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Abstract
Many physical processes result in very uneven, apparently random, distributions 
of matter, characterised by fluctuations of the local density varying over orders 
of magnitude. The density of matter in the sparsest regions can have a power-
law distribution, with an exponent that we term the lacunarity exponent. We 
discuss a mechanism which explains the wide occurrence of these power laws, 
and give analytical expressions for the exponent in some simple models.
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(Some figures may appear in colour only in the online journal)

1.  Introduction

Large fluctuations of the density of particulate matter feature in many different physical con-
texts. Examples include the distributions of galaxies in the universe [1], the distributions of 
stars within galaxies [2], the distribution of debris floating on fluids [3–5], the distribution of 
human populations [6] and the distribution of small inertial particles in a turbulent flow [7]. 
Many of these distributions are fractal [8, 9], and can be characterised by a power law, with 
an exponent related to one or more fractal dimensions. In particular, the density correlation 
function has a power-law decay, which can be related to what is known in dynamical systems 
theory as the correlation dimension, D2 [10, 11].

Fractal dimensions are well adapted to characterise the densest regions of the distribution: 
their definition involves considering moments of the mass (or some other measure) inside a 
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small ball of radius ε, and taking the limit as ε → 0 [8, 9]. It can be equally valuable to under-
stand the sparse regions of the distribution. By way of examples, occupying regions of a galaxy 
which have a low concentration of stars reduces the risk to evolving life due to supernovae, 
and sparsely populated geographical regions afford protection from epidemics. However, these 
sparse regions have received little attention in the literature. Figure 1 illustrates an example of 
the prevalence of these low-density regions: it shows the distribution of density of particles 
position, determined from a two-dimensional, compressible flow model of transport on the 
surface of the ocean (the details of this simulation, and other numerical studies, are described in 
the section 5). There are large variations of particle density ρ , on length scales which are large 
compared to the correlation length ξ of the model. The numerically determined probability den-
sity function (PDF) of the particle density for this model, P(ρ), shows two linear asymptotes in 
log-log representation, see figure 2. This indicates different power-law exponents, at high and 
at low densities, respectively. We denote by α the lacunarity exponent at low densities:

P(ρ) ∼ ρ−α as ρ → 0.� (1)

The exponent that characterises the high-density regions is denoted as β.
Most of the potential applications described in the introductory paragraph may be described 

by dynamical systems which generate apparently unpredictable motion. For this reason, the 
models that we shall consider are all smooth, chaotic dynamical systems. The existence of a 
power law at high densities is consistent with the notion that chaotic systems can have fractal 
invariant measures [10, 11] resulting from accumulation of trajectories in converging regions 
of phase space. It would be natural to hypothesise that the occurrence of a power-law distribu-
tion at low densities, as shown in figure 2, might be another aspect of this phenomenon. We 
shall argue, however, that there is a fundamental difference between the processes responsible 
for creating the low and high density regions. We describe here a general approach to under-
stand the sparse regions of the phase space of a broad class of complex dynamical systems, 
detailing a mechanism explaining why those sparse regions have a power-law distribution of 
density, and discuss examples where the lacunarity exponent α can be calculated.

‘Lacunarity’ as a measure of the spatial inhomogeneity of fractal sets was introduced 
by Mandelbrot [8], and various approaches to defining lacunarity have been explored since 
[12, 13]. These earlier approaches did not consider the probability distribution of density. 
Inhomogeneities in the clustering of fractal sets can also be characterised using the concept 
of multifractality (as defined by, say, Halsey et al [14]), but we shall argue that our lacunarity 
exponent is a distinct notion. In fact, while all of the models that we consider are multifractals, 
none of the examples of multifractal measures discussed in [14] has a lacunarity exponent. In 
the concluding section of our paper we return to considering the relationship between multi-
fractality and our lacunarity exponent.

In the following, we analyse numerically and analytically the phenomena shown in  
figures 1 and 2 with a hierarchy of models, leading towards a good understanding of the lacu-
narity exponent α.

