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persistent features of intermittent 
transcription
Michael Wilkinson1,2*, Spyros Darmanis1, Angela Oliveira pisco1 & Greg Huber1

Single-cell RNA sequencing is a powerful tool for exploring gene expression heterogeneity, but the 
results may be obscured by technical noise inherent in the experimental procedure. Here we introduce 
a novel parametrisation of sc-RNA data, giving estimates of the probability of activation of a gene and 
its peak transcription rate, which are agnostic about the mechanism underlying the fluctuations in the 
counts. Applying this approach to single cell mRNA counts across different tissues of adult mice, we find 
that peak transcription levels are approximately constant across different tissue types, in contrast to 
the gene expression probabilities which are, for many genes, markedly different. Many genes are only 
observed in a small fraction of cells. An investigation of correlation between genes activities shows that 
this is primarily due to temporal intermittency of transcription, rather than some genes being expressed 
in specialised cell types. Both the probability of activation and the peak transcription rate have a very 
wide ranges of values, with a probability density function well approximated by a power law. Taken 
together, our results indicate that the peak rate of transcription is a persistent property of a gene, and 
that differences in gene expression are modulated by temporal intermittency of the transcription.

Using nucleic acid polymerase technologies, it has become possible to quantify mRNA transcription processes 
with ever greater sensitivity1. Recently, it has become possible to obtain quantitatively reliable counts of individual 
gene transcripts from single cells2. This technology has the potential to reveal new insights into the mechanisms 
and organization of transcription processes. This paper reports on a statistical analysis of the Tabula Muris dataset 
of mRNA transcriptions from individual mouse cells, derived from a range of distinct tissue types3.

The number of ‘reads’ of mRNA from individual cells is highly variable, with many cells yielding a zero count 
for a particular gene, while a few cells from the same tissue type might yield hundreds or even thousands of reads. 
This variation is often ascribed to ‘dropouts’, viewed as a technical consequence of the stochastic nature of the DNA 
polymerization reaction. However, in the case of the Tabula Muris dataset, we find that the variability of the counts 
is markedly different between different genes, and for many genes the counts are much more variable than those of 
exogenous RNA sequences which are ‘spiked in’ with known concentrations. The variability cannot, therefore, be 
explained solely as a technical artifact, and we should therefore consider other, biological interpretations.

In this paper we use single-cell mRNA counts to estimate the probability p that each gene is being expressed 
in a given cell. These probabilities vary greatly, and we find that a significant fraction of genes are expressed with 
very low probability. There are at least two possible explanations for the wide variability of the gene expression 
probabilityp, illustrated schematically in Fig. 1:

•	 Case A: the cell population could be inhomogeneous, with cells from a given tissue differentiating into many 
different types, which express the same set of genes continuously. A small value of p is a consequence of a gene 
being expressed in a rare, specialized cell type. In the schematic of Fig. 1(a) genes with labels i and j are 
expressed by different types of rare cells.

•	 Case B: It could be that the activity of a cell within a given tissue-type population is time-dependent. In this 
case a small value of p is interpreted as an indication that the gene is turned off for most of the time. In the 
schematic illustration Fig. 1(b), a cell which is actively expressing a gene has a count equal to a peak activity α, 
but for most of the time the gene is not being transcribed.

It is desirable to distinguish clearly between these possibilities. This can be done by considering the coefficients 
of correlation for expression of different genes in the same cell. The evidence (discussed in the section on gene 
activity correlations below) strongly favors case B above as a model for explaining the occurrence of genes which 
are expressed with a low probability.
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Earlier studies of the time dependence of the expression of single genes have shown evidence that transcrip-
tion of mRNA occurs in ‘bursts’. This comes from direct observation of the time-dependence of mRNA transcrip-
tion4,5. It has been remarked that indirect evidence for bursting also comes from the observation that the variance 
of single-cell mRNA reads is typically much larger than the mean5,6.

‘Bursty’ transcription is regarded as being a consequence of a quite specific type of stochastic process, involv-
ing binding and un-binding of transcription factors from the DNA7–10. More recently, by fitting the statistics of 
single-cell mRNA reads to stochastic models of bursty transcription11,12, burst sizes and burst frequencies have 
been ascribed to individual genes13. The work of Larsson et al.13 emphasizes correlations between the kinetic 
parameters of the bursting model and aspects of the structure of the gene (such as its size) or of its promoters 
(such as TATA elements).

