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Abstract
The ‘Hofstadter butterfly’, a plot of the spectrum of an electron in a two-
dimensional periodic potential with a uniform magnetic field, contains subsets 
which resemble small, distorted images of the entire plot. We show how 
the sizes of these sub-images are determined, and calculate scaling factors 
describing their self-similar nesting, revealing an un-expected simplicity in 
the fractal structure of the spectrum. We also characterise semi-infinite chains 
of sub-images, showing one end of the chain is a result of gap closure, and the 
other end is at an accumulation point.

Keywords: Hofstadter butterfly, Harper equation, Chern numbers

(Some figures may appear in colour only in the online journal)

1.  Introduction

The ‘Hofstadter butterfly’ [1] is a remarkable visual representation of the spectrum of Harper’s 
equation [2, 3], which is a model for Bloch electrons in a magnetic field (treated as spinless, 
independent particles). The butterfly plot, figure 1, shows allowed energy E plotted vertically, 
as a function of a parameter φ which specifies the number of flux quanta per unit cell. The 
energies are plotted for values φ which are rational numbers p /q. The allowed energies consist 
of q bands (with the central pair touching when q is even). As remarked by Hofstadter [1], 
the plot contains numerous smaller, distorted images of the whole pattern within it, largely 
confirming a prescient analysis of the problem made by Azbel’ [4]. Three of these distorted 
sub–images are highlighted in figure 1. The edges of these sub-images occur at rational values 
of φ, denoted by φR and φL  (respectively, right and left edges), and as described below, the 
locations of these edges follow simple number theoretical rules which are related [5] to the 
construction of the Farey tree [6].
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Figure 1 also illustrates two ways in which the sub-images may be related to each other. 
One may be nested inside the other, such as the red sub-image nesting inside the blue one. 
These nesting relationships can be repeated recursively, and used to characterise the extent to 
which the pattern is self-similar. Another possibility is for sub-images to share a common ver-
tical edge, such as the green sub-image sharing an edge with the blue one. The sub-images can 
be joined in this way to create chains. The successive sub-images in a chain become smaller 
as we follow the chain in one direction, and we shall see that the chains are semi-infinite, end-
ing at an accumulation point. We find that the other end of the chain is a result of gaps in the 
spectrum closing.

This paper will describe the rules for determining which sub-sets of the butterfly pattern 
can be classed as sub-images. We will show how these lead to a variety of results about con-
structing nests and chains of sub-images, including the calculation of scaling factors quantify-
ing the self-similarity of Hofstadter’s plot.

The tool for this investigation will be a renormalisation-group analysis of the spectrum, 
originally described in [7] (a more elegant formulation was subsequently made possi-
ble using generalised Wannier functions [8, 9]). Section 2 describes the principle result on 

Figure 1.  Illustrating Hofstadter’s butterfly, and three sub-images. Because the red sub-
image is nested inside the blue one, in that the red sub-image has the same relationship 
to the blue one as the blue sub-image has to the whole plot, this nesting relationship can 
be made recursive, producing an infinite sequence of nested sub-images. The green and 
blue sub-images form adjacent links in a chain. Panel (b) and (c) show the blowups of the 
blue and the red part of (a). After repeated application of this nesting, the approximate 
similarity between the red and the blue approaches an exactly self-similar structure.
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renormalisation of φ from [7] which is key to obtaining our results, together with new form
ulae for renormalisation of the quantised Hall conductance integers.

Section 3 will discuss how to label a sub-image by specifying one of its edges, and how to 
determine the flux value φ for its other edge and for its centre. Recently, based upon numerical 
investigations, it has been proposed that these sub-images may be generated from a partition of 
the plot which is closely related to the Farey tree construction, and to other number-theoretical 
constructions, including Ford circles, integral Apollonian packings [5, 10] and Pythagorean 
triplets [11]. The results in section 3 explain the connection of the sub-images to the Farey tree.

Section 4 will consider how sub-images can be nested in a self-similar way, leading to 
exact expressions for scaling factors describing self-similar nesting. Some of these results 
were previously obtained by empirical observations, guided by observations of connections to 
the Farey tree [5, 10]. Section 5 discusses the construction of chains of sub-images. We show 
that they are infinite in one direction, ending in an accumulation point at a rational value of φ, 
and discuss how the chains terminate at the other end due to closure of gaps in the spectrum. 
Our conclusions are confirmed by numerical illustrations throughout. Finally section 6 pre-
sents a summary our findings.

The Hofstadter butterfly plot has stimulated investigations which use a vast range of differ-
ent methods, for example [12, 13] and [14] are significant contributions which use very differ-
ent approaches from our work. There is an extensive survey of the literature in [5]. However, 
we are aware of one other study which emphasises making a partition of the Hofstadter but-
terfly plot: Osadchy and Avron [15] treat the Hofstadter plot as a phase-diagram, where the 
phases are labelled by quantum Hall conductances. Their approach is complementary to our 
own, in that their partition is based upon labelling gaps in the spectrum, rather than partition-
ing the spectrum itself.

