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Abstract
We consider a stochastic process in which independent identically distributed 
random matrices are multiplied and where the Lyapunov exponent of the 
product is positive. We continue multiplying the random matrices as long 
as the norm, ε, of the product is less than unity. If the norm is greater than 
unity we reset the matrix to a multiple of the identity and then continue 
the multiplication. We address the problem of determining the probability 
density function of the norm, Pε. We argue that, in the limit as ε → 0, 
Pε ∼ (ln(1/ε))µεγ, where µ and γ are two real parameters.

Our motivation for analysing this matrix contraction process is that it 
serves as a model for describing the fine-structure of strange attractors, where 
a dense concentration of trajectories results from the differential of the flow 
being contracting in some region. We exhibit a matrix-product model for 
the differential of the flow in a random velocity field, and show that there 
is a phase transition, with the parameter μ changing abruptly from µ = 0 to 
µ = − 3

2 as a parameter of the flow field model is varied.

Keywords: random matrices, stochastic process, chaotic dynamical system

(Some figures may appear in colour only in the online journal)

1. Introduction

Consider a random multiplicative process obtained from a sequence a1, a2, a3, · · · of real posi-
tive independent identically distributed random variables, each having a finite probability of 
being less than unity and of being greater than unity. Let the value, ε, of the process after N 
steps be given by the random variable

ε = ε0

(
N∏

k=1

ak

)
 (1)
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where ε0 < 1 is a positive scalar constant, providing this value is less than unity. If this product 
exceeds unity we reset ε to the value ε0, and reset N to 0.

This process has one of two possible types of behaviour, depending on the probability 
distribution of the ak. The value of ε given by equation (1) may tend to decrease as N → ∞. 
The other possibility is that the product tends to increase and the process is repeatedly reset. 
We are interested in this latter case as it generates a statistically stationary sequence of values 
of ε, and we can consider the probability density function (PDF), Pε (throughout we use PX to 
denote the PDF of a random variable X, and 〈X〉 to denote its expectation value).

The distribution of ε is most easily understood in terms of the random variable, Z = ln ε 
which is a sum of independent random numbers, zk = ln ak, each having a positive mean 
value. In the limit as Z → −∞ a master equation for Z becomes independent of Z, unless the 
probability distribution of the zk has ‘heavy tails’. This symmetry is respected by choosing a 
PDF of the form PZ = exp(αZ), for some coefficient α which must be positive to give a nor-
malisable probability density. So, for small ε, the PDF Pε, is given by a power-law of the form

Pε ∼ εγ (2)

where γ = α− 1. This argument showing that this scalar contraction process has a power-
law distribution for ε was previously presented in [1].

It is explained in [1] that the scalar contraction process has applications in dynamical sys-
tems theory, because the differential of a dynamical map is, by the chain rule, a product of the 
differentials for each iteration. In the case of a system with one degree of freedom, involving a 
chaotic map of one variable, it is reasonable to model this differential as a product of independ-
ent random numbers, analogous to equation (1). The resetting process addresses what happens 
when the separation of trajectories is no longer small and the linearisation approx imation fails. 
Since we are concerned with small separations, we ignore the dynamics while the separation 
becomes large and reset the process when the separation of trajectories becomes small again.

For a system with more than one degree of freedom the differential of the dynamical map 
is described by a product of stability matrices, rather than a product of scalars [2]. In this 
paper we generalise from the scalar case to consider a matrix contraction process involving a 
product of M × M  square matrices:

A =
ε0√
M

aNaN−1 . . . a2a1 (3)

where the ai are independent, identically distributed random matrices. When ε, the (Frobenius) 
norm of A, defined by

ε =
√

tr (ATA), (4)

equals or exceeds unity we reinitialise A to ε0/
√

M  times the identity matrix, so that the norm 
is ε0, and continue the iteration. This generates a sequence of values of ε characterized by a 
PDF, Pε. Analogy with the scalar contraction process suggests that Pε is a power-law, how-
ever we claim that for these matrix-valued contraction processes a more general form may be 
required to describe the PDF as ε → 0:

Pε ∼
(
ln

1
ε

)µ

εγ (5)

where µ is another parameter.
Our objective is to justify this assertion and to show how γ  and μ can be determined. We 

discuss this in detail for a specific class of models, but the construction can be generalised. 
We find that γ depends continuously on parameters of the model, but that μ is constant over 
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intervals of the parameters, exhibiting discontinuous jumps. In some cases we find µ = 0 so 
that Pε is a simple power-law.