2.  A minimal model

To explain the existence of the lacunarity exponent, we shall describe and analyse the simplest 
model for which we have observed its existence. This is the correlated random walk, defined 
by

xn+1 = xn + fn(xn)� (2)
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where the f n(x) are random, smooth functions, drawn independently at each iteration from 
a Gaussian distribution. Denoting the expectation value of a number X by 〈X〉, they satisfy 
〈 fn(x)〉 = 0 and we choose their correlation function to have a Gaussian form

〈 fn(x) fn′(x′)〉 = δnn′ε
2ξ2 exp

[
− (x − x′)2

2ξ2

]
,� (3)

where ξ is the correlation length, and ε is a parameter for the strength of the random forcing. 
Because the f n(x) are differentiable functions, this model maps nearby points to nearby points, 
and it is arguably the simplest realisation of a dynamical system describing the motion of 

Figure 1.  Distribution of particle positions in a two-dimensional random flow, 
mimicking the motion of debris on a sea surface. The density is inhomogeneous on 
length scales much larger than the correlation length ξ of the equations  of motion 
(ξ = 0.05 in this illustration). The colour bar indicating density is in decimal log scale.
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Figure 2.  PDF of the particle density for the model illustrated in figure 1. There were 
107 particles, and the densities were evaluated using square regions of size δ, much 
smaller than the correlation length ξ = 0.05, and normalised by their mean value 〈ρ〉. 
The two asymptotes correspond to power laws with exponents α ≈ 0.7 (low densities) 
and β ≈ 2.4 (high densities).
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particulate objects in a complex flow field. This makes it a prototype for modelling many of 
the systems described in our introductory paragraph.

Because (2) is a smooth dynamical system, we can define a Lyapunov exponent in the 
usual manner. This one-dimensional model is chaotic (having a positive Lyapunov exponent) 
when ε exceeds a critical value εc ≈ 1.553 [15]. We are interested in the action of this dynami-
cal system on a large number of points (‘particles’), which are initially scattered uniformly. 
Because equation (2) is a non-autonomous system driven by external noise, it does not have 
a fixed attractor. If we average over many iterations, i.e. over the values of n, the distribution 
of particles averages to a uniform measure. At a fixed iteration n, however, the distribution of 
points is highly non-uniform. Because the map contains contracting regions, the distribution 
of points is expected to sample a fractal measure. The correlation dimension D2 of this meas-
ure was obtained in [16]. The box-counting dimension dimension D0 is equal to unity, because 
there are no points which do not have a pre-image.

Figure 3 shows the density distribution of final points for this model after a large num-
ber of iterations (full details of the simulation are provided in section 5). The density ρ  in  
our numerical studies is defined empirically, using the number of trajectories N  in a ran-
domly chosen interval of length δ (ρ = N/δ). The density PDF, P(ρ), was determined by 
dividing the range of x into bins of length δ (for the two-dimensional system illustrated in 
figures 1 and 2 we divided the coordinate space into squares of side δ, and defined ρ = N/δ2). 
Figure 3 shows two power-law asymptotes, which are compared with theoretical predictions 
for the exponents α and β (described below). We find that both exponents approach limits as  
the number of iterations N increases and as the size of the interval δ decreases, provided that 
the total number of trajectories is large enough. The distribution of density shows clear evi-
dence for two power-law asymptotes. We find that the exponents change continuously as the 
parameters of the model are varied.

3.  Asymptotes of the density distribution

Now we present arguments supporting the existence of these power laws. For clarity, we 
start by considering the simplest case, which is a chaotic map in one dimension, such as that 
described by equations (2) and (3). We consider the density resulting from an initially uniform 

10-4 10-2 100 10210-4 10-2 100 102
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100

102 (b)(a)-0.49

-2.33 -2.55
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Figure 3.  PDF of the density for the correlated random-walk map, equations (2) and 
(3), for two different values of ε, namely ε = 1.5εc (a) and ε = 1.9εc (b), εc being the 
critical value where the Lyapunov exponent vanishes. The PDF of the density exhibits 
a power law, with different exponents, in both the low- and high-density limits. The 
dashed and solid lines correspond to the theoretical predictions given by equations (7) 
and (10), respectively.
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distribution, after N iterations of the map, concentrating on the circumstances which lead to 
very low or very high densities. In the following, we may distinguish between the empirical 
density ρ , which is defined by counting particles in a small but finite interval δ, and the math-
ematical density ρ̃(x) which is the measure obtained by taking δ → 0.

The measure contained in an interval of size δ is proportional to the total length of the 
pre-images of this interval. If the density in the interval is very small, the length of the pre-
image intervals is correspondingly short, and the measure is proportional to the length of the 
interval. It follows that when we consider very small densities, the mathematical density ρ̃  and 
the finite-interval density ρ  are equivalent. In the case of high-density regions, the pre-images 
have a length which is much greater than δ and in the limit as the number of iterations N 
increases, there are intervals for which the pre-image is sufficiently large that its measure does 
not vary linearly with δ. It follows that the distinction between ρ  and ρ̃  is important in the high 
density regions where the map is contracting, so that ρ̃  varies very rapidly as a function of x.

