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1.  Introduction

The endoplasmic-reticulum (ER) sheets consist of 
stacks of pairs of phospholipid bilayer membranes 
in the interior of eukaryotic cells [1]. The bilayers 
divide the cell into two distinct regions, illustrated 
in figure 1(a): the lumen of the ER enclosed between 
the doubled bilayers forms a single region which 
is connected throughout the cell, and which is also 
continuous with the nuclear envelope. The region 
complementary to the lumen is the cytoplasm (and 
also the nucleoplasm). As well as dividing the cell into 
two regions, the surfaces of the ER play an important 
role in organizing complex biochemical processes by 
acting as a substrate for membrane-bound protein 
complexes on both the luminal and cytoplasmic 
sides (e.g. ribosomes are attached to the cytoplasmic 
facing ER-sheet membranes). It is this role as a surface 
for catalysis that dictates the large surface area of 
the ER, but these extensive surfaces would create 
barriers to diffusion in both cytoplasmic and luminal 
compartments [2]. Specifically, a system of stacked 
bilayer membranes can act as a barrier to diffusion of 
water-soluble species in the directions perpendicular 
to the layers. This appears to present a challenge to the 
efficient operation of the cell.

It has been understood for some time that there are 
topological ‘defects’ in the layers of the ER. These are 
often represented as holes in the lipid bilayer system, 
with approximately catenoidal edge surfaces, as illus-
trated in figure  1(a), forming a set of ‘windows’ or 
fenestrae, as illustrated in figure 1(b). However, care-
ful studies [3, 4] of the topological structure of the 

ER sheets have revealed that the layers have a type of 
screw dislocation, which have been named ‘Terasaki 
spiral ramps’ after their primary discoverer. These are 
illustrated schematically in figure 1(c). In this paper 
we argue that these spiral dislocations allow extremely 
efficient diffusive transport perpendicular to the plane 
of the membrane sheets.

Small molecules are able to traverse the cell by dif-
fusion, a consequence of the fact that the motion of 
each molecule is a random walk. For both fenestra and 
Terasaki ramps, a random-walk trajectory can allow a 
molecule to pass between regions of the cytoplasm sep-
arated by sheets of the ER. In the case of a window con-
necting layers of the ER (as illustrated in figure 1(b)), a 
molecule must diffuse to the aperture in order to pass 
between layers (as illustrated in figure 2(a)). In the case 
of a spiral dislocation, however, a path (such as that 
illustrated in figure 2(b)) which winds once around a 
spiral dislocation allows movement between two suc-
cessive sheets of the endoplasmic reticulum, without 
having to make contact with the dislocation itself. 
Compared to the situation illustrated in figure 2(a), 
this represents a much weaker constraint on the sub-
set of random walks which allow transport between 
sheets. Analogous and mathematically equivalent to 
the problem of diffusion in the cytoplasm adjacent to 
ER sheets is the complementary problem of diffusion 
within the ER lumen, since paths that wind around the 
dislocation will also connect the lumina of successive 
sheets. In fact, we will argue that, rather than being a 
structural curiosity, the Terasaki spirals solve both of 
these diffusion problems at once, and are an essential 
element in the efficient operation of eukaryotic cells.
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The technical content of our paper is concerned 
with describing a model for diffusion in the endoplas-
mic reticulum, showing how the spiral dislocations 
allow efficient transport perpendicular to its layers. 
In section 2 we model the structure of the endoplas-
mic reticulum in the vicinity of a spiral dislocation 
as a helicoidal surface. We analyze the diffusion on a 
helicoidal surface, emphasizing the statistics of wind-
ing numbers of diffusive trajectories about its axis. In 
section 3 we show that, at large times, the statistics of 
winding numbers approach those of random walks in 
a plane, which avoid a disc centered on the position of 
the dislocation. We calculate the variance of the wind-
ing number at large times. Having modeled a single 
dislocation, in section 4 we use our results to describe 
diffusion of a water-soluble molecule in the cell, mod-
eling the endoplasmic reticulum as a set of sheets con-
nected by spiral dislocations with an approximately 
helicoidal structure. Section 5 discusses the implica-
tions of our estimate. The dispersion is described by an 
effective diffusion coefficient which is proportional to 
the density of Terasaki ramps. We argue that the den-
sity of ramps that are present in the ER is sufficient to 
allow unimpeded diffusion of small molecules.