The stochastic model used in these studies has four distinct transition rates, and in principle, measurement of the 
distribution of counts can be used to determine three ratios of these transition rates. The measured count distribu-
tions are, however, subject to large uncertainties because of the instability of the polymerisation reactions and other 
technical factors, and the count distributions of a given gene in a given tissue can show marked differences between 
different experimental protocols. Determining the parameters is also made more difficult because, in some regions 
of parameter space, fitting the three parameters of the model is an ill-conditioned problem. A further complication 
is that the activity of different genes may be correlated, implying that a model in which transcription of different 
genes is determined by independent stochastic processes may be too simple. For these reasons it is desirable to adopt 
a more direct approach to characterizing gene activity, which does not depend upon specific mechanisms underly-
ing the fluctuations, and which is agnostic about the form of the distribution of counts. Our approach estimates two 
parameters, namely the probability p that a gene is active, and the typical number of transcripts which are present 
when the gene is active, α. It is complementary to the approach of fitting parameters to the stochastic model, in that 
it is simple to implement and does not assume any specific mechanism for the fluctuating gene activity. We explain 
the connection between our parameters and those of the stochastic model in an appendix.

Because ‘bursting’ transcription has an association with a particular stochastic model which may not be the 
only viable explanation of the phenomena, we shall refer to intermittent transcription in this text. Further infor-
mation, such as investigation of correlations between gene expression, are required to distinguish between inter-
mittent transcription and gene expression by specialist cells (that is, between cases A and B above). The analysis 
of the Tabula Muris dataset presented here supports the view that intermittent transcription is an ubiquitous 
phenomenon, extending to genes which are only expressed at very low levels. The fact that mRNA counts of the 
intermittent genes are highly variable implies that genes are being turned on and off very slowly, on a timescale 
much longer than the lifetime of mRNA (which appears to be at least one hour in most mammalian cells14).

Because the Tabula Muris data set contains information from a range of different tissue types, we are able to 
assess the effects of cellular differentiation on gene expression. We find evidence that the peak rate of transcrip-
tion, α, is a persistent attribute of a gene, which takes similar values in all of the tissues that were surveyed. The 
probability of transcription is found to be much more variable. These observations are consistent with gene 
expression being controlled by turning genes on and off, rather than via continuous regulation of their rate of 
transcription.

Because we have data for a very large number of genes (approximately ×2 104 genes are included in the data-
base), we can describe the statistics of gene attributes by probability distributions, for example we could introduce 
a probability density function (PDF) αP( ) for the gene activity, α, such that the fraction of genes which have activ-
ity in a small range between α and α δα+  is α δαP( ) . Both the peak transcription level α and the probability of 
expression p vary over a large range. We present evidence that the probability density of α is well approximated by 
a power law. The probability density of the gene expression probability varies markedly between different tissues. 
In the concluding section we speculate about whether intermittent transcription is necessarily a stochastic phe-
nomenon, as is frequently supposed8–10, and why it might confer advantages in organizing activity within a cell.

A Two-Parameter Characterization of Genes
The Tabula Muris data. The Tabula Muris dataset15 combines single-cell mRNA count data from two dif-
ferent technologies: microfluidic droplet-based 3′-end counting, which provides a survey of thousands of cells 
per organ at relatively low coverage, and fluorescence-activated cell sorting (FACS)-based full length transcript 
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Figure 1. Schematic contrasting two explanations for genes being observed with low probability in single cell 
mRNA counts. (a) Genes i and j may be transcribed continuously in rare, specialized cell types. (b) Genes may 
be intermittently active in all cells.
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analysis, which provides higher sensitivity and coverage3. The ‘droplet’ data uses unique molecular identifier 
(UMI) sequences to label individual mRNA molecules, providing a precise assay of the number of mRNA mol-
ecules from a given gene that have been amplified. The ‘FACS’ data set records the number of reads after ampli-
fication, without counting the number of individual molecules which have been captured. We processed both 
data set finding that, while not quantitatively equivalent, they are sufficiently consistent to justify our qualitative 
conclusions.