2.  Results of renormalisation group analysis

Although many aspects of the Hofstadter butterfly plot [1] are singularly discontinuous, the 
gaps in the spectrum of the Harper equation Hamiltonian Ĥ(φ) are stable features, which 
are continuous under variation of the flux parameter φ. The renormalisation-group method 
exploits this observation, by relating the complex spectrum at a typical value of φ to the much 
simpler spectrum at a nearby rational value, φ = p0/q0.

Inspection of the plot shows that, when φ is close to the rational value φ0 = p0/q0, the 
spectrum clusters into q0 regions, which correspond with the the q0 bands of the spectrum 
when φ = p0/q0. In [7], it is shown that for small values of φ− φ0, each of the q0 bands is 
transformed into the spectrum of a renormalised effective Hamiltonian operator Ĥ′(φ′), which 
has a structure which is analogous to the original problem, with a renormalised value of φ, 
denoted by φ′. The transformation is a renormalisation group because it eliminates degrees of 
freedom: the transformed effective Hamiltonian only describes the spectrum of one of q0 bands 
in the spectrum of the original Hamiltonian. In this paper we shall usually be concerned with 
cases where φ is also a rational, equal to p /q. In this case the renormalised Hamiltonian also 
has a rational value of the flux parameter: φ′ = p′/q′, where p′ and q′ are integers. The rela-
tionship between between the original Hamiltonian Ĥ(φ) and the renormalised Hamiltonian 
Ĥ′(φ′) is summarised in figure 2.

The Harper equation can be viewed as a model for either the perturbation of a Landau level 
by a periodic potential [16, 17], or as a model for a Bloch band perturbed by a magnetic field 
[2, 18]. In the former case φ is the ratio of the area of the flux quantum to the area A of the 
unit cell, that is φ = h/eBA, and in the latter case φ is the reciprocal of this quantity. We shall 
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adopt the perturbed Landau level picture for the discussion in this paper. The total density of 
states in the Landau level is eB/h. When φ is rational, the q different bands of the spectrum 
each has a quantised Hall conductance

σ(k) =
e2

h
M(k)� (1)

where M(k) is the quantised Hall conductance integer of the band with index k [19, 20]. The 
total Hall conductance of a single Landau level is σ(LL) = e2/h, so that

q∑
k=1

M(k) = 1 .� (2)

M0

M M ′

Ĥ(p0/q0) Ĥ(p/q) Ĥ ′(p′/q′)

Figure 2.  When φ is close to φ0 = p0/q0, the spectrum of the Hamiltonian Ĥ(φ) 
divides into q0 bands. The renormalisation-group method constructs an effective 
Hamiltonian Ĥ′, such that Ĥ′(φ′) has a spectrum which is equal to the subset of the 
spectrum of Ĥ  contained in one of these bands. In this case we construct Ĥ′(φ′) for a 
band (highlighted in red) having Hall conductance integer M0. We are interested in the 
case where φ = p/q  (and consequently φ′ = p′/q′) are rational numbers, so the spectra 
are sets of bands. The band highlighted in blue has Hall conductance integer M, and it 
corresponds to a band of Ĥ′(φ′) (highligted in green) with Hall conductance M′.

I I Satija and M Wilkinson﻿J. Phys. A: Math. Theor. 53 (2020) 085703
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2.1.  Renormalisation of φ

In [7] it is shown that the renormalised effective Hamiltonian Ĥ′ has a renormalised value of 
the flux parameter φ which is given by

φ′ =
q0φ− p0

N0φ+ M0
� (3)

where M0 is the quantised Hall conductance integer of the band and N0 is another integer, 
satisfying

1 = q0M0 + p0N0 .� (4)

The structure of the renormalised Hamiltonian is specified by a set of Fourier coefficients, 
H′

nm [7, 21]. The evaluation of these coefficients is complicated, but analytical approximations 
are available when φ is small [22, 23], and when φ′ is small [21]. For the purposes of this 
paper, however, we only use the fact that the renormalised Hamiltonian has a spectrum which 
closely resembles that of the original Hamiltonian, for a different value of φ, and with the 
energies subjected to a linear transformation, as discussed in [21–23].

2.2.  Renormalisation of M

Because the expression for renormalisation of φ (equation (3)) depends upon the values of 
the Hall conductance integers M0 and N0, if we are to iterate the transformation our analysis 
requires information about how these integers change as the renormalisation scheme is iter-
ated. In general the Hall conductance integers M can be determined by numerically comput-
ing the Chern index of the band, as described by Thouless et al [19] (see also [20]), but this 
is cumbersome and un-informative. Instead, the recursive structure of the spectrum can be 
associated with a recursive method to compute the Hall conductance M of a given band. The 
argument was not presented in the earlier works [7–9] describing the renormalisation scheme.

Specifically, we wish to determine the Hall conductance integer M of a given band when 
φ = p/q , such as the one highlighted in blue in figure 2. We shall assume that this band lies 
within a cluster of bands corresponding to a band of the spectrum when φ = p0/q0, having 
Hall conductance integer M0. This cluster of bands is described by an effective Hamiltonian 
Ĥ′ with q′ bands, and the band highlighted in green corresponds to a band of this Hamiltonian, 
with Hall integer M′. In order to probe the structure of the spectrum by recursive application 
of the renormalisation group transformation, it would be useful to be able to express the inte-
ger M in terms of M0, M′ and possibly other integers.