Our results are related to a previous treatment of 
diffusion in an extended lamellar medium with ran-
domly scattered dislocations [5]. That earlier work 
used a different approach, which depends upon a 

regularization procedure, and yields an estimate for 
the perpendicular diffusion coefficient which is com-
parable to our own. We contrast the two approaches in 
our discussion (section 5). In [5] it was predicted that 
dispersion perpendicular to the plane of the lamellae 
is marginally superdiffusive (specifically, the variance 
increases faster than linear in time by a logarithmic 
factor). However, the prediction of superdiffusion 
was strongly criticized [6], and the issue was left unre-
solved. In section 5, and in an appendix, we explain 
why this criticism is not relevant to our application.

2.  Diffusion on a helicoid

The Teraski spiral ramps are screw dislocations 
connecting the layers of the endoplasmic reticulum. 
The axis of the spiral is a topological singularity, in the 
sense that if a path on the surface of the ER membrane 
makes a circuit about the axis, then the path ends 
up on another layer of the structure. The surface of 
the ER structure is, however, smooth everywhere. 
The helicoid is a smooth surface which has the same 
topology as the Terasaki spiral. The Helfrich model [7] 
for the free-energy density of a biological membrane 
has a term proportional to the square of the mean 
curvature. Because the helicoid has zero mean 
curvature it is a plausible model for the shape of the 
Terasaki spirals: a more refined model is considered in 

Figure 1.  The interiors of eukaryotic cells are divided by the surfaces of the endoplasmic reticulum (ER). (a) Each of these surfaces 
contains a region termed the ‘lumen’, separated from the cytoplasmn by lipid bilayers. Edges of the ER may have a catenoidal cross-
section. (b) The ER is sometimes pictured as being punctured by ‘windows’, allowing diffusion of water-soluble species throughout 
the cytoplasm. (c) However, careful analysis of serial-section transmission-electron micrographs reveals the presence of spiral 
dislocations termed Terasaki ramps.

Figure 2.  Diffusion is a consequence of molecules following a random walk trajectory. Some of these trajectories allow crossing of 
the ER sheets. In the case of a ‘window’, the trajectory has to make contact with the singularity (a), whereas in the case of a spiral 
dislocation, the trajectory only needs to wind around the singularity (b).

Phys. Biol. 16 (2019) 065002
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[8]. We therefore begin our investigation of diffusion 
within the ER sheets by analyzing diffusion on a 
helicoidal surface.

A helicoid is a two-dimensional surface in three 
dimensions defined by the following parametric equa-
tions for the Cartesian coordinates (x, y, z):

x = r cos θ

y = r sin θ

z = αθ

� (1)

with r � 0 (technically speaking, it is the half helicoid 
since the line r  =  0 represents an edge of the structure). 
We assume there is isotropic diffusion on the two-
dimensional surface, with diffusion coefficient D. 
There is a corresponding stochastic dynamics of the 
r, θ variables. Because our particular interest is in the 
dynamics of the z coordinate, representing motion 
perpendicular to the sheets, we concentrate on 
analyzing the dynamics of θ in the limit as time t → ∞. 
For simplicity, in this section we consider diffusion in 
a cylinder of radius R, with the dislocation lying along 
the axis of the cylinder. Equivalently, we consider 
the motion to occur in the region 0 � r � R, with θ 
unbounded. The length R therefore represents a lateral 
size parallel to the plane of the sheets, which could be 
identified with larger cellular scales.

The problem of diffusion on a helicoidal surface 
is closely related to understanding the winding of a 
random walk about a point in the plane. Some clas-
sic works which address the distribution of winding 
numbers for diffusion on the plane are [9–13]. The 
plane-diffusion problem turns out, however, to be 
quite different, in that the winding number about a 
point has a long-tailed distribution with a diverging 
variance. This divergence arises because the direc-
tion of a diffusive trajectory changes discontinuously. 
Because an arbitrarily short path can wind around a 
given point, a typical trajectory can make an infinite 
number of windings around said point in any time 
interval, no matter how short. The calculations in 
[9–13] show that this is what actually happens. For our 
problem of helicoidal diffusion, however, the particle 
has to move a finite distance in the direction of the dis-
location axis in order to wind around the dislocation. 
This implies that the winding-number variance on a 
helicoidal surface is finite.