The FACS-based dataset lists the counts of mRNA molecules obtained from individual cells, for 23,433 
protein-coding genes (as annotated in the dataset), obtained from samples of 17 different tissues: the number 
of sampled cells ranges from 866 (kidney) to 6,007 (heart). In addition to the endogenous mRNA, the sam-
ples from each cell were ‘spiked’ with known concentrations of exogenous mRNA, with 96 different combina-
tions of sequences and concentrations. The dataset also contains the number of reads for each of these ‘spike-in’ 
sequences. The droplet data was obtained from samples of 12 different tissue types: there were a total of 55,638 
cells, ranging from 624 heart cells to 11,258 trachea cells.

In the case of the FACS data, we only included genes where more than 500 total counts were recorded, neglect-
ing counts of less than 10 in individual cells. In the case of the droplet data, we applied a quality threshold of at 
least 1000 total reads and at least 500 genes detected.

Gene parameters. The data lists the number of reads Mijk of mRNA for a gene with index i, in a cell with 
index j, from a tissue with index k. The polymerization process is inherently unstable and the experimental 
parameters may not be exactly the same for all cells. It was found that the total count for a cell, ∑ Mi ijk, varies over 
a large range (approximately two decades). For this reason, we considered ‘normalizing’ the counts by dividing 
Mijk by the total number of counts for each cell (which would be appropriate if our studies were aimed, for exam-
ple, at characterizing differences between different tissue types). However, evidence from the ‘spike-in’ sequences 
salted into the FACS data (discussed section on characterization of spiked-in sequences below) indicates that most 
of the variability of the total count for individual cells is real, rather than a technical artifact. For this reason, we 
did not normalize the counts.

The count data was processed to produce two statistics for each gene, denoted by α and p. The α variable is a 
measure of the peak level of transcription of a gene, and the p variable characterizes the probability that a given 
cell will be expressing that gene. If Nk is the number of cells for tissue type k, for a given gene with index i, we 
calculate the mean µik and variance σik
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Let us consider what value of pik would be expected according to a model where the transcription process is inter-
mittent, in the sense that it is either ‘on’, with a small probability p, or else ‘off ’, and where the ‘on’ state results in a 
count equal to α. According to this model, the mean and variance would be µ α= p and σ α= −p p(1 )2 2, so that 
if p 1 then µ σ≈p /2 2, in agreement with Eq. (2). This indicates that if the transcription occurs intermittently, 
with the probability of being ‘on’ being p 1, then pik is a measure of the probability of a cell expressing gene i in 
tissue k at a significant rate. Note that Eq. (2) was motivated by a simple model, under the assumption that p is 
small. We remark that the reciprocal quantity σ2/µ2 has previously been used as an estimator for ‘noise’ in studies 
of protein transcription16.

If the number of counts when a gene is active is α, then the mean count is equal to µ α= p. Given an estimate 
of p, Eq. (2), we can then estimate α by writing α µ= p/ . This indicates that the quantity 

α
σ
µ

≡
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is a measure of the peak level of transcription of gene i in tissue type k. Thus every gene i in tissue k can be charac-
terized by two parameters: a probability that it is active, pik, and a peak activity level αik, across different tissue 
types, labeled by k. If, when transcription of a gene is ‘turned on’, mRNA is produced at a rate Rp and degraded at 
a rate Rd, then the number of UMIs in the droplet data is expected to be α ~ Rp/Rd. We cannot distinguish 
directly whether the variability in α is primarily due to variations in the rate of production or the rate of 
degradation.

Both quantities, pik and αik, have a broad range of values spanning two and three decades respectively. For this 
reason, it is useful to use logarithmic variables 

α= − =I p Aln ( ) , ln ( ) (4)ik ik ik ik

so that the statistics are not dominated by properties of the largest values. The negative sign in the definition of I  
ensures that this variable takes positive values. The Aik will be referred to as the activity of gene i in tissue k, and Iik 
will be termed its intermittency.
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We emphasise that our parameters p and α are not intended to be an accurate description of the behaviour of a 
particular gene, because of they do not attempt to deal with the technical uncertainties in the single-cell mRNA 
counts. They are, rather, a means to make comparisons of the expression of different genes within the same data set.

Characterization of spiked-in sequences. There were 96 exogenous sequences (denoted by labels 
− xxERCC 000 , where xx is a two-digit number) ‘spiked’ into the FACS samples with known concentrations. 