This can be achieved using the Strěda formula [24], according to which the Hall conduct-
ance when the Fermi level is in a gap is

σ = e
∂N
∂B

� (5)

where N  is the number of filled states per unit area below the gap. We chose to interpret the 
Harper equation as representing the perturbation of a Landau level by a periodic potential, 
which has electron density eB/h. Then the quantity φ is the ratio of the area of a flux quantum 
to the area A of the unit cell: φ = h/eBA. If the filling fraction of the states below the band 
gap is ν , we then find that

σ =
e2

h

[
ν − φ

∂ν

∂φ

]
.� (6)
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The ‘gap-labelling theorem’ (Claro and Wannier [25]) implies that

ν = N̄φ+ M̄� (7)

for some integers N̄  and M̄. Substitution of (7) into (6) shows that σ = M̄e2/h, so that M̄ is 
the Hall conductance integer. If the spectrum is separated into several bands, we can write the 
filling fraction for each band in the same form as (7):

∆ν = Nφ+ M� (8)

where M is the quantised Hall conductance integer associated with a band, and N is a comple-
mentary integer.

We assume that it is possible to determine the Hall conductance integers when the denomi-
nator q of the flux ratio φ = p/q  is small. Let us approximate φ by φ0 = p0/q0, where q0 
is sufficiently small that we can readily determine the Hall integers M0, for all of its bands, 
together with the conjugate integers N0 satisfying p0N0 + q0M0 = 1. We implement the renor-
malisation procedure of [7] using the rational p0/q0 as the base case. We shall determine the 
Hall conductance integer from the spectrum alone by using the Strěda formula in the form (6).

The band for which we wish to determine the Hall conductance integer is in a cluster of 
bands for the φ0 commensurability. The filling fraction of this cluster is denoted by ∆ν0. The 
band that we are interested in lies within this cluster, and its filling fraction relative to all of 
the states of the cluster is ∆ν′. The overall filling fraction of the sub-band, which will be used 
to determine the Hall conductance integer, is

Figure 3.  Illustrating three generations of two distinct nested sequences of sub-images 
that appear in the blue sub-image from figure 1. The values of φj = pj/qj at the left-hand 
edge are predicted using equations (22) and (23): the values of the coefficients for this 
example are discussed in section 4.4. The values of φ at the right-hand edge and at the 
centre of each sub-image are then obtained using equations (16) and (18), respectively.

I I Satija and M Wilkinson﻿J. Phys. A: Math. Theor. 53 (2020) 085703



7

∆ν(φ) = ∆ν0 ∆ν′ .� (9)

The filling fractions are obtained by applying (8) to the original problem and to the renor-
malised problem in turn. The renormalised Hamiltonian has commensurability φ′ = p′/q′, and 
the band that we wish to analyse corresponds to a sub-band of the renormalised Hamiltonian, 
with gap-labelling integers N′ and M′. The filling factors in (9) are, therefore,

∆ν0 = N0φ+ M0

∆ν′ = N′φ′ + M′ .
� (10)

The renormalised commensurability is given by equation (3). Substituting (10) into (9) and 
using (3) yields

∆ν = (q0N′ + N0M′)φ+ (M0M′ − p0N′) .� (11)

Comparison with (8) shows that the equations for renormalisation of the Hall conductance 
integers are

M = M0M′ − p0N′, N = N0M′ + q0N′ .� (12)

Note that these equations describe the quantised Hall conductance of a single band. This is 
sufficient for the analysis of the fine-structure of the spectrum which is pursued in this paper. 
For applications in which it is proposed to measure the Hall conductance, however, the Chern 
numbers of all of the occupied bands would have to be summed.

3.  Labelling and construction of sub-images: relation to Farey trees

Note that, when φ = 0 or when φ = 1, the spectrum of the Harper equation is a single interval 
(which happens to be [−4, 4]). This indicates that we can define ‘sub-images’ by identifying 
one edge with a single band of the spectrum, bounded by a gap on either side. For example, 
we may take one particular band of the spectrum when φ0 = p0/q0 as forming the left-hand 
edge of the sub-image. As we increase φ away from its initial value of φL = pL/qR, the spec-
trum becomes very complex, but the gaps which separate the sub-image from the rest of the 
spectrum persist. We may find that when φ reaches another rational value, φR = pR/qR , the 
complex spectrum re-forms into a single band, with the same open gaps above and below. 
Furthermore, the structure of the sub-spectrum in the region between φL  and φR is well-
approximated by a distorted version of the original Hofstadter butterfly.