We can introduce a local Cartesian frame describ-
ing points on the helicoid in the neighborhood of (r, θ), 
with coordinates (X, Y). Because of rotational symme-
try it is sufficient to take θ = 0. The X axis will be taken 
to lie in the radial direction, along a line of constant z, 
and the Y axis is then tilted so that small increments 

δy , δY  of y  and Y are related by δY =

√
1 +

(
∂z
∂y

)2
δy. 

Noting that dz = αdθ and dy = rdθ, we have

δY =

√
r2 + α2

r
δy .� (2)

Because a point makes diffusive motion on the 
helicoidal surface, we can assume that, in a small time 
δt , there is a corresponding diffusive motion on the 
tangent plane. The consequent small displacement on 
the tangent plane, (δX, δY), has a probability density 
function (PDF) which is the diffusion kernel for 
isotropic diffusion in two dimensions:

P(δX, δY) =
1

4πDδt
exp

(
−δX2 + δY2

4Dδt

)
.� (3)

This implies corresponding random displacements 
of the parameters δr and δθ. If we can determine the 
first two moments of these displacements, we can write 
down a Fokker–Planck equation  for the joint PDF 
P(r, θ, t) of r and θ:

∂P
∂t

=
∂

∂r

[
−〈δr〉

δt
P +

1

2

∂

∂r

(
〈δρ2〉
δt

P
)]

+
∂

∂θ

[
−〈δθ〉

δt
P +

1

2

∂

∂θ

(
〈δθ2〉
δt

P
)]

.

�

(4)

The relations between (X, Y) and (r, θ) are determined 
by first projecting onto the (x, y) plane, then 
transforming to polar coordinates. We have δx = δX  and 
δy = δYr/

√
r2 + α2 . Then, noting that r2 = x2 + y2 and 

using 
√

1 + a = 1 + a/2 − a2/8 +O(a3), retaining 
terms to second order in the stochastic fluctuations, we 
have

δr =
√

(r + δx)2 + δy2 − r = δx +
δy2

2r
+ . . .

δθ =
δy

r
− δxδy

r2
+ . . . .

�

(5)

Hence we find

δr = δX +
r

2(r2 + α2)
δY2 + . . .

δθ =
δY√

r2 + α2
− δXδY

r2 + α2
+ . . . .

� (6)

Noting that 〈δX2〉 = 〈δY2〉 = 2Dδt and 〈δX〉 =  
〈δXδY〉 = 0, the statistics of the increments of the 
polar coordinates are, therefore,

〈δr〉 = rDδt

r2 + α2

〈δr2〉 = 2Dδt

〈δθ〉 = 0

〈δθ2〉 = 2Dδt

r2 + α2
.

�

(7)

The Fokker–Planck equation is therefore

1

D

∂P
∂t

=
∂

∂r

[
∂P
∂r

− r

r2 + α2
P
]
+

1

r2 + α2

∂2P
∂θ2

.

� (8)

Now consider the long-time behavior of the distri-
bution of the angular variable, for the case where the 
motion is confined to a cylinder with radius R with 
the axis of the helicoid at its center. We assume that the 
radial distribution has reached equilibrium, and write

Phys. Biol. 16 (2019) 065002
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P(r, θ, t) = f (r) p(θ, t)� (9)

where the radial component is the zero-flux steady-
state solution of (8), satisfying f ′ = fr/(α2 + r2) with 
solution

f (r) = n0

√
α2 + r2� (10)

where n0 is a constant of integration. Noting that 
a uniform distribution on the disc of density n0 
corresponds to f (r)  =  n0r, we see that n0 can be 
identified with the density when r/α � 1. We 
assume the distribution p(θ, t) is normalized, so that 
its integral over θ is equal to unity. If there is a single 

particle in a disc of radius R, then 2π
∫ R

0 dr f (r) = 1, so 

that when R/α � 1, the density is n0 ∼ 1/πR2.
Now consider the long-time behavior of θ. The 

statistics of the increments of θ are specified in equa-
tion (7). Because the variance of δθ depends upon r, 
the long-time behavior of 〈θ2〉 is determined by aver-
aging over the distribution of r. The distribution of θ 
has, in the long-time limit, a variance 〈∆θ2〉 ≡ 2D̄θt , 
with diffusion coefficient

D̄θ =
1

2t

∫ t

0
dt′ 〈δθ2〉t′

=
1

t

∫ t

0
dt′

D

r2(t′) + α2

= D

∫ R

0
dr

f (r)

r2 + α2

�

(11)

where R is the radius of the cylinder. The last step of 
(11) follows from replacing a time average with an 
ensemble average, and using the fact that f (r) is the 
probability density function for r. Hence we find

D̄θ = n0D

∫ R

0
dr

1√
r2 + α2

=
D

πR2
ln


R

α
+

√(
R

α

)2

+ 1


 .