These were used to give an indication of the reproducibility of the experimental procedure. Because the PCR 
process is unstable, it amplifies fluctuations, such as stochastic variation of counts or small differences in the 
experimental parameters between reaction cells. For this reason, it may be advantageous to ‘normalize’ the counts, 
replacing Mijk by 

∑
=′M

M
M (5)

ijk
ijk

i ijk

(that is, the normalized values are the fractions of the total count for a given cell represented by this gene, rather 
than the raw count). If the variation of the total count for a cell were primarily due to technical limitations of the 
experiment, it would be preferable to use these normalised counts.

An alternative scenario is that the total number of mRNA molecules in a cell may have large variations, which 
are not due to measurement errors. In this case the measurements would be distorted by applying the normaliza-
tion. We used the spike-in sequences to provide a test of whether it is appropriate to normalize the data. 
Fluctuations of the logarithm of the counts of spike-in sequences give an indication of the fractional errors. We 
compared the variance of Mln  (un-normalized) to the variance of ′Mln  (normalized counts) for the exogenous 
sequences, and found that the variance of the latter was considerably larger (approximately five time higher than 
the variance of the un-normalized counts). This was mainly due to cells with very low total counts, which cause 
the genes which are present to be greatly exaggerated if normalization is carried out. Even after eliminating cells 
in the lower quartile of the total count, the variance of ′Mln ( ) was still substantially greater than that of Mln ( ). 
For this reason, our statistics used the raw (un-normalized) count data.

Because a given exogenous sequence is spiked into all cells at the same concentration, it should, ideally, have 
zero intermittency. In practice, because of the sources of technical variability mentioned above, the spike-in 
sequences have non-zero and apparently random values of the intermittency Iik. We find few of the spike-ins 
which are present at higher concentrations (above 200 amol/µl) give values of the intermittency parameter 
greater than ln (5) (corresponding to a gene being active with probability less than = .p 0 2). Accordingly, we 
regard all genes with >I ln (5) as being intermittent.

While other groups have proposed quite complex schemes for normalizing single-cell mRNA counts17,18, the 
use of normalization for the purposes of the present study did not appear to be advantageous.

Statistical Observations and Interpretations
Gene activity correlations. In order to distinguish between two possible models for explaining small val-
ues of p, cases A and B discussed in the Introduction and illustrated in Fig. 1, we used the Tubula Muris dataset to 
examine correlation coefficients of the gene activities: these are 
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where the angle brackets denote an average over the set of cells in tissue type k. Figure 2 shows the probability 
density function (PDF) of the correlation coefficients for heart and liver tissue, using the droplet data (other tis-
sues give similar results). The distributions of both the positive and the negative correlation coefficients are dis-
played. Most of the correlation coefficients are extremely small and it appears implausible that these small 
correlation coefficients have any statistical significance. Including all gene pairs, positive and negative coefficients 
occurred in roughly equal numbers, but Fig. 2 shows that among the larger correlation coefficients, there is a 
much smaller proportion of negative coefficients.

We now argue that these data distinguish between cellular differentiation (case A) and intermittent transcrip-
tion (case B). Let us consider the consequences of assuming that small expression probabilities arise solely as a 
consequence of cellular differentiation, and assume that two different low-expression genes, labelled by index 
numbers i and ′i , are only expressed in different rare cell types, C1 and C2 respectively. This implies that if gene i is 
being expressed, so that >M 0ijk , then the cell is of type C1, so that gene ′i  is not expressed, implying that =′M 0i jk . 
Similarly, if >′M 0i jk  we are dealing with a cell of type C2, and =M 0ijk . If rarely expressed genes result from 
cellular differentiation, then pairs of rare genes would not usually be expressed in the same cell. If the genes with 
index i and ′i  are only expressed in different cell types, then ′M Mijk i jk  would be equal to zero, because the counts 
Mijk and ′Mi jk would never be non-zero in the same cell for different genes. This implies that the correlation coef-
ficient, given in Eq. (6) would be negative, and equal to µ µ− ′ik i k/σ σ ′ik i k. According to this cellular differentiation 
model, many values of 
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would be equal to −1 whenever genes i and ′i  are not expressed in the same type of cell. We infer that if cellular 
differentiation is the primary cause of observing genes with a low probability, then those coefficients ′Kii k,  which 
correspond to genes which are never expressed in the same cell would be close to −1. In Fig. 2 we display the PDF 
of the positive and negative values of ′Kii k,  for heart and liver droplet data. There are very few values of ′Kii k,  close 
to −1 indicating that very few genes are being expressed exclusively in different cell types.