If ρ̃N(x) is the density after N iterations, the density after N  +  1 iterations is

ρ̃N+1(x) =
K∑

j=1

∣∣∣∣
∂xN+1

∂xN

∣∣∣∣
−1

xj

ρ̃N(xj)� (4)

where the xj  are the K pre-images of x at iteration N. We shall consider the iteration of (4) 
where the initial density, ρ0(x), is constant.

Because of the unpredictability of chaotic motion, we apply probabilistic methods. We 
formulate our argument for maps such as (2), which have Markovian properties. However, 
most chaotic dynamical systems are well approximated by a Markovian map if the strobo-
scopic interval is sufficiently large. The statistical treatment of the map from ρN  to ρN+1 
simplifies in both the low- and high-density limits, leading to a power law for the probability 
density P(ρ). We consider these in turn.

3.1.  Low-density limit

First we assume that the density at x is very small. At the next iteration, where x is mapped to 
x′, there may be other trajectories which reach x′. In general, the number K of pre-images of 
x′ may be regarded as a random number, with a probability PK (note that K is an odd number 
for continuous maps).

Consider how very small values of the density ρ(x) are realised. Because the map is assumed 
to be chaotic, the values of factors by which the density is changed at each iteration, namely 
|∂x′/∂x|−1, are expected to be typically less than unity, implying that the density will decrease 
upon iteration of the map. This tendency to produce smaller densities continues as long as 
there is only one pre-image. When there is a ‘folding’ event and there are multiple pre-images, 
however, the density is dominated by that arising from the largest pre-image trajectory. In the 
limit as ρ → 0, the occurrence of a typical folding event will increase the density to a typical 
value. (Because low densities arise from expanding regions, we need not distinguish between 
ρ  and ρ̃ .) Very small values of the density are, therefore, the result of trajectories which repeat-
edly escape folding. Because of the Markovian nature of a map such as equations (2) and (3), 
the probability of surviving for m iterations without a folding event is Pm

1 . In m iterations 
without folding, the density changes by a factor Fm which satisfies

〈lnFm〉 = m
〈
ln

∣∣∣∣
∂x′

∂x

∣∣∣∣
−1〉

1
� (5)

M Wilkinson et alJ. Phys. A: Math. Theor. 52 (2019) 115101
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where 〈X〉1 is an average over trajectories which have only one pre-image. The distribution of 
the logarithm of the density, X = ln ρ, therefore satisfies

P(X) ∼ exp

(
ln P1

〈ln |∂x′/∂x|−1〉1
X
)

.� (6)

This implies that there is a power-law distribution of ρ  of the form (1) at small values, with 
lacunarity exponent

α = 1 − ln P1

〈ln |∂x′/∂x|−1〉1
.� (7)

There is an alternative formulation of this argument which is also instructive. Consider a 
variable X = ln ρ instead of the density ρ . When the map is iterated, if there is only one pre-
image, X is shifted by an amount ∆X = − ln |∂xN+1/∂xN |, which is independent of X, and 
which (using the Markovian assumption) may be regarded as a random variable. Furthermore, 
because the map has a positive Lyapunov exponent, the expectation value of ∆X is negative, 
so that X executes a random walk with a drift towards smaller values. However, whenever the 
trajectory shares a pre-image, a low density is almost certain to be dominated by that from 
one of the other pre-image points. This results in re-setting the value of X to a point that cor-
responds to a typical density. The probability for this re-set, equal to 1  −  P1, is independent 
of X. These arguments indicate that, in the limit at X → −∞, the equations describing the 
stochastic evolution of X become independent of X. From this point the existence of a power-
law distribution of ρ  is a symmetry argument. The translational symmetry of the equation for 
iteration of X is respected by a steady-state solution for the PDF of X which is in exponential 
form, proportional to exp[(1 − α)X], for some constant α. The corresponding PDF of ρ  is 
equation (1).

In general, incorporating the condition that there is no folding into the averaging procedure 
makes it extremely hard to estimate the numerator or the denominator in (7). Later we shall 
describe a simplified version of the model contained in (2) and (3) which does allow us to give 
an exact expression for α. The reasoning leading to the prediction of a power-law distribution 
for small values of ρ  is, however, very robust. Apart from the rather mild assumption that the 
dynamics is chaotic and Markovian, the only additional ingredient is that there is a finite prob-
ability for a trajectory to have just one pre-image.