� (12)

In the case where R/α � 1, this is

D̄θ ∼ D ln(2R/α)

πR2
.� (13)

3.  Winding number at a finite time

In section 2 we examined the diffusion of the rotation 
angle in a finite region, and used the idea that the 
diffusing particle approaches a uniform density at large 
times. In this section we consider how to evaluate the 
variance of the rotation angle in an unbounded region.

When r � α, the Fokker–Planck equation  (8) 
takes the same form as the two-dimensional diffu-
sion equation. Because the diffusing particle has a 
low probability of being in the vicinity of the disloca-
tion, this indicates that, for large time, the variance 
of the rotation angle will be determined by solving a 
conventional diffusion equation, with the center of 

the helicoid replaced by an impenetrable disc, with a 
radius ε which will be determined shortly.

Compare equation  (13) with the case of diffu-
sion in the plane around a disc of radius ε. The corre
sponding angular diffusion coefficient is obtained 
by setting α = 0, and introducing a lower cutoff of ε 
in the integration over r in (11). This gives an equa-
tion which is identical to (13), except for replacing α/2 
with ε, implying that a helicoid with pitch α has the 
same asymptotic winding number statistics as a planar 
diffusion around a disc of radius α/2.

We have argued that the diffusion on a helicoid of 
pitch α is equivalent to motion on a flat surface with an 
excluded disc of radius ε = α/2 for trajectories which 
do not approach close to the axis of the helicoid. Now 
we use this observation to determine the distribution 
of winding angle ∆θ when the starting point is at a dis-
tance R from the axis, with R/α � 1.

The winding angle of a trajectory is

∆θ =

∫ t

0
dt′

η(t′)

r(t′)
� (14)

where r(t) is the distance of the diffusing trajectory 
from the center of the disc at time t, and η(t) is a 
stochastic velocity of the diffusive trajectory in a 
direction perpendicular to its displacement from the 
dislocation. This satisfies

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = 2Dδ(t − t′) .� (15)

Using (15) in (14), the variance of the rotation angle is

〈∆θ2〉 = 2D

∫ t

0
dt′

〈
1

r2(t′)

〉

= 2D

∫ t

0
dt′

∫ ∞

ε

dr
P̄(r, R, t′)

r2

�
(16)

where P̄(r, R, t) is the probability density to reach a 
distance r from the dislocation at time t, after starting 
at R when t  =  0. If there was no excluded disc, we 
would be able to obtain P̄(r, R, t) exactly by integrating 
over the propagator for diffusion in two dimensions 
(equation (3)) over a circle, to obtain

P̄(r, R, t) =
r

4πDt

∫ 2π

0
dφ

× exp

[
− (R − r cosφ)2 + r2 sin2 φ

4Dt

]
.

� (17)

The probability density on the edge of this disc obeys 
a Neumann boundary condition. We are interested in 
the limit where the radius of the excluded disc is small 
compared to other length scales in the problem. As 
the radius ε of the excluded disc approaches zero, its 
effect on the density of diffusing trajectories becomes 
negligible, and we can approximate P̄(r, R, t) using 
(17) outside the disc of radius ε (and it is obviously 
exactly zero inside). The variance of the rotation angle 
at time t for a trajectory which starts at a distance R 
from the dislocation is therefore

Phys. Biol. 16 (2019) 065002
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〈∆θ2〉 = F

(
R2

4Dt
,
ε

R

)
� (18)

where

F(X, Y) =
1

2π

∫ ∞

Y

dx

x

∫ 1

0

dy

y

∫ 2π

0
dφ

× exp

[
−X

y

(
1 + x2 − 2x cosφ

)]

=

∫ ∞

Y

dx

x

∫ 1

0

dy

y
exp

[
−X

y
(1 + x2)

]
I0

(
2Xx

y

)

� (19)

and I0(·) is a modified Bessel function of the first kind 
and of order zero. This may be written in the form