The matrix contraction process has a natural application to describing the structure of 
strange attractors. In particular, it is possible to relate the distribution of ε to fractal dimen-
sions. We will consider these connections in detail in a companion paper [3], where we char-
acterise the structure of compact constellations of phase points and discuss their relation to 
Renyi dimensions of the attractor.

In order to simplify the discussion, we restrict ourselves to a model where A is a continu-
ous function of some time variable, t, and the factors in equation (3) are close to the identity 
so that we may write

A(t) =
ε0√
M
(I + δan)(I + δan−1) · · · (I + δa2)(I + δa1) (6)

where n ≡ Int(t/δt), with δt a small increment of time. The elements of the δan are assumed 
to have the following statistics

〈(δan)ij〉 = 0, 〈(δan)ij(δam)kl〉 = 2Dijkl δnmδt (7)

so that the evolution of A(t) is characterised by a diffusive process, with diffusion coefficients 
Dijkl.

We consider the simplest case where A(t) is a 2 × 2 matrix. The initial value of A(t), and 
the value it takes whenever it is reset, is a scalar multiple of the 2 × 2 identity matrix, equal to 

1√
2
ε0I, where ε0 is the initial value of the matrix norm and 0 < ε0 < 1.

2. Evolution of the process A(t)

The analysis of the evolution of A(t) may be simplified by using the singular value decomposi-
tion (SVD) of A(t). This can be written in the form (see [4])

A(t) = R1 ΛR2 (8)

where R1 ≡ R(θ1) and R2 ≡ R(θ2) are rotation matrices with

R(θ) =

(
cos θ sin θ

− sin θ cos θ

)
, (9)

and Λ is a diagonal matrix whose entires are the singular values λ1 and λ2:

Λ =

(
λ1 0
0 λ2

)
. (10)

The rotation angles and singular values depend on t.
Consider the process at times nδt and (n + 1)δt. Suppose that, in the time interval, the 

increments in matrices R1, R2 and Λ are, respectively, δR1, δR2, and δΛ (we have suppressed 
the arguments of the matrices for clarity). Then writing An for A(nδt) we have

An+1 = an+1An = (I + δan+1)An (11)

and the SVD of An+1 can be written as

An+1 = (R1 + δR1) (Λ+ δΛ) (R2 + δR2) . (12)

Since An = R1ΛR2, expanding and comparing these expressions for An+1 gives
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δan+1An =R1ΛδR2 + R1δΛR2 + δR1ΛR2

+ R1δΛδR2 + δR1ΛδR2 + δR1δΛR2

+ δR1δΛδR2.
 

(13)

Pre-multiplying this equation by R−1
1  and postmultiplying it by R−1

2 Λ−1 gives

δãn+1 =ΛδR2R−1
2 Λ−1 + δΛΛ−1 + R−1

1 δR1

+ δΛδR2R−1
2 Λ−1 + R−1

1 δR1ΛδR2R−1
2 Λ−1 + R−1

1 δR1δΛΛ−1

+ R−1
1 δR1δΛδR2R−1

2 Λ−1,

 

(14)

where

δãn+1 ≡ R1
−1δan+1R1 . (15)

Now, in terms of the increments in the singular values, δλi, we have

δΛΛ−1 =

(
δλ1
λ1

0
0 δλ2

λ2

)
= Λ−1δΛ (16)

and, to second order in the δθi,

R−1
i δRi =

(
− δθ2

i
2 δθi

−δθi − δθ2
i

2

)
= δRiR−1

i . (17)