3.2.  High-density limit

The principal result of our paper is the existence of the low-density exponent α, but it is 
valuable to say what we can about the high-density limit. We are able to obtain an implicit 
equation for the high-density exponent β for one-dimensional systems such as equation (2). 
The argument supporting this equation (presented below) is quite complex, and we have not 
found a rigorous formulation. The numerical evidence, however, provides strong support for 
our conclusion.

If there is only one pre-image, the value of ρ̃  is simply multiplied by |∂x′/∂x|−1, which we 
treat as a random factor. The ‘chain rule’ of calculus implies that the stability factors |∂xN/∂x0| 
evolve multiplicatively as N increases, so that they have a broad (essentially ‘log-normal’) dis-
tribution. This implies that for different branches (labelled by j  in (4)) the stability factors can 
have dramatic differences in magnitude. If there are multiple pre-images, the sum components 
are likely to be very different in magnitude. Following arguments based upon a combination 
of large-deviation theory and extreme value statistics advanced in [17], in the high density 
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limit, the density will be dominated by the largest term in (4), so that approximating the sum 
by its largest term is a valid approximation when considering the limit of very high densities.

We have argued that, in the case where the density ρ(x) greatly exceeds the typical value of 
the density, the contributions to ρ̃(x′) from other pre-images are almost certainly negligible, 
so that the transformed density is ρ̃′(x′) = ρ̃(x)/F , where F = |∂x′/∂x|. The factor F may be 
treated as a random variable with probability density π(F). After N � 1 iterations the density 
ρ̃  varies extremely rapidly as a function of the coordinate x. Let QN(ρ) be the probability that 
the density at a given point is less than ρ  after N � 1 iterations. At the next iteration, the 
cumulative probability depends upon the sensitivity factor F(x) = |∂xN+1/∂xN |: the density 
ρ̃  maps to ρ̃′ = ρ̃/F, and intervals of length dx become intervals of length dx′ = Fdx. Let us 
consider the transformation of QN(ρ) under iteration of the map. The x coordinate may be 
divided into intervals of length δx, which are sufficiently short that F may be approximated 
by a constant over each interval. Because the density varies extremely rapidly, however, each 
interval itself has a range of values of the density, representative of the cumulative distribution 
function QN(ρ). The interval of length δx makes a contribution with weight QN(x)δx  to the 
overall cumulative distribution. After one iteration, this contribution to the cumulative weight 
becomes δx′QN(Fρ), with δx′ = Fδx . Integrating over the distribution of F, the cumulative 
probability of ρ  is therefore iterated as:

QN+1(ρ) =

∫ ∞

0
dF π(F)F QN(Fρ) .� (8)

Seeking a steady-state solution for the PDF of the density of the form P(ρ) = dQ
dρ ∼ ρ−β, we 

find the following implicit equation for the high-density exponent β:

1 =

∫ ∞

0
dF π(F)F2−β .� (9)

The existence of a power-law distribution of density in the high-density limit can be related to 
the fractal properties of the attractor. One characterisation of the fractal properties is achieved 
by considering the expectation value 〈N (ε)〉 of the number of trajectories within an interval 
of length ε centered on a randomly chosen trajectory (thus measuring the second moment of 
the measure): 〈N〉 ∼ εD2, where D2 is the correlation dimension [10]. It has been shown (see 
[16], equation (16)) that D2 satisfies a relation closely related to (9), implying that

β = D2 + 2 .� (10)

4.  An exactly solvable model

In the general case, the equation  for the exponent α, (7), must be solved numerically. We 
describe one special case of the map (2) where an explicit expression for α can be obtained. 
Consider the map

xn+1 = xn + F(x − φn)� (11)

where F(x) = F(x + 1) is a periodic function, and where φn is a random number which is 
uniformly distributed on [0, 1]. Let F(x) be a piecewise linear function

F(x) =
{

gx 0 � x � 1
2

g(1 − x) 1
2 � x � 1

� (12)

M Wilkinson et alJ. Phys. A: Math. Theor. 52 (2019) 115101
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where g  >  0. For this model, the forward map (11) has gradients with magnitude 1  +  g or |1 − g|, 
both with probability 12. The Lyapunov exponent of the model is λ = 1

2 [ln |g + 1|+ ln |g − 1|] 
so that the model is chaotic (λ > 0) when g >

√
2.