F(X, Y) =

∫ ∞

Y

dx

x
G(X, x)� (20)

where G(X, x) is obtained by comparison with (19).
Let assume that Y � 1, and divide the integral 

over x into two intervals: [x0,1] and [Y, x0], with 
Y < x0 � 1. If G(X, 0) �= 0, in the limit as Y → 0, the 
integral in (19) is dominated by the second of these 
contributions, and we may write

F(X, Y) ∼ ln(1/Y)G(X, 0) + g(X)� (21)

where g(X) can be expressed as a limit of a triple 
integral. The dominant term, logarithmic in Y, is 
proportional to

G(X, 0) =

∫ 1

0

dy

y
exp(−X/y) =

∫ ∞

1

dz

z
exp(−Xz)

= E1(1/X) = −Ei(−1/X)
�

(22)

where E1(z) and Ei(z) are different standard 
specifications of the exponential integral function. 
We were not able to obtain the function g(X) which 
appears in (21) explicitly, but we were able to obtain 
to obtain a useful expression which is asymptotic to 
g(X) as X → 0. The limit X → 0 corresponds to the 
long-time limit, in which the distribution of diffusing 
trajectories becomes isotropic, so that we may drop the 
term in cosφ from the first line of (19), so that when 
X  =  R2/4Dt is small

〈∆θ2〉 ∼
∫ ∞

Y

dx

x

∫ ∞

1

dz

z
exp[−Xz(1 + x2)]

=
1

2

∫ ∞

1

dz

z
exp(−Xz)E1(XY2z)

∼ ln

(
1

Y

)
E1(X) +

(lnX + γ)2

4
− π2

24

�

(23)
where in the final line we use the fact that 
E1(x) ∼ −(ln x + γ) when x � 1, together with 
equation  (4.335.1) from [14] (γ  is the Euler–
Mascheroni constant). Note that this is in the form 
of equation (21). Recalling that ε = α/2, in the limit 
where R � α, the leading-order contribution to the 
variance of the winding number is therefore

〈∆θ2〉 ∼ ln

(
2R

α

)∫ ∞

1

dz

z
exp

[
− R2

4Dt
z

]
.� (24)

4.  Model for perpendicular diffusion

We have analyzed diffusion on a helicoidal surface, 
leading to an estimate (24) for the winding angle 
of a trajectory after time t, starting at a distance 
R from the dislocation. We now adapt the results 
to model diffusion perpendicular to the sheets of 
the endoplasmic reticulum, using the observation 
that its sheets are connected by multiple spiral 
dislocations. For definiteness, we consider diffusion 
within the lumen of the ER, but the basic arguments 
for modeling diffusion in the cytoplasm differ only 
in inessential points. This perpendicular diffusion 
process is described by keeping track of on which sheet 
of the lumen a molecule is located. Because the spiral 
dislocation singularities connect different sheets to 
form a single manifold, its subdivision into numbered 
sheets is somewhat arbitrary.

The layers of the endoplasmic reticulum, which 
we assume have mean separation h, are connected by 
many of these dislocations, which will be assumed to 
be randomly scattered, with planar density ρ . The dis-
locations may be either ascending or descending for 
a positive winding number, and we distinguish these 
cases by a ‘charge’ σi = ±1 for the dislocation with 
index i. We shall assume that the distribution of these 
topological charges can be modeled by independently 
assigning each singularity a positive or negative charge, 
each with probability equal to one half. This net neu-
trality of topological charge is consistent with the cen-
sus of Terasaki ramps from topological reconstruction 
of electron microscopy data [4].

If (x, y) are the coordinates of the plane, we can 
describe the position by a single complex num-
ber, ζ = x + iy. If there is a dislocation at the ori-
gin, we can represent the height of the surface, z by 
writing z = hθ/2π, where h is the pitch of the screw 
axis, and θ is the polar angle in the complex plane. If 
we write ζ in polar coordinates, ζ = r exp(iθ), we 
can model a single dislocation by means of the loga-
rithm of a complex variable. This follows from not-
ing that ln(ζ) = ln r + iθ, so that z = (h/2π)Im ln ζ  
is a model for a dislocation at the origin. Similarly 
z = (h/2π)Im ln(ζ − ζ0) describes a dislocation at 
(x0, y0), where ζ0 = x0 + iy0. We can extend this to 
model the connected surface of the endoplasmic retic-
ulum by considering the following function:

z(x, y) =
h

2π
Im ln

[∏
i

(ζ − ζi)
σi

]
� (25)

with ζi = xi + iyi, where (xi, yi) are points randomly 
scattered in some finite-sized region, with the charges 

σi being randomly assigned to ±1 with probability 
1
2. The spacing of the layers, h, is assumed to be small 
compared to the typical distance between nearest-
neighbor dislocations. In the context of modeling the 
ER, this model has the attractive feature that the height 
z is a harmonic function. This implies that, in regions 

Phys. Biol. 16 (2019) 065002
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where the gradient of z(x, y) is small, the surface 
approximates a minimal surface (that is, the mean 
curvature is everywhere zero).