Therefore, to the second order of increments, equation (14) gives

δãn+1 =




δλ1
λ1

− 1
2

(
δθ2

1 + δθ2
2

)
−

(
λ2
λ1

)
δθ1δθ2

(
1 + δλ2

λ2

)
δθ1 +

(
λ1
λ2

)(
1 + δλ1

λ1

)
δθ2

−
(

1 + δλ1
λ1

)
δθ1 −

(
λ2
λ1

)(
1 + δλ2

λ2

)
δθ2

δλ2
λ2

− 1
2

(
δθ2

1 + δθ2
2

)
−

(
λ1
λ2

)
δθ1δθ2


 .

 (18)
In the limit as δt → 0, equation (18) reduces to a system of coupled stochastic differential 
equations (SDEs) for the singular values and rotation angles:

dλ1

λ1
= dã11 +

1
2
(
dθ2

1 + dθ2
2

)
+ νdθ1dθ2 (19)

dλ2

λ2
= dã22 +

1
2
(
dθ2

1 + dθ2
2

)
+

(
1
ν

)
dθ1dθ2 (20)

dθ1 = −
1
ν

(
1 + dλ1

λ1

)
dã21 + ν

(
1 + dλ2

λ2

)
dã12

1
ν

(
1 + dλ1

λ1

)2
− ν

(
1 + dλ2

λ2

)2 (21)

dθ2 =

(
1 + dλ1

λ1

)
dã12 +

(
1 + dλ2

λ2

)
dã21

1
ν

(
1 + dλ1

λ1

)2
− ν

(
1 + dλ2

λ2

)2 (22)

where ν ≡ λ2/λ1 and we have suppressed the time subscript on the dãij (the remaining sub-
scripts denote the row and column position of the matrix element). It is convenient to replace 
the singular values with logarithmic variables Zi = lnλi: we have
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dZi =
dλi

λi
− 1

2

(
dλi

λi

)2

 (23)

then, retaining only terms upto the second order in small increments, we obtain the following 
set of SDEs for the increments of the Zi and θi in terms of the matrix elements, dãij. Defining

α ≡ ν

(ν2 − 1) (24)

we find:

dZ1 = dã11 −
1
2

dã2
11 −

α

2

[
1
ν

dã2
21 + 2νdã12dã21 + νdã2

12

]
 (25)

dZ2 = dã22 −
1
2

dã2
22 +

α

2

[
νdã2

12 +
2
ν

dã12dã21 +
1
ν

dã2
21

]
 (26)

and

dθ1 = α

[
νdã12 +

1
ν

dã21

]
+ α2dã11

[
2dã12 +

ν2 + 1
ν2 dã21

]

− α2dã22
[
2dã21 + (ν2 + 1)dã12

] 
(27)

dθ2 = −α [dã12 + dã21]−
α2

ν
dã11

[
2dã12 + (ν2 + 1)dã21

]

+ α2dã22

[
2νdã12 +

(ν2 + 1)
ν

dã21

]
.

 

(28)

These equations can now be used to produce a Fokker–Planck equation for the joint probabil-
ity density of the variables, Zi and θi. The same Fokker–Planck equation arises if we replace 
the second-order terms by their mean values so we simplify the equations by taking expecta-
tion values of the second-order terms. At this stage there is nothing to distinguish between 
λ1 and λ2. However we do expect that both λ1 and λ2 have non-zero and distinct Lyapunov 
exponents, so that either ν → 0 or ν → ∞, with a probability that approaches unity as t → ∞. 
Which case occurs is random and equiprobable. Let us assume that symmetry breaks so that 
ν → 0 in the long time limit. Accordingly, we consider this limit (noting that α/ν → −1 as 
ν → 0). When Z1 − Z2 is sufficiently large, we obtain the following Langevin equations:

dZ1 = dã11 −
1
2
〈dã2

11〉+
1
2
〈dã2

21〉 (29)

dZ2 = dã22 −
1
2
〈dã2

22〉 − 〈dã12dã21〉 −
1
2
〈dã2

21〉 (30)

dθ1 = −dã21 + 〈dã11dã21〉 (31)

dθ2 = 0 . (32)