More generally, if genes i and ′i  have a strong tendency to to be expressed in different cell types, without being 
strictly mutually exclusive, this will lead to the correlation coefficients ′Cii k,  being negative. However Fig. 2 indi-
cates that there are more positive correlation coefficients than negative ones. This strongly favors the intermittent 
transcription model.

Variation between tissue types. For each gene, we can also define the average of the activity and of the 
intermittency across different tissues, denoting these by Āi and Īi respectively (we used a simple average, rather 
than one weighted by the numbers of cells in each tissue). It is interesting to consider the fluctuations of activity 
and intermittency between different tissue types, described by the following quantities: 

∆ = − ∆ = − .¯ ¯A A A I I I, (8)ik ik i ik ik i

Figure 3 shows ‘heatmaps’ (that is, a 2d histogram color coded for the occupancy of the bins) showing the density 
of ∆I , ∆A across all combinations of tissues and genes (these are plotted separately for the two experimental 
protocols). The most significant feature is that the values of the activity fluctuations ∆A show substantially smaller 
dispersion than the variation of the intermittency, ∆I . The variances of the data points generating Fig. 3 are 

∆ = .AVar( ) 0 157 and ∆ = .IVar( ) 1 28 respectively for the droplet data, and ∆ = .AVar( ) 0 457 and 
∆ = .IVar( ) 1 02 for the FACS data. Another interesting feature is that there are two distinct sub-sets of genes: the 

bright spot at the center of the heatmap shows that many genes show little variation in their intermittency 
between different tissues, whereas others show a marked variation in their probability of expression. While both 
data sets show clear evidence that the variation of I  is greater than the variation of A, the heatmaps for the two 
data sets are quite different. The markedly lower value of the variance of ∆Aik in the droplet data is principally due 
to there being a significant number of genes with just one count in one cell in this data set.

Figure 2. Distribution of the magnitude of gene-activity correlation coefficients, C (Eq. (6)), and of the 
transformed correlation coefficients, K  (Eq. (7)), for both heart and liver cells. In each case we show the 
distributions for both positive and negative correlations. In cases where there is a significant correlation of gene 
activity, positive correlations are far more common than negative ones. If two genes were only active in different 
cells, their K  coefficient would be expected to equal −1. More generally, negative correlations are a signature of 
genes being expressed in different cells. The preponderance of positive correlation coefficients over negative 
ones strongly favors the intermittent transcription model.
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The ‘heatmap’ in Fig. 3 suggests that the peak transcription levels αi are intrinsic properties of the genes, unaf-
fected by cellular differentiation or by the mechanisms regulating transcription. It might be expected that, at least 
in some genes, regulation of activity would involve the interaction of transcription factor proteins which could 
modulate the rate of gene expression by partially blocking the transcription process. If this control molecule were 
binding and detaching from the DNA on a timescale shorter than the lifetime of mRNA, the gene activity A 
would differ between tissues. Figure 3, however, shows that differences in activity of a gene between different tis-
sues are (for most genes) small. The fact that many genes show evidence of intermittency implies that the times-
cales for turning transcription on and off are longer than the mRNA lifetime, which is typically taken to be at least 
one hour, and often considerably longer14. Our observations are, therefore, consistent with a picture of gene 
expression being regulated by switching transcription between ‘on’ and ‘off ’ states on a timescale with is longer 
than the mRNA lifetime.

Distribution of gene parameters. We investigated the PDF of the gene activity Aik, illustrated in Fig. 4, 
separately for each tissue, showing results for both experimental protocols. Because we have argued that the activ-
ity is approximately constant, we might expect that the distribution of the activity A will be very similar for differ-
ent tissues, and the results for the droplet case confirm this. In the case of the FACS data we see curves which are 
similar, but shifted horizontally, indicating that the overall activity is different in different tissues. Figure 4 also 
shows the result of applying a ‘normalization’ to make the tissue mean equal to the overall mean, in order to 
account for the fact that cells in different tissues may have different levels for physiological activity, implying that 
their mean total mRNA count may differ. With this tissue-dependent normalization, the distributions of A from 
different tissue types are very similar.