In order to describe the sub-images we first need a convention for labelling them. We 
label the sub-image by specifying an energy band that forms either the left-hand or the right-
hand edge. Thus a sub-image is specified using a rational number, either φL = pL/qL or 
φR = pR/qR , depending on whether we construct the sub-image by starting from its left or 
right edge, respectively. We must also specify the index of the band (labelling them consecu-
tively in increasing energy). The band index will be denoted by k. According to this conven-
tion, the sub-images highlighted in figure 1, and the values of their Hall conductance integers 
N, M, are:

blue : φL = 1/3, k = 3, M = 0, N = 1
red : φL = 3/8, k = 8, M = −1, N = 3

green : φL = 1/4, k = 4, M = 0, N = 1 .
� (13)

I I Satija and M Wilkinson﻿J. Phys. A: Math. Theor. 53 (2020) 085703
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In these cases the corresponding values of the opposite edges of the sub-images are, 
respectively,

φR = 1/2, φR = 2/5, φR = 1/3 .� (14)

Given the value of φL , we determine φR by the requirement that the renormalised value of φ 
is equal to unity at the opposite edge. Inverting (3) we obtain

φ =
p0 + M0φ

′

q0 − N0φ′ .� (15)

If we start at φL  (the left-hand edge), the other edge of the sub-image is obtained by setting 
φ′ = 1, so that on setting φ0 = φL, equation (15) implies that φR is given by

φR ≡ pR

qR
=

pL + M0

qL − N0
.� (16)

The centre of the sub-image between φL  and φR is at a rational value φc = pc/qc. The centre 
of the sub-image is defined by setting φ′ = 1

2, so that φc is given by

φc ≡
pc

qc
=

M0 + 2pL

2qL − N0
.� (17)

Thus equations (16) and (17) show that φc is not the arithmetic mean of φL  and φR, but rather

pc

qc
=

pL + pR

qL + qR
.� (18)

This is the ‘Farey sum’ of the two edge values. Furthermore the equations (16) and (18) imply 
that

|qLpR − qRpL| = 1, |qLpc − qcpL| = 1, |qRpc − qcpR| = 1 .� (19)

This means that the triplets [ pL
qL

, pc
qc

, pR
qR
] which are the flux values at the edges and at the centres 

of the sub-images are ‘neighbours’ in the Farey tree. Such triplets of rational numbers are 
also known as friendly numbers. Empirical evidence supporting (18) and (19) was previously 
discussed in [5, 10]. Figure 3 illustrates the application of equations (16) and (18).

4.  Nesting of sub-images

4.1.  Recursive nesting

The sub-images in the Hofstadter butterfly plot can be nested recursively. Here we consider 
how to describe and quantify this. The nested sub-images converge to a fixed point, and we 
can determine exact expressions for the scaling factors describing the ratio of size of different 
levels for the hierarchy. The fact that exact expressions for the scaling ratios can be determined 
is a little surprising. The crucial ingredient is that the scaling factors do not depend upon the 
structure of the Hamiltonian, only upon the explicit expressions for renormalisation of φ and 
of the Hall integers, M and N.

We consider the following recursion. Pick a left band edge specifying a sub-image. This 
is described by integers pL

0 , qL
0 , M0 and N0. We then consider a next-generation sub-image, 

which is obtained by picking a sub-image with the ‘internal’ coordinate of the left band edge 
at φ′ = p̃L/q̃L, with Hall conductance integers of the renormalised Hamiltonian equal to M̃ 
and Ñ . For example, in figure 1, the blue sub-image corresponds to pL

0 = 1, qL
0 = 3, M0  =  0, 

I I Satija and M Wilkinson﻿J. Phys. A: Math. Theor. 53 (2020) 085703



9

N0  =  1, and the red sub-image nested inside corresponds to the same values (that is p̃L = 1, 
q̃L = 3, M̃ = 0, Ñ = 1).

We can then repeat this construction recursively, so that at stage j , the left band edge is 
φL

j = pL
j /qL

j , and the Hall integers are Mj  and Nj . At the next stage of the iteration, we deter-
mine a new band edge with its left hand edge at a fixed value of the renormalised flux param
eter, φ′, equal to p̃L/q̃L. The iteration of the φL

j  is therefore given by applying (15), replacing 
the φL

0 = pL
0/qL

0  with the flux ratio of the left-hand band edge at level j  of the nesting:

φL
j+1 =

pL
j+1

qL
j+1

=
pL

j q̃L + Mjp̃L

qL
j q̃L − Njp̃L .� (20)

The iteration of the Hall integers is obtained from (12): changing to the notation of the current 
application, replacing (M, N) with (Mj, Nj), these read

Mj+1 = MjM̃ − pL
j Ñ, Nj+1 = NjM̃ + qL

j Ñ .� (21)

These recursion equations describing the left-hand edges of the sub-images are a linear 

system of the form xL
j+1 = AL xL

j :



pL
j+1

Mj+1

qL
j+1

Nj+1


 = AL




pL
j

Mj

qL
j

Nj


� (22)

where

AL =




q̃L p̃L 0 0
−Ñ M̃ 0 0

0 0 q̃L −p̃L

0 0 Ñ M̃


 .� (23)

This representation is convenient because the left hand edges of the nested bands are rep-
resented by a vector xL

j = ( pL
j , Mj, qL

j , Nj). We observe that equations (22) and (23) can be 
expressed in a more elegant and symmetrical form using 2 × 2 matrices:

BL
j =

(
qL

j pL
j

−Nj Mj

)
, CL =

(
q̃L p̃L

−Ñ M̃

)
.� (24)

Note that, as a consequence of (4), these matrices are unimodular: det(BL
j ) = det(CL) = 1. 