We could express these relations in terms of the coefficients Dijkl defined in equation (7), but 
in the general case this is rather cumbersome because of the rotation matrices in (15). Note 
that θ2  freezes as t → ∞. This is to be expected because the direction along which the norm is 
most rapidly increasing is expected to approach a limit as t → ∞. Equations (29) and (30) are 
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independent of the variables Zi. These quantities therefore have a diffusive evolution at long 
times and we have

〈Zi(t)〉 = vit, 〈(Zi − vit)(Zj − vjt)〉 = 2Dijt . (33)
The joint probability density of the Zi after time t is therefore determined using a Green’s 
function

G(Z1, Z2, t) =
1

4π
√

det(D)t
exp [−S(Z, t)] (34)

where

S(Z, t) =
1
4t
(Z − vt) · D−1(Z − vt) . (35)

Because we have assumed that ν → 0, these equations are valid provided that Z1 − Z2 is suf-
ficiently large. Later, we shall see that the rare cases where Z1 − Z2 is small can dominate the 
probability distribution of ε, but a general treatment of this case is highly model-dependent. In 
section 5.3 we shall discuss the case where Z1 − Z2 is not large for a specific model.

3. Matrix contraction

3.1. Principles of calculation

Our objective is to understand the distribution of the norm, ε, for the matrix contraction pro-
cess. In terms of the singular values and the logarithmic variables the norm of the matrix A(t) 
is

ε =
√
λ2

1 + λ2
2 =

√
(exp(2Z1) + exp(2Z2)) . (36)

The PDF of ε may therefore be obtained from the joint PDF, P(Z1,Z2), of Z1 and Z2. In section 2 
we showed that Z = (Z1, Z2) undergoes a diffusive process with drift. The matrix contraction 
process may therefore be represented by a point, or a notional particle, in the (Z1, Z2) plane 
which undergoes advective diffusion, with drift velocity v and diffusion tensor D.

This process is illustrated schematically in figure  1. Since we have ordered the singu-
lar values so that Z1 � Z2, the line Z1 = Z2 is a reflecting boundary. The resetting process 
occurs when the norm of the matrix is equal to unity, which is represented by a contour B. 
The contour B is therefore an absorbing boundary. When the representative point reaches this 

absorbing boundary, A(t) is re-set to 1√
2
ε0I and the representative diffusing ‘particle’ is re-

introduced at the source at the point S =
(

ln(ε0/
√

2), ln(ε0/
√

2)
)
. The process may therefore 

be modelled by an ensemble of ‘particles’, which diffuse and drift in a wedge-like domain of 
the (Z1, Z2) plane, being reflected at one edge and absorbed at the other. The loss of particles 
by absorption on B is balanced by particles being injected at S.

Consider how to determine the probability density P(Z1,Z2) for the representative point to 
reach (Z1, Z2). Let p(Z1, Z2, t,∆t) be the probability density for the point to be at (Z1, Z2) at 
time t after it is emiitted from S, and to be absorbed on B after time t +∆t . The probability 
density P(Z1,Z2) is obtained by integrating over the times:

P(Z1,Z2) =

∫ ∞

0
dt
∫ ∞

0
d∆t p(Z1, Z2, t,∆t) . (37)
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Because the diffusion process is Markovian, we can write p as a product of two functions: 
p(Z1, Z2, t,∆t) = G(Z1, Z2, t) p2(Z1, Z2,∆t), where G(Z1, Z2, t) is the Green’s function (prob-
ability density to reach (Z1, Z2) after time t), and p2(Z1, Z2,∆t) is the probability density for 
a particle released at (Z1, Z2) to be absorbed on B after time ∆t . From this definition of p2, 
we have

