).
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