In the case of the distribution of the gene activities A, there are marked differences between the two different 
experimental protocols. In particular, in the FACS data there is a ‘tail’ of the distribution corresponding to genes 
which have very low activities, which is absent from the distribution of activities obtained from the droplet data. 
The lowest activity genes in the droplet data correspond to events where a single UMI is recorded in a single cell.

We also investigated the PDF of the average of the activity over different genes, Āi (we shall use an overbar to 
denote an average over tissue types). The tail of the PDF of Ā, illustrated in Fig. 5, can be approximated by an 
exponential function, µ− Āexp( ), for some coefficient µ, when Ā is large. The corresponding PDF of the activity 
parameter α = Aexp( ) is a power-law, of the form α α µ− +~P( ) ( 1) for large values of α. Figure 5 is consistent with 

αP( ) having a power-law form for both data sets, but the exponents are different: for the droplet data we have 
α α− .~P( ) 2 35, whereas α α− .~P( ) 2 65 for the FACS data. The data in Fig. 5 indicates that, while most genes have 

similar values of the activity parameter, there are a few which have much larger peak activity. We speculate that 
this can be explained by models in which transcription is impeded by slowly transcribing base sequences. Rare, 
highly active genes are those which happen not to have the slowly-transcribing sequences.

The PDF of the intermittency I  is illustrated in Fig. 6 separately for each of the tissue types. For each tissue, the 
PDF of I  shows a peak close to =I 0, corresponding to a sub-set of genes which are not intermittent (that is, 

Figure 3. ‘Heatmap’ showing the dispersion of the gene activity and intermittency, ∆A and ∆I , across different 
tissues. The activity of a gene is almost constant for all tissue types. Some genes show a marked dispersion of 
their intermittency, while others have an almost constant probability of being represented by an mRNA 
transcript. The histogram uses 400 rectangular bins in a ×20 20 lattice: (a) droplet data, (b) FACS data. These 
data indicate that the action of a gene in different tissues is primarily modulated by varying the probability p 
that the gene is expressed, while the peak activity α shows little variation across tissues.
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expressed with high probability). The distributions of the intermittency I  do differ between different tissues, in 
accord with the discussion in section sec: 3.1 above, but we can say that the PDF of Iln ( ) is very approximately 
constant over three decades, indicative of a very broad distribution of the intermittency. For the same tissue, the 
distributions of the intermittency are quite different for the two experimental protocols. This may reflect the 
greater sensitivity of the FACS experiments. Figure 6 indicates that a sub-set of genes (with ≈I 0) are transcribed 
continuously, while some others are transcribed with very low probability. The genes which are transcribed with 

Figure 4. Distribution of gene activity parameter Aik for different tissues, for both droplet and FACS data, 
showing that the activity parameter varies by orders of magnitude. The marked difference between the plots for 
the two datasets reflects the greater sensitivity of the FACS protocol. In the case of the FACS data we also exhibit 
the effect of normalizing to equalise the mean activity of different tissues.

Figure 5. Distribution of tissue-averaged gene activity Ā for droplet data and FACS data. The dashed lines are a 
guide to the eye. The lines in the droplet data plot has slope − .1 35, and those in the FACS plot have slopes +2.5 
and − .1 65. These data are consistent with the PDF of α having a power-law tail for large values of α.
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very low probability may be concerned with control functions. The regulatory processes in a cell are probably 
organized in a hierarchical manner. The fact that the PDF of I  is approximately uniform is interesting, and may be 
indicative of how the control of transcription is controlled.

It might be suspected that genes which have a regulatory function would be required to produce very little 
protein, and that they might therefore have a low activity parameter A, as well as having a high degree of intermit-
tency, I , This suggests that there would be a negative correlation between A and I . However, the evidence from 
Fig. 3 indicates that the expression of genes is regulated via modulation of I  rather than A, indicating that the 
latter quantity is an intrinsic attribute of the gene, and not susceptible to control by gene regulation networks. This 
argument would suggest that there may be no significant correlation between I  and A. We also examined the 
correlation coefficient ¯ ¯CAI between Ā and Ī , finding = − .¯ ¯C 0 235AI  for the droplet dataset and = − .¯ ¯C 0 129AI  for 
the FACS dataset, showing that genes with a high intermittency have a slight tendency to have low activity. The 
low degree of correlation between A and I  is consistent with the picture that the gene activity α is an intrinsic 
property of a gene.