∫ ∞

0
d∆t p2(Z1, Z2,∆t) = 1 (38)

so that

P(Z1,Z2) =

∫ ∞

0
dt G(Z1, Z2, t) . (39)

Strictly speaking, G(Z1, Z2, t) should be the Green’s function for reaching (Z1, Z2) after time 
t by a path that does not cross B. However, when we determine the probability density of ε, 
we find that we require P(Z1,Z2) for positions which are not close to the absorbing boundary B. 
In this case we can use the Green’s function for the non-absorbing boundary. In cases where 
the required values of (Z1, Z2) are not close to the reflecting line, we can use equation (34) to 
approximate the Green’s function.

Z1

Z2
y

x

(X, 0)

S

B

C

Z∗
v

Du∗

Figure 1. The matrix contraction process is represented by an ensemble of particles 
which undergo advective diffusion in the (Z1, Z2) plane, with drift velocity v and 
diffusion tensor D. The resetting operation corresponds to the diffusing particles being 
absorbed on the boundary B, and replaced by new particles at the source point S. The 
line Z1 = Z2 is a reflecting barrier. The curve C is a contour of the matrix norm, ε. Two 
representative paths are shown: the blue path shows a particle which is reflected and the 
black path shows a particle which is absorbed.
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Following the approach used in [5], we use the Laplace principle to estimate the integral 
in equation (39). At the time t∗ when the propagator is maximal, ∂S/∂t(Z, t∗) = 0, so that t∗ 
is given by

t∗ =

√
Z · D−1Z
v · D−1v

 (40)

and, therefore

P(Z1,Z2) ∼ exp [−Φ(Z)] (41)

where

Φ(Z) = S(Z, t∗) =
1
2

[√
Z · D−1Z

√
v · D−1v − Z · D−1v

]
. (42)

The function Φ(Z1, Z2) may be interpreted as the height, above the (Z1, Z2) plane, of a tilted 
conical surface which touches this plane along the ray Z = λv, where λ is a positive real 
parameter. Since this cone touches the plane in the direction of the drift vector v, ‘downwind’ 
of the origin, along any other ray through the origin Φ(Z1, Z2) must increase linearly with dis-
tance from the source. Therefore, asymptotically, P(Z1,Z2) decays exponentially with distance 
from the origin along such a ray. We remark that this construction for P(Z1,Z2) is similar in 
structure to the result obtained in [6].

Recall that we wish to determine the probability density for the matrix norm, ε, to reach a 
very small value. Accordingly, we consider the form of lines of constant ε in the (Z1, Z2) plane. 
These lines are determined from equation (36), together with the condition that Z1 � Z2. The 
contour C in figure 1 is one such line.

It is clear from the form of (36) that the contours of constant ε are asymptotic to the verti-
cal line Z1 = ln ε. The probability density to reach ε can therefore be obtained from that of 
X = ln ε, which can be estimated using the expression (41) on the segment of the asymptote 
lying on or below the line Z1 = Z2.

The PDF of X is obtained by applying Laplace’s principle again, so that we determine 
the value Z∗ that minimises Φ(Z1, Z2) on the line (Z1, Z2) = (X, X − Y), with 0 � Y < ∞. 
Because Φ(Z1, Z2) increases linearly along any ray, we find that the saddle point Z∗, at which 
Φ(Z) has a minimum value, lies along the direction, u∗ which minimises (42) on the line 
(Z1, Z2) = −(1, η), with η � 1. If the minimum lies at η∗, we have u∗ = −(1, η∗). Since 
Z∗ = |X|u∗, the probability density of X is therefore of the form

PX ∼ exp[−Φ(u∗)|X|] . (43)

This is consistent with Pε having a power-law distribution, and suggests that the exponent γ 
in (5) is

γ = [Φ(u∗)− 1] . (44)