With these definitions, equations (22) and (23) are equivalent to a matrix multiplication process:

BL
j+1 = CLBL

j .� (25)

Because any unimodular 2 × 2 matrix C satisfies C2 + I = tr(C)C (where I is the identity 
matrix), equation (25) can be rewritten as a set of four two-term recursions in which the vari-
ables ( pj, Mj, qj, Nj) are decoupled:

sj+2 = (q̃L + M̃)sj+1 − sj� (26)

where sj  stands for p j , Mj , qj , Nj .

I I Satija and M Wilkinson﻿J. Phys. A: Math. Theor. 53 (2020) 085703
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4.2.  Nesting relations for right-hand edges

Instead of setting up a recursion for the left-hand edges of the nested sub-images, we could 
also set up a recursion for their right-hand edges. If the right hand edge of the internally nested 
sub-image is at a renormalised flux value of φ̃R, then equation (16) gives

φ̃R ≡ p̃R

q̃R =
p̃L + M̃
q̃L − Ñ

.� (27)

The equations describing the nesting need to be modified, because the internal or renormalised 
coordinate of a sub-image is understood to be φ′ = 0 on the left-hand edge and φ′ = 1 on the 
right-hand edge. Equation (20) is replaced by

φR
j+1 =

pR
j+1

qR
j+1

=
pL

j q̃R + Mjp̃R

qL
j q̃R − Njp̃R =

( pR
j − Mj)q̃R + Mjp̃R

(qR
j + Nj)q̃R − Njp̃R� (28)

where the final step uses (16). Equation (21) also needs to be modified. For a sub-image based 
upon a band with left- and right-hand edges pL

0/qR
0 , pR

0 /qR
0  and with Hall conductance integers 

M0, N0, we have

φ′ =
qL

0φ− pL
0

N0φ+ M0
=

(qR
0 + N0)φ− ( pR

0 − M0)

N0φ+ M0
.� (29)

If we replace (3) with this expression, the argument in section 2.2 leading to equation (12) 
now gives

Mj+1 = M̃Mj − Ñ( pR
j − Mj), Nj+1 = M̃Nj + Ñ(qR

j + Nj) .� (30)

The right-hand edges are described by an iteration in the form xR
j+1 = AR xR

j  where 
xR

j = ( pR
j , Mj, qR

j , Nj) and

AR =




q̃R p̃R − q̃R 0 0
−Ñ M̃ + Ñ 0 0

0 0 q̃R −(p̃R − q̃R)

0 0 Ñ M̃ + Ñ


 .� (31)

Alternatively, we can write the iteration in the form of equations  (24) and (25), with CL 
replaced by

CR =

(
q̃R p̃R − q̃R

−Ñ M̃ + Ñ

)
.� (32)

4.3.  Scaling factors

The eigenvalues of the matrix (23) are two doubly-degenerate pairs. Noting equation (4) (in 
the form 1 = q̃M̃ + p̃Ñ ), they are equal to

λ± =
(q̃L + M̃)

2
±

√(
q̃L + M̃

2

)2

− 1 .� (33)

The values of p̃L, q̃L and M̃ describe how the nested sequences of sub-images are constructed. 
We consider a band with left edge φL

0 = pL
0/qL

0 , with Hall conductance M0, and its corre
sponding sub-image. We can recursively construct sub-images nested within this one, with 
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an ‘internal’ or renormalised flux at the left edge equal to φ′ = p̃L/q̃L. The Hall conductance 
integers of the renormalised Hamiltonian are M̃, Ñ . In terms of the full-scale Hofstadter but-
terfly plot, the left edge of the new sub-image is φL

1 = pL
1/qL

1 . We can then recursively con-
struct further sub-images in the same manner, with their left edges at flux values φL

j = pL
j /qL

j . 
The φL

j  may be obtained by iteration of (22) with initial values xL
0 = ( pL

0 , M0, qL
0 , N0), and 

the corresponding right-hand edges are obtained using (16). The bands constructed by itera-
tion of this procedure converge towards a point in the original Hofstadter butterfly plot as 
the transformation is iterated. The sizes of the sub-images decrease with each iteration: their 
horizontal extent is

∆φj = |φL
j − φR

j | =
∣∣∣∣
pL

j qR
j − qL

j pR
j

qL
j qR

j

∣∣∣∣ .� (34)

Using (19), we obtain

∆φj =
1

qL
j qR

j
.� (35)

As j → ∞ the solutions of (22) are determined by the eigenvalues of AL which have the larg-
est magnitude. These will be denoted by λ∗. Note that, because q̃R = q̃L − Ñ , the matrices 
AL and AR have the same eigenvalues. The scaling ratio between the sizes of successive sub-
images therefore approaches a limit

lim
j→∞

∆φj+1

∆φj
=

1
λ2
∗

� (36)

where λ∗ is the larger in magnitude of the λ± obtained from equation (33). The values of Mj  
and Nj  also grow under iteration of the map (22): in this case the ratio of successive values is 
asymptotic to the eigenvalue with the largest magnitude, λ∗: we have

lim
j→∞

Mj+1

Mj
= lim

j→∞

Nj+1

Nj
= lim

j→∞

pX
j+1

pX
j

= lim
j→∞

qX
j+1

qX
j

= λ∗� (37)

where, X may stand for L, c or R, so that φX
j = pX

j /qX
j  is the flux parameter at, respectively, the 

left hand edge, the centre, or the right-hand edge of the sub-image after j  iterations. Therefore, 
as we zoom in the (asymptotically) self-similar sequence of sub-images, their flux intervals 
shrink by the scaling factor λ2