Discussion
Our studies of gene correlations in single-cell mRNA counts for mouse cells distinguish between two possible 
reasons why some genes are rarely transcribed. They support the view that rarely observed genes are being tran-
scribed intermittently in most cells within a tissue, as opposed to being expressed continuously in specialized 
sub-populations of cells.

We proposed a characterization of intermittent transcription by assigning two parameters to every gene, 
namely a peak transcription level α and a probability of transcription, p. We found that both variables have a very 
wide range of values, calling for a statistical analysis in terms of logarithmic variables: the activity α=A ln  and 
the intermittency = −I pln .

The wide range of different tissues types in the Tabula Muris datasets enable us to gather evidence about the 
effects of the differentiation of tissues on the transcription process. Single-cell mRNA sequence data provide 
support for the view that the gene transcription rate α in the ‘on’-state is an intrinsic property of the genes, and 
that differentiation of tissues leads to variation in the probability p that transcription occurs. The timescale for 
turning genes on or off must be slow compared to the lifetime of mRNA molecules (otherwise the level of mRNA 
would remain nearly constant), but our data do not permit these timescales to be estimated reliably.

This picture of intermittent transcription is consistent with direct observations of ‘bursting’ transcription of 
genes in other systems. Our results are consistent with the hypothesis that intermittent transcription is ubiquitous 
in mammalian cells, extending to rarely expressed genes where it would be difficult to observe directly. Our 
approach is complementary to earlier studies11–13, which assign parameters to genes using a stochastic model, 
based upon telegraph-noise processes8–10. This stochastic model does not address why bursting processes appear 
to play an important role in systems such as mammalian cells, where homeostasis is an important principle. Our 
results do suggest reasons why intermittent transcription should be ubiquitous. Intermittent transcription might 
be used by cells as a matter of necessity, because our results on the constancy of α across different tissue types 
indicate that cells only have ‘on-off ’ control, rather than a continuously variable transcription rate. However, 
beyond being a matter of necessity, intermittent transcription may offer definite advantages over the cellular dif-
ferentiation model. It makes sense to ‘stage’ operations so that proteins for specific purposes are produced only 
after their interaction partners are in place. If all the components of complex cellular systems were produced all 
the time then they would have difficulty finding the complementary sites with which they should bind. Limits on 
the rate of ribosomal translation imply that a cell cannot be efficiently performing all of its functions all of the 
time. These arguments about using intermittent transcription to organize the efficient operation of a cell would 
suggest that, rather than modeling bursting as a purely stochastic phenomenon, we should look for a model of 
bursting transcription which is determined by a complex dynamical system which can turn genes on and off in a 
time-ordered sequence.

Figure 6. Distributions of gene intermittency parameter I  by tissue type, for both droplet and FACS data.
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Finally, we remark that studies of splicing of mRNA should be capable of yielding additional informa-
tion about the timescales of the intermittent gene transcription, by an extension of the approach described by 
LaManno et al.19.

Appendix
Here we discuss the relationship between the parameters of the stochastic model for gene activity11–13, and our 
parameters p and α, defined by Eqs. (2) and (3).

The stochastic model considers the DNA of a gene to have two states: A (active) and I (inactive). Conversion 
between these states is a telegraph noise process, with rate constants kon (for the process →I A) and koff  (for 

→A I). The A state is transcribed to make mRNA, with rate constant ktr, which is subsequently destroyed at a 
rate kdeg. If M  is the population of the mRNA the steady-state mean and variance of this count are given by 
Peccoud and Ycart7: in our notation 
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+

= = + −
+ +
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k k
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p M M p M p p M
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Note that p0 is the probability that the DNA is in the active (A) state, and M0 is the mean count that would be 
obtained if the DNA were always in the A state.

Our own parameters p and α, defined by Eqs. (2) and (3), are intended to provide a simple estimate of the 
probability that a gene is active, and of its peak activity level, when p 1. We should consider the circumstances 
under which p and α are approximately equal to the parameters p0 and M0 defined in (10). Because we exclude 
genes with very low counts, we may assume that M 10 , and we have then 
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When 
p 10  and the degradation rate kdeg satisfies +k k kdeg on off , we find that our parameters p and α 

can indeed be identified with the parameters p0 and M0 of the stochastic model.
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