In the discussion above it has been assumed that the saddle point Z∗, lies below the line 
Z1 = Z2, so that η∗ > 1, as illustrated schematically in figure 1. We refer to this case as the 
non-degenerate case. However, the minimum of Φ(Z1, Z2) along a line of constant Z1 may 
occur at a physically inaccesible point, i.e. one for which Z2 � Z1 or, equivalently, η∗ � 1. 
In this case, which we refer to as the degenerate case, the discussion in section 3 must be 
replaced by a consideration of what happens in the neighbourhood of the boundary point 
(Z1 = X, Z2 = X). This degenerate case is considered in section 4.
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3.2. Estimate for the pre-exponential factor

We have argued that PX ∼ exp(α|X|), with α = −Φ(u∗), where u∗ minimises Φ along 
the line Z1  =  X. The exponential form of PX is consistent with a power-law, Pε ∼ εγ, with 
γ = − (α+ 1), but it is necessary to examine the pre-exponential factor to determine the true 
asymptotic form of Pε as ε → 0. To this end, we consider in more detail the Laplace estimates 
of the integrals.

First consider the integration over t: the Laplace method applied to (39) yields

P(Z1,Z2) ∼
exp[−Φ(Z)]

t∗
√

2πdet(D)

(
∂2S
∂t2 (Z, t∗)

)−1/2

. (45)

The stationary point is at t∗, given by equation (40) and we find

∂2S
∂t2 (Z, t∗) =

(v · D−1v)3/2

2(Z · D−1Z)1/2 . (46)

It follows that

P(Z1,Z2) ∼ K(Z · D−1Z)−1/4 exp[−Φ(Z)] (47)

where K is independent of Z.
Now, in order to determine PX we integrate (47) down the asymptote Z1  =  X from the point 

(X, X), i.e. over Z2 with Z2  <  X, using the Laplace approximation for the second time. We are 
concerned only with the way in which PX depends on Z1, and not on the precise form of any 
coefficients. We can therefore avoid detailed calculation of coefficients by using power-count-
ing arguments. The expression for the second derivative of Φ(Z1, Z2) with respect to Z2 con-

tains terms proportional to (Z · D−1Z)−1/2, and other terms which scale as Z−1
1 . Performing 

the Gaussian integral therefore introduces a factor Z1/2
1  which cancels the Z1 dependence of 

the factor (Z · D−1Z)−1/4 in (47). At leading order, there is therefore no overall Z1 depend-
ence in the coefficient of the exponential term in the expression for PX and we conclude that 
PX ∼ exp[−Φ(u∗)|X|]. Therefore in the non-degenerate case the probability density Pε is of 
the form (5) with

γ = [Φ(u∗)− 1], µ = 0 . (48)

4. Treating the degenerate case

If there is no stationary point of Φ(Z) with Z2 < Z1, then the discussion in section 3.2 does not 
apply. We now consider what happens in this degenerate case.

4.1. Making a coordinate transformation

We have seen that the matrix multiplication process in our model corresponds to the diffusive 
evolution of the variables Z1 and Z2. From equation (7) it follows that the diffusion tensor 
is a symmetric 2 × 2 matrix with equal diagonal elements, it can therefore be diagonalised 
by rotating the coordinate axes through π/4. We therefore find it convenient to consider the 
advective diffusion process in the coordinate system x = (Z1 − Z2) and y = (Z1 + Z2), where 
the diffusion tensor is diagonal (see figure 1).
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In the x, y coordinate system, the source is at 
(
0, ln

(
ε2

0/2
))

, the y axis is a reflecting barrier 
and the absorbing boundary is approximated by the line y  =  −x. The equations of motion, 
(27), transform into

dx = (dã11 − dã22) +
1
2
(
〈dã2

22〉 − 〈dã2
11〉

)

+
ν

1 − ν2

[
ν〈dã2

12〉+
1
ν
〈da2

21〉+
(
ν +

1
ν

)
〈dã12dã21〉

]

dy = (dã11 + dã22)−
1
2
(
〈dã2

11〉+ 〈dã2
22〉

)
− 〈dã12dã21〉 .