∗. The topological integers (Mj, Nj) and the numerator pX
j  and 

the denominator qX
j  of the rational flux φX

j =
pX

j

qX
j
 (with X = L, R, c) grow by the scaling factor 

λ∗. We will refer to λ∗ as the scaling factor for the set of nested sub-images. Equations (36) 
and (37) show that λ∗, which is a simple function of the integer q̃L + M̃ , characterises many 
aspects of the self-similarities which are contained in the butterfly plot.

4.4.  Examples

Figure 3 shows two examples of nested sequences of sub-images. We consider an initial sub-
image, the one shown in blue in figure 1, with φL = 1/3, k  =  3, (for which M  =  0, N  =  1, and 
hence φR = 1/2), and then build two sequences of nested sub-images of this.

In the upper panels of figure 3 we follow a nested sequence of sub-images of the red sub-
image of figure 1, with φL = 1/3, k  =  3 (for which M  =  0, N  =  1, implying φR = 1/2) , which 
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has the same relation to the first sub-image as that sub-image has to the entire Hofstadter plot. 
We iterate equations (22) and (23) with the initial conditions

xL
0 = ( pL

0 , M0, qL
0 , N0) = (1, 0, 3, 1) .� (38)

We then use the following values in equation (23) to determine the matrix AL:

(p̃L, M̃, q̃L, Ñ) = (1, 0, 3, 1) .� (39)

Iteration of equation (23) then gives the following for the first three iterates:

xL
1 = ( pL

1 , M1, qL
1 , N1) = (3,−1, 8, 3)

xL
2 = ( pL

2 , M2, qL
2 , N2) = (8,−3, 21, 8)

xL
3 = ( pL

3 , M3, qL
3 , N3) = (21,−8, 55, 21) .� (40)

The corresponding right-hand edges and centre points are then obtained using the values of Mj  
and Nj  in equation (44), together with equations (16) and (18). We find the following values 
for the three generations:

First generation : φL = 3/8, φR = 2/5, φc = 5/13

Second generation : φL = 8/21, φR = 5/13, φc = 13/34

Third generation : φL = 21/55, φR = 13/34, φc = 55/89 .� (41)

In this example, eigenvalues are λ± = (3 ±
√

5)/2, so that the ratio of the sizes of the nested 
sub-images approaches ((3 +

√
5)/2)2 = (7 + 3

√
5)/2.

In the lower sequence of figure 3 we follow a nested sequence of sub-images of the blue 
sub-image from figure 1, this time based upon a nested sequence of sub-images for which the 
‘internal’ or renormalised coordinate of the left-hand edge is φ̃ = 3/5, with band index k  =  3. 
For this band the Hall conductance integers are M̃ = −1, Ñ = 2, implying that the right-hand 
edge has internal coordinate φ̃R = 2/3. Accordingly, we iterate equations (22) and (23) with 
the same initial conditions

xL
0 = ( pL

0 , M0, qL
0 , N0) = (1, 0, 3, 1)� (42)

and we use the following values in equation (23) to determine the matrix AL:

(p̃L, M̃, q̃L, Ñ) = (3,−1, 5, 2) .� (43)

Iteration of equation (23) then gives the following for the first three iterates:

xL
1 = ( pL

1 , M1, qL
1 , N1) = (5,−2, 12, 5)

xL
2 = ( pL

2 , M2, qL
2 , N2) = (19,−8, 45, 19)

xL
3 = ( pL

3 , M3, qL
3 , N3) = (71,−30, 168, 71) .� (44)

From these vectors we extract the following values for the left-hand edges φL
j  of a nested 

sequence of sub-images: φL
1 = 5/12, φL

2 = 19/45, φL
3 = 71/168, . . .. We predict that there 

will be generations of nested sub-images with the following edges and centres
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First generation : φL = 1/3, φR = 1/2, φc = 2/5

Second generation : φL = 5/12, φR = 3/7, φc = 8/21

Third generation : φL = 19/45, φR = 11/26, φc = 30/71 .� (45)

In this case the eigenvalues are λ± = 2 ±
√

3, so that the ratio of the sizes of the nested sub-
images approaches (2 +

√
3)2 = 7 + 4

√
3.

4.5.  A simplified recursion

The recursions (22) and (23) describing the nesting of sub-images are coupled equations in 
φL

j  and the Hall conductances integers, Mj  and Nj . We noticed that, in the special case where 
we the parameters of the initial sub-images and those of the subsequent nesting are the same 
(that is, when {p̃L, q̃L, M̃, Ñ} = { pL

0 , qL
0 , M0, N0}), the flux parameters φj satisfy a very simple 

recursion, which does not require information about the Hall conductance integers Mj  and Nj . 
In the special case where

xL
0 = ( pL

0 , M0, qL
0 , N0) = (p̃L, M̃, q̃L, Ñ)� (46)

we find that the recursion of the φL
j  is given by

φj+1 =
p̃ + M̃φj

q̃ − Ñφj
.� (47)

This is simpler than (20) because it uses the fixed Hall conductances M̃ and Ñ , rather than Mj  
and Nj , which depend of the index of the iteration, j . The form of equation (47) bears a marked 
similarity to (15), but we cannot deduce it directly from that equation. Instead we must show 
how it arises from equations (22) and (23) in the special case where (46) is satisfied.