The motion of a molecule is now described by 
a random walk in the (x, y) plane, and its motion in 
the perpendicular coordinate (z) is determined by the 
manner in which this path is threaded through the set 
of singularities. If we were dealing with closed paths, 
we could describe the vertical motion by determining 
the winding number of the path about each singular-
ity, but the diffusive trajectory of a molecule is almost 
always described by an open path. We adopt the fol-
lowing convention: From each dislocation we take 
a line parallel to the x-axis, in the negative direction. 
We regard the transitions between layers as occurring 
when a path crosses one of these lines. A path with 
decreasing y -coordinate moves up a layer as it crosses a 
line attached to a positive dislocation, and down a layer 
if it crosses a line attached to a negative dislocation (see 
figure 3). In the case where the path is closed, this con-
vention is equivalent to summing the winding num-
bers of the trajectory about each dislocation, weighted 
by their sign.

For a given path, we can define its winding number, 
ni, about a given dislocation with index i, in terms of 
the number of times the line attached to the singular-
ity is crossed counterclockwise, minus the number of 
clockwise crossings. The change in level of a given path 
is the sum of the winding numbers for each disloca-
tion, weighted by the sign of the dislocation:

∆z = h
∑

i

σini .� (26)

Note that the spacing between levels is h = 2πα for 
the simple helicoidal model studied in section  2. 
When time t is large, there will be many singularities 
which could have non-zero winding number, and 
the winding numbers will typically be large, so that 
we may approximate ni = ∆θi/2π, where ∆θi is the 
winding angle of the trajectory about the singularity 
with index i.

Both the winding numbers ni and the signs of the 
dislocations σi are random variables (with zero mean), 
so that ∆z  is a random variable. The distribution of the 
vertical displacement, ∆z, is conveniently described by 
its variance: for a fixed configuration of the signs σi, 
this is

〈∆z2〉 = h2
∑

i

∑
j

σiσj〈ninj〉 .
� (27)

The correlation function of the winding numbers, 
〈ninj〉, can be computed, as discussed by Hannay [15]. 
However we shall perform a further average of (27) 
over the random signs σi. Because 〈σiσj〉 = δij , the off-
diagonal contributions to the double-sum are zero, so 
that the winding-number correlation function 〈ninj〉 
is not required for our calculation of 〈∆z2〉. When we 
average over the signs, the doubly-averaged second 
moment of ∆z  is

〈〈∆z2〉〉 = h2
∑

i

〈n2
i 〉 .� (28)

We have obtained the variance of the winding angle 
for a single helicoidal dislocation in equation (24). We 
now estimate the sum in (28) by replacing the sum by 
an integral over the density of dislocations at a distance 
R from a randomly chosen point. The expected num-
ber of dislocations in an annulus of width δR at dis-
tance R from the origin is

δN = 2π R ρ δR� (29)

where ρ  is the density of dislocations. Using 
equations (28), (24), (29) and recalling that h = 2πα, 
we have

〈〈∆z2〉〉 = h2

4π2

∑
i

〈∆θ2
i 〉

=
h2ρ

4π2

∫ ∞

0
dR 2πR〈∆θ2〉R,t

=
h2ρDt

2π

∫ ∞

0
dX ln

(
16DtX

α2

)∫ ∞

1

dz

z
exp(−Xz)

∼ h2ρDt

2π
ln

(
64π2Dt

h2

)∫ ∞

0
dX

∫ ∞

1

dz

z
exp(−Xz)

=
h2ρDt

2π
ln

[(
8π

h

)2

Dt

]

�

(30)

where in the penultimate step we use the fact that 
Dt/h2 � 1 for times large enough to allow non-
zero winding numbers with a significant probability. 
This is the principal technical result of our paper. A 
similar, but not identical, result has been proposed for 
diffusion in an extended lamellar medium punctured 
by dislocations [5]. We comment on the relation 
between these results in the concluding section. Note 
that 〈〈∆z2〉〉 has a faster than linear growth, because of 
the logarithmic factor, implying that the dispersion in 
the z direction is marginally superdiffusive.