Now consider how to compute the exponents α and β which characterise the low- and 
high-density limits of the PDF of ρ . When g  >  1, a point may have multiple pre-images. 
When g  <  3, any point has either a single pre-image, with probability P1, or else three pre-
images, with probability P3  =  (g  −  1)/2. For this model, points which have just one pre-image 
all have the same expansion factor, namely 1  +  g, so that the low-density exponent, equa-
tion (7), is given explicitly by

α = 1 +
ln(1 − P3)

ln(1 + g)
= 1 +

ln[(3 − g)/2]
ln(1 + g)

.� (13)

Equation (9) becomes the implicit equation

|1 + g|(2−β) + |1 − g|(2−β) = 2 .� (14)

Comparing this equation with (13), it is clear that no simple equation relates the exponents α 
and β.

5.  Numerical studies

Here we give a complete specification of our numerical investigations. Figure 1 is a plot of the 
density of particles in a simulation of a two-dimensional flow. For this we used a simplified 
model

x(t +∆t) = x(t) + u(x, t)∆t� (15)

and the random velocity field u(x, t) was constructed by writing

u = ∇ ∧ψ + η∇φ� (16)

where φ and ψ are Gaussian distributed random scalar fields which have the same isotropic, 
homogeneous statistics and which are independent of each other. The parameter η controls the 
compressibility of the velocity field (note that ∇ · u = 0 when η = 0). In the simulations we 
used fields with 〈φ(x, y)〉 = 0 and a Gaussian correlation function:

〈φ(x, y)φ(x′, y′)〉 = Φ× exp

[
− (x − x′)2 + (y − y′)2

2ξ2

]
� (17)

and similarly for ψ(x, y), which is statistically independent of φ(x, y). The normalization con-
stant, Φ, was chosen so that

〈(
∂2φ

∂x∂y

)2〉
= 1� (18)

(at every point, and similarly for ψ(x, y)). In figure 1 we used η = 0.5 and ∆t = 0.5. The use 
of a large value of ∆t  ensures that the forward and time-reversed flows have different statisti-
cal properties, and that multiple pre-images are possible, mimicking the effect of breaking 
waves, for instance.

When we simulated (2), we represented the functions f n(x) by Fourier series with Gaussian 
distributed Fourier coefficients, with period L � ξ (and consequently the correlation func-
tion is a periodised Gaussian). For figure 3, we used N  =  100 iterations, and the density was 
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obtained by iterating 5 × 104 trajectories, in a periodic system of size L  =  5, with ξ = 0.5. The 
points were initially uniformly scattered over [0, L]. Figure 3 shows a comparison between the 
numerically computed density PDF and the values of the exponents obtained from (7) and 
(10). For ε/εc = 1.5, these equations predict α = 0.49 and β = 2.33 respectively, whereas 
for ε/εc = 1.9, they predict α = 0.35 and β = 2.55, in very good agreement with the data in 
figure 3.

Figure 4 shows the numerically determined PDF of the piecewise-linear model, compar-
ing the empirical exponents with the theoretical expression for α, equation  (13) and with 
the exponent β obtained by numerical solution of (14). The numerical results provide strong 
evidence for power laws at both high and low densities, and even quantitative agreement with 
theory.

6.  Generalizations

We mentioned in the introduction that power-law distributions of small densities had been 
observed in a variety of other contexts. Bec et  al [18] showed that the density of inertial 
particles in simulations of three-dimensional turbulence has a power law at low densities, an 
effect also seen in a simplified model of this system [19]. Larkin et al [20] demonstrated that 
the density distribution for particles advected on the surface of a turbulent flow in a water tank 
shows two power-laws, at high and low densities. Kawagoe et al [21] discuss the distribution 
of weights for a model of random ‘trails’. The distribution is asymptotic to a power law in 
the limit where the weight of a trail approaches zero, and the effect is quite distinct from the 
growth of voids observed close to the directed-percolation transition [22, 23]. Finally, the 
present authors previously reported [24] data quite closely related to figure 3, showing high- 
and low-density power laws for a one-dimensional model of inertial particles. These obser-
vations concern very distinct situations with quite different equations of motion, in different 
numbers of space dimensions, suggesting the possibility of a common mechanism giving rise 
to power-law behaviour.