We can obtain φL
j = pL

j /qL
j  from the first and third coefficients of xL

j = (AL) jxL
0 . Note that, 

in the special case that we consider,

ALxL
0 = (q̃L + M̃)xL

0 − y0, y0 = (0, 1, 1, 0), ALy0 = x0� (48)

and hence deduce that

xL
j ≡ (AL) jxL

0 = αjxL
0 + βjy0 .� (49)

Table 1.  Four infinite chains of sub-images (labelled by C pcl
qcl

→ pac
qac

,k±, where pcl
qcl

 is the 
open edge, and pac

qac
 is the accumulation point, attaching to band k, at the the upper, +, 

or lower edge, −, edge). We list the flux parameter of one edge of a sub-image, pj/qj, 
with j   =  0 giving the closed edge and j = 1, 2, . . . giving the open edges, the values of 
the Hall integers for the chain, (M0, N0), and the colour used to highlight the chain in 
figure 4.

C pcl
qcl

→ pac
qac

,k±
pj

qj
   (M0, N0)   Colour

C 1
2 →0,1+   1

j+1   (0, 1)   Red

C0→ 1
2 ,1+,2−   j−1

2j−1   (1,−2)   Blue

C 1
3 →

1
4 ,2+,3−   1+j

3+4j   (−1, 4)   Green

C 1
4 →

1
3 ,2+   j+1

3j+4   (1,−3)   Purple
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Using (48) we find that the coefficients αj, βj satisfy
(
αj+1

βj+1

)
= a

(
αj

βj

)
, a =

(
q̃ + M̃ 1
−1 0

)
.� (50)

From (48) and (49) we deduce that pj = p̃αj  and qj = q̃αj + βj, so that (50) can be expressed 
as a recursion of { pL

j , qL
j }, in the form

(
pL

j+1

qL
j+1

)
=

(
M̃ p̃
−Ñ q̃

)(
pL

j

qL
j

)
.� (51)

Figure 4.  Illustrating examples of four chains (colour coded in red, blue, green and 
purple) of sub-images, specified in table 1. Exploiting left-right symmetry of the graph, 
chains are shown in two ways. On the left, each member of the chain is shown with a dot 
at the centre of the sub-image and on the right, the sub-images are shown in the boxes. 
The ends of the chains are specified by the accumulation points and the closed edges 
listed in table 1. For example, the purple chain lies between the third band at φ = 1/4 
(which closes on its lower edge) and an accumulation point at φ = 1/3.
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Equation (47) then follows immediately. It is easy to check that equation (47) reproduces the 
left-hand band edges in the upper panel of figure 3. It does not reproduce the values of φL

j  for 
the lower panel, because these do not satisfy (46).

In the special case where (46) applies, we can determine the accumulation point φ∗ of the 
nesting process as the fixed point of equation (47). Setting φj+1 = φj = φ∗, we find

φ∗ =
1

2Ñ

[
(q̃ − M̃)±

√
(q̃ + M̃)2 − 4

]
� (52)

(with the sign chosen so that 0 < φ∗ < 1). We remark that the sequences φL
j , φR

j  bracket this 
accumulation point, and that φc

j  is another sequence that converges towards it. In the general 
case none of these sequences corresponds to the continued fraction representation of φ∗.

5.  Chains of sub-images

The arguments of section 3 show that each of the q0 bands of the spectrum at φ = p0/q0 is 
potentially an edge of two different sub-images: setting φ′ = ±1, we see that the other edges 
of these two connected sub-images are at

φ± =
p0 ± M0

q0 ∓ N0
.� (53)

These two values can themselves be the edges of further sub-images. Because N0 and M0 are 
constant so long as gaps do not close, by iteration we have a sequence of edges of a connected 
chain of sub-butterflies, for which the values of φ are

φj =
p0 + jM0

q0 − jN0
� (54)

where j  is a positive or negative integer.
The sub-images are constructed by taking a band at φ0 = p0/q0 and increasing φ until 

the renormalised value φ′ is equal to unity, at which point the spectrum of the renormalised 
Hamiltonian is, once again, a single band. The results in [7] do not guarantee that extrapola-
tion to φ′ = 1 is possible, and one way in which the procedure could fail is if the gaps which 
exist in the spectrum when φ′ = 0 close up as |φ′| increases. We find, for a given value of 
φ0 = p0/q0, that it is always possible to construct a sub-image of the butterfly plot to either 
the right (setting φ′ = +1) or the left, (φ′ = −1) without gaps in the spectrum closing, but not 
always both. We refer to sub-images which have both upper and lower gaps open at both sides 
as open sub-images. Other sub-images will be termed closed.