We can describe the dispersion across the layers 
of the ER by an effective diffusion coefficient, Deff . We 
define this by assuming that the size of the cell is R̄, and 
noting that the time t̄  for dispersion by conventional 
diffusion may be related to R̄ by writing R̄2 = 4Dt̄ . The 
effective diffusion constant for dispersion across the 
layers of the ER is defined by writing

〈〈∆z2〉〉t̄ = 2Deff t̄ .� (31)

Using these definitions we find the effective diffusion 
coefficient perpendicular to the layers of the ER to be

Deff =
Dρh2

2π
ln

(
4πR̄

h

)
.� (32)

5.  Discussion

We have argued that, relative to spiral dislocations, 
holes have a disadvantage when it comes to allowing 
perpendicular diffusive transport in the lumen and 
cytoplasmic space. This is because a dislocation allows 
perpendicular transport just by winding around the 
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singular axis, whereas holes require that the trajectory 
has to go to the defect and pass through. This indicates 
that spirals allow very efficient perpendicular 
transport.

Our estimate for the effective trans-layer diffusion 
constant of our model, equation (32), differs from the 
bare diffusion coefficient D by a factor proportional 
to ρh2. Our model assumes that the singularities are 
distinct objects, which is equivalent to specifying that 
ρh2 � 1, in which case the perpendicular diffusion 
coefficient is smaller than the planar diffusion coeffi-
cient.

Values for the inter-sheet separation in the ER are 
typically h ≈ 200 nm. The spacing of of dislocations is 
thought to be roughly 1 µm, hence we estimate that the 
small parameter is ρh2 ≈ 4 × 10−2. The characteristic 
size of the region occupied by the endoplasmic reticu-
lum is comparable to the size of a cell, so R̄ ≈ 20 µm. 
These estimates give

Deff

D
∼ ρh2

2π
ln

(
4πR̄

h

)
≈ 5 × 10−2� (33)

so that, while the perpendicular diffusion coefficient 
Deff  is smaller than the ambient coefficient D, by a 
factor of approximately 20, it is still adequate to allow 
efficient transport of small molecules throughout 
the ER. While it is difficult to measure ER diffusivity 
in the three-dimensional cellular setting, particularly 
considering our present focus on diffusion in the 
direction normal to the ER sheets, a typical diffusivity 
for a small protein (say, GFP) in the ER has been 
found to be 20–30 times smaller than that of GFP in 
water (the latter being 10−10 m2 s−1) [16]. Because 
of discrepancies in geometry and types of ER probed 
by existing experiments, the agreement is most likely 
spurious. However, the comparison demonstrates 
that the magnitude of the attenuation is comparable 

to what has been measured in these related contexts. 
We conclude that Terasaki ramps provide a means to 
overcome the barriers to diffusive transport faced by 
aqueous solutes in the eukaryotic cell. This naturally 
suggests the hypothesis that such topological ER 
structures are required for efficient diffusion in 
eukaryotes.

In a pioneering work, Gurarie and Lobkovsky [5] 
obtained estimates for the diffusion coefficient for a 
lamellar medium punctured by dislocations. In the 
case where the density of positive and negative charged 
dislocations is equal, their estimate for the disper-
sion perpendicular to the plane of the lamellae has a 
similar form to our equation (30), and it is pertinent 
to contrast the two calculations. The method used in 
[5] first performs an average over the disposition of 
dislocations for a given path, before averaging over the 
paths, whereas we perform the averages in the opposite 
order. If the steps could be performed accurately and 
yielding finite results, the order of averaging would 
be irrelevant. However, the approach of averaging 
over the position of dislocations is extremely difficult, 
if we hope to correctly account for the excluded disc 
surrounding every dislocation point. This is because, 
for a given path, many configurations of dislocations 
would have to be excluded. The approach used in [5] 
averages over paths and dislocation configurations as 
if they were independent: the paths are sampled from 
an ensemble of Brownian motions and the disloca-
tion positions are a random scatter. This choice pro-
duces an infinite answer for the first average, because 
the variance of the rotation number of a Brownian 
path about any given point is infinite. The calcul
ation in [5] does indeed produce a result in the form 
of a divergent integral, which must be regularized. 
There is no apparent reason why this procedure should 
produce the same result as our calculation, but it too 