The argument that we presented for the existence of the lacunarity exponent in the one-
dimensional case hinges on two essential elements, embodied in equations (5) and (6), which 
can be generalised. Firstly, there must be a finite fraction of trajectories for which the volume of 
the pre-image of a small neighbourhood contracts exponentially backwards in time. Secondly, 
a mechanism must ensure that the pre-images do not continue to contract indefinitely, so that 
the sequence of contractions is broken. If the probability that this mechanism does not occur 
decreases exponentially backwards in time, then the argument supporting equation (7) implies 
that P(ρ) has a power-law distribution as ρ → 0. In the case of the one-dimensional map, the 
mechanism for breaking the series of pre-image contractions is the existence of multiple pre-
images. Our work builds upon earlier works on the statistics of pre-images such as [25], by 
defining and explaining the lacunarity exponent.

These arguments apply directly to most of the previously reported examples, [18, 20,  
21, 24]. The exponential reduction of density for a single trajectory with the number of itera-
tions is a feature of all these systems: in most cases, it is a result of the exponential separation 
of nearby trajectories, but in [21] it is the result of trajectories randomly splitting, reducing 
the weight in each daughter trajectory. In all of the examples in [18–21, 24] except [20], the 
different trajectories can have multiple pre-images, and the probability of avoiding trajecto-
ries crossing or combining may be assumed to decrease exponentially with time. We remark 
that the system considered by Larkin et al [20] is different. This system, with the equation of 
motion ẋ = u(x, t), and a random velocity field u(x, t), has a unique time-reversed motion. 
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Here, a different mechanism for breaking the contraction of the pre-images may play a role. 
The pre-images of a small disc can expand in one direction, while their area contracts. The 
exponential contraction of the pre-image area breaks down if the area is stretched too far, mak-
ing the linear approximation inappropriate.

In the introduction we mentioned that multifractality provides another approach to under-
standing the inhomogeneity of fractal sets. This approach can be viewed as describing a fractal 
set in terms of a ‘spectrum’ of dimensions, by generalising the Renyi dimensions Dq, where q 
is the exponent of the moment of a measure [14]. The definition of these dimensions for q  <  0 
is problematic: see [26] for a discussion. It is tempting to propose that the power-law distribu-
tion of density and the exponents α and β are related to the limiting values D−∞ an D∞ of the 
spectrum of fractal dimensions. Our formulae for α and β in the one-dimensional case make 
this appear unlikely: (7) has no apparent relation to the definition of fractal dimensions, and 
equation (10) relates β to D2, not D∞.

If there is a relation between our lacunarity exponent α and multifractality, it would have to 
be a relation between α and the values of Dq for q  <  0, because it is these dimensions which 
probe sparse regions via negative moments of the measure. We present below, however, a quite 
general argument which indicates that there can be no such relationship. The essence of the 
argument is that, for a very broad class of physically relevant models, including the models 
that we investigated in this paper, Dq is equal to the dimension of space, d, for all q  <  0. This 
implies that the part of the multifractal spectrum which could describe sparsity is quite trivial.

Specifically, we consider chaotic dynamical systems for which every point has a pre-image. 
First, note that if there are no inaccessible regions, then box-counting dimension is D0  =  d. 
The lowest density regions determine the value of D−∞. At the start of section 3 we remarked 
that the regions with the lowest density are non-fractal, in the sense that the measure is pro-
portional to the width of the interval. This implies that D−∞ = d . Because Dq is a monotonic 
function of q, we conclude that Dq  =  d for all q � 0. The ‘universality’ of this simple result 
implies that there can be no connection with the lacunarity exponent, which has a non-trivial 
dependence upon the parameters of the system.

7.  Conclusions

In summary, we have argued that dynamical processes can produce regions of extremely 
sparse trajectories, characterised by a power-law distribution of density, parametrised by the 
lacunarity exponent, α. This property of having a power-law distribution of small densities 
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102 -0.54
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Figure 4.  PDF of the density for the piecewise-linear correlated random-walk map, 
equations  (4) and (5), with g = 7

4, compared with our theory which gives α = 0.54 
(dashed line) and β = 4.22 (solid line), respectively.
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is complementary to the power-law distribution of high-density regions, which is associated 
with a fractal dimension. We have described a robust mechanism explaining the existence 
of this power law, and shown how the exponent can be computed for a simple system. The 
existence of a lacunarity exponent is consistent with existing observations in several physical 
contexts. It may prove to be a widely observable and quantifiable property.
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