In cases where the gaps close, we find empirically that this occurs when |φ′| = 1. As an 
example, consider the case of the centre band for φ0 = 1/3 (for this band M  =  1, N  =  −2). 
Applying (53) we find φ+ = 2/5 and φ− = 0. There is an open sub-image for the centre band 
which is bounded by φL = 1/3 and φR = 2/5, but if we consider how the centre band for 
φR = 1/3 evolves as we approach φL = 0, we see that the gaps at both the top and the bot-
tom of the band close up as we approach φ = 0. There are other examples where only one of 
the gaps closes: for example let us consider the uppermost band when φ0 = 2/5 (which has 
M  =  1, N  =  −2). In this case φ+ = 3/7 and φ− = 1/3. There is an open sub-image contain-
ing the uppermost band bounded by φL = 2/5 and φR = 3/7, but if we extend the uppermost 
band from φR = 2/5 towards φL = 1/3, we find the that the lower gap closes, so that we have 
a closed sub-image.
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In cases where the sub-image is ‘open’, the formulae for predicting the φ value of one edge 
from the other can be used reciprocally: we can determine φR from φL  by taking the positive 
sign in (53), or φL  from φR by taking the negative sign. If, however, the sub-image has a closed 
gap at the right-hand side, while it is possible to compute φR from φL , if we start from φR, 
the values of the Hall conductance integers are changed by the additional component of the 
spectrum which does not form part of the band at φL .

It is also possible for a ‘closed’ edge to be shared between multiple sub-images. An example 
of this is the set of centre bands at a sequence of values φR = 1/(2n + 1), with n = 1, 2, . . .. 
Here M  =  1 and N  =  −2n. If we apply equation (53) with the negative sign, we find that the 
left hand edge is φL = 0 in every case. We find that the left-hand edge of each sub-image 
based upon the centre band at φR = 1/(2n + 1) is the entire spectrum at φ = 0, for all integer 
n  >  0. The reason why this band can be the left hand edge of an infinite number of different 
sub-images is that, as φ → 0, an infinite number of bands accumulate at both the upper and 
lower edges of the spectrum.

For every band at a rational value of φ, we can attempt to construct a connected chain of 
sub-images extending in either direction using equation (54). We find that the chain terminates 
in one direction, due to encountering an edge where the gaps close. The chain extends to infi-
nite values of |j| in the other direction. Note that φj, defined by (54), approaches −M0/N0  as 
|j| → ∞, so that the chain of sub-images ends at an accumulation point. For example, every 
centre band for φ = 1/(2n + 1) (with n = 1, 2, . . ., having Hall integers M0  =  1 and N0  =  −2n) 
has a chain of sub-images extending to the right, with edges φj = ( j + 1)/[2n( j + 1) + 1], 
end at an accumulation point at φ = 1/2n.

Table 1 lists parameters of four different examples of chains, which are illustrated in fig-

ure 4. The chains are denoted by a label C pcl
qcl

→ pac
qac

,k± in which pcl/qcl is the closed edge and 
pac/qac is the accumulation point, and k labels the band to which the accumulation point 
attaches, with ± indicating whether the attachment is to the top  +, or bottom, −. The edges 
of the sub-images forming the chain are denoted by φj, with j   =  0 being the edge for which a 
gap closes, and j = 1, 2, . . . being labels of the open edges.

6.  Summary

A striking feature of Hofstadter’s butterfly is the fact that its interior can be dissected into 
small, distorted images of the entire plot. These sub-images are a microcosm of the butterfly 
plot.

In this work we have described how every band of the spectrum for rational φ can be taken 
to be an edge of at least one sub-image, and we have shown how the other edge or edges can 
be determined. The centre and the edges are shown to be neighbouring fractions in the Farey 
tree and the equations relating them depend upon the quantised Hall conductance integers, M 
and N.

We have also analysed two ways in which these objects can be interrelated, namely by 
being recursively nested, or by forming chains. Each sub-image is described by four integers: 
p  and q specify the flux ratio (on one of the edges), and M, N specify its associated quanti
sed Hall conductance. Both the nesting and concatenation relationships between sub-images 
are represented by simple algebraic operations on the set { p, M, q, N}. Equations (24) and 
(25) show that nesting relationship may be represented by multiplication of 2 × 2 unimodular 
matrices composed from these numbers. Equation (54) shows that the concatenation relation 
corresponds to a simple additive relation.
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The nesting relationship leads to the derivation of exact expressions for the scaling factors 
describing self-similarity. The sub-images are described by rational fluxes at every step of the 
recursion, but their asymptotic scaling factors and accumulation points (equations (33) and 
(52) respectively) are irrational numbers, obeying simple integer-coefficient quadratic equa-
tions. It is surprising that the scaling factors do not require the solution of matrix eigenvalue 
equations. It can also be noted that the set of quadratic numbers which can arise from equa-
tion (33) does not include the golden mean, (1 +

√
5)/2, which features so extensively in the 

literature on Harper’s equation, reviewed in [5]. The chains are infinite in one direction, with 
successively smaller sub-butterflies reaching an accumulation point. In contrast to the accu-
mulation points of the nesting process, the chains end at a rational value of φ.
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