 

(49)

From these it follows that the drift velocity in the y direction, vy, is a constant and the drift 
velocity in the x direction, vx, is a function of ν = exp(−x) and therefore of x. Also, the diffu-
sion tensor for the fluctuations of x and y is diagonal, with diffusion coefficients Dx, Dy, which 
are independent of x and y.

Therefore the dynamics in the y direction is simple: diffusion with a constant drift velocity. 
The dynamics in the x direction is more complex: diffusion with a drift velocity which is a 
function of x.

The motion in the x and y directions are independent. In section 4.2 we consider motion 
in the x direction alone, in order to describe the effect of the reflecting boundary at x  =  0. In 
section 4.3 we combine the results for the x and y motions to model the distribution of ln ε.

4.2. One-dimensional diffusion with reflecting wall

The x-coordinate of the particle representing the matrix contraction process undergoes diffu-
sion with a constant diffusion coefficient Dx, and drift with a position-dependent drift velocity, 
which is a function of x alone. This velocity, vx(x), approaches a positive constant value, v0, as 
x → ∞, and it approaches ∞ as x → 0, so that x  =  0 is a reflective barrier. We shall assume 
that the particle is released at x  =  x0 at time t  =  0 and we wish to determine the distribution 
Px(x,t) at later times.

The probability density satisfies

∂Px

∂t
= Dx

∂2Px

∂x2 − ∂

∂x
[vx(x)Px] . (50)

This equation can be transformed to a Hermitean form by writing

Px = exp[χ(x)]ψ(x, t), χ(x) =
1

2Dx

∫ x

dx′ vx(x′) . (51)

The function ψ(x, t) satisfies a Schrödinger-like equation, with a Hermitean operator Ĥ:

∂ψ

∂t
= Dx

∂2ψ

∂x2 − V(x)ψ ≡ −Ĥψ (52)

where

V(x) =
1
2

v′
x(x) +

[vx(x)]2

4Dx
. (53)

By introducing a nominal absorbing barrier at x  =  L we can develop the solution to equa-
tion (50) in the finite interval [0, L] as an infinite series of orthonormal eigenfunctions of the 
Hermitean operator Ĥ; we then choose L sufficiently large that its value may be assumed to 
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have no influence. The details of this approach may be found in section 7.1 of [7]; we merely 
quote the result:

Px(x, t)=
2
L
exp

(
v0(x − x0)

2Dx
− v2

0t
4Dx

) ∞∑
n=1

exp

(
−n2π2Dxt

L2

)
sin

(nπx
L

)
sin

(nπx0

L

)
.

 (54)
Approximating the sum by an integral gives

Px(x, t) =
1
L
exp

(
v0(x − x0)

2Dx
− v2

0t
4Dx

)∫ ∞

0
dn exp

(
−n2π2Dxt

L2

)

×
[
cos

(
nπ(x − x0)

L

)
− cos

(
nπ(x + x0)

L

)]
.

 

(55)

Using the standard integral
∫ ∞

−∞
dx exp(−αx2) cos(kx) =

√
π

α
exp(−k2/4α) (56)

we obtain the solution

Px(x, t) =
1√

4πDxt
exp

(
v0(x − x0)

2Dx
− v2

0t
4Dx

)

×
[
exp

(
− (x − x0)

2

4Dxt

)
− exp

(
− (x + x0)

2

4Dxt

)]
.

 

(57)

In the limit where x0 → 0, we have

Px(x, t) ∼ x0√
4πD3

x

x
t3/2 exp

(
v0x
2Dx

)
exp

(
− x2

4Dxt

)
exp

(
− v2

0t
4Dx

)
. (58)

4.3. Implications for degenerate case

We are interested in the probability density for the representative particle to reach the 
line in (Z1, Z2) space corresponding to a given value of X = ln ε. In terms of the variables 
x = (Z1 − Z2) and y = (Z1 + Z2) we have

X ≡ g(x, y) = ln
√
exp(y + x) + exp(y − x) =

y
2
+

1
2
ln (2 cosh x) . (59)

The probability density for X is

PX =

∫ ∞

0
dx

∫ ∞

0
dy δ (X − g(x, y)) P(x,y)(x, y)

= 2
∫ ∞

0
dx

∫ ∞

0
dy δ (y − 2X + ln(2 cosh x)) P(x,y)(x, y)

= 2
∫ ∞

0
dx P(x,y)(x, 2X − ln(2 cosh x)) .