Figure 3.  Our model of the endoplasmic reticulum, summarized by equation (25), has dislocations with random sign σi and 
random positions ri . A Brownian trajectory can move between ‘levels’ of the multi-sheeted manifold. We define a convention for 
labelling the levels of the manifold by the considering when the trajectory crosses a set of lines.
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produces a result (using our notation) in the form 
〈∆z2〉 ∼ (ρh2Dt/8π) ln(Dt/a2) (their equation (11)). 
Their convention for writing the diffusion coefficient 
[5] differs from our own (which is the standard choice) 
by a factor of 4 (see their equation (1)). Taking account 
of this difference, the coefficient in their equation (11) 
is in accord with our equation (30). However equa-
tion (8) of [5] appears to be in error, and equation (9) 
is difficult to verify because of ambiguities analogous 
to the Ito versus Stratonovich dichotomy, so we are 
uncertain about the status of their result.

It is interesting to remark that, according to equa-
tion  (30), 〈〈∆z2〉〉 increases faster than linearly as 
a function of time, despite the fact that the underly-
ing mechanism is diffusion on a complex surface. If 
we were modeling diffusion in an extended medium, 
rather than a finite-sized cell, this would pose a prob-
lem, because the predicted dispersion would eventually 
exceed that of the underlying diffusion process, which 
is impossible. (This point was made in a comment on 
the work by Gurarie and Lobkovsky [5], which treated 
diffusion in an extended lamellar phase [6, 17].) While 
this issue is not directly relevant to our estimates of dif-
fusion in a cell, it is instructive to understand the origin 
of the difficulty, and how it could be resolved if we were 
dealing with an extended system. We address this in an 
appendix.

While our results show that small molecules can 
access the entire cytoplasm by diffusion alone, this may 
only be part of the ER-transport story. There is recent 
evidence for active transport throughout the smooth 
ER involving fluid flow within ER tubules. This may be 
required for the transport of larger proteins through 
the ER lumen, and hence to the most distal locations 
in cells [18].
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Appendix

If we are only interested in diffusion within the 
dimensions of a typical cell, then the logarithmic 
term in equation (30) does not indicate an error in the 
calculation. This is because t must become very large 
before the product of the small parameter ρh2 and 
the logarithmic factor exceeds unity, and diffusion 
would spread molecules uniformly across the cell 
before any superdiffusive behavior could be observed. 
If we were interested in diffusion in a homogeneous 
region however, it is necessary to consider how the 
formulation of the problem should be modified so 
that the logarithmic term does not eventually imply 

diffusion which is faster than that which would be 
observed without the membranes.

Our model for the height of the surface, equa-
tion  (25), is not suitable for describing an infinite, 
homogeneous region. To make the model well defined 
we have to confine the singularities ξi  to a finite region, 
for example a disc of radius R. The fluctuations of 
the product 

∏
i(ξ − ξi)

σi  increase without bound as 
R increases, indicating that equation (25) is not suit-
able to model an infinite region by taking R → ∞. If 
we were interested in modeling an infinite region, we 
could replace (25) by

z(x, y) =
h

2π
Im ln [ fR(r) + ifI(r)]� (A.1)

where r = (x, y) and fR  and fI are independent 
realizations of an ensemble of random functions. 
These functions can be assumed to have the following 
statistics:

〈 f (r)〉 = 0, 〈 f (r) f (r + R)〉 = C(|R|)� (A.2)

where C(R) is the correlation function of the random 
fields. This model is, by construction, statistically 
homogeneous, and is therefore suitable as a model for 
an infinitely extended random surface. (However it 
does lack the property of being a harmonic function, 
which was desirable for modeling the ER.) The 
dislocations correspond to points where fR = fI = 0. 
The density of these points is readily determined by the 
Kac–Rice method [19, 20].

At first sight, it seems as if the calculation in sec-
tion  4 would be directly applicable to this variant 
model (equations (A.1) and (A.2). There is, however, 
a reason why the analysis does not carry over. In sec-
tion 4, when we averaged over the distribution of signs 
σi, we assumed that they are completely random. It 
has been shown that the distribution of zeros of a sta-
tistically homogeneous random field must satisfy a 
‘screening’ property, implying that the signs cannot be 
chosen at random [21]. For this reason, the calculation 
of section 4 cannot be applied to the case of an infi-
nitely extended region.
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