 

(60)

Because the diffusive motions in the x and y coordinates are independent, the probability den-
sity to reach (x, y) after time t is expressed as a product:
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G(x, y, t) = Px(x, t)Py(y, t) . (61)

The probability density Py(y, t) is that for a simple advection-diffusion process:

Py(y, t) =
1√

4πDyt
exp

[
−
(y − vyt)2

4Dyt

]
. (62)

The probability density Px(x, t), which must take account of the fact that x  =  0 is a reflecting 
barrier, is given by equation (58). Therefore

PX = 2
∫ ∞

0
dx

∫ ∞

0
dt Px(x, t)Py(2X − ln(2 cosh x), t)

=
x0

2πDx
√

DxDy
exp

(
Xvy

Dy

)∫ ∞

0
dx x exp

(
v0x
2Dx

−
ln(2 cosh x)vy

2Dy

)

× I(x, 2X − ln(2 cosh x))
 

(63)

with

I(x, y) =
∫ ∞

0
dt

1
t2 exp

[
−
(
At +

B(x, y)
t

)]
 (64)

where

A =
v2

0

4Dx
+

v2
y

4Dy
, B(x, y) =

x2

4Dx
+

y2

4Dy
. (65)

Using the Laplace method to approximate the integral I(x, y), we find that the exponent in the 
integrand is minimised at time

t∗ =

√
B
A

 (66)

and the Laplace estimate for this integral is

I(x, y) =
√

π

2
A1/4

B3/4 exp[−2
√
AB] . (67)

We are concerned with determining the leading order behaviour as |X| → ∞. The Laplace 
approximation for I(x, 2X − ln(2 cosh x)) is valid when B is sufficiently large, that is when 
|X| is large. This is

I(x, 2X − ln(2 cosh x))

∼
√

π

2
A1/4

(
X2

Dy

)−3/4

× exp

[
−2

√
A

√
X2

Dy
− X ln(2 cosh x)

Dy
+

[ln(2 cosh x)]2

4Dy
+

x2

4Dx

]

∼
√

π

2
A1/4D3/4

y |X|−3/2 × exp

[
−2

√
A |X|√

Dy

√
1 − ln(2 cosh x)

X
+ O(X−2)

]

∼ C|X|−3/2 × exp

[
−2

√
A
Dy

(
|X|+ 1

2
ln(2 cosh x)

)]

 

(68)

where C is independent of X. From equations (63) and (67) we see that, to leading order as 
X → ∞, the asymptotic behaviour of PX is
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PX ∼ |X|−3/2 exp[−Λ|X|], Λ ≡

√
v2

0

DxDy
+

v2
y

D2
y
+

vy

Dy
, (69)

providing that the following integral is finite:

J =

∫ ∞

0
dx x exp

[
v0x
2Dx

−
vy

2Dy
ln(2 cosh x)−

√
A
Dy

ln(2 cosh x)

]
. (70)

This integral converges provided
√

v2
0

DxDy
+

v2
y

D2
y
− v0

Dy
+

vy

Dy
> 0 . (71)

This condition can be shown to be equivalent to the degeneracy condition, namely that at the 
stationary point (Z∗

1 , Z∗
2 ) of Φ(Z1, Z2), Z∗

2 > Z∗
1 . Because, in the (x, y) coordinate system, D is 

diagonal and the function Φ(x, y) has the form

Φ(x, y) =
1
2



√

v2
0

Dx
+

v2
y

Dy

√
x2

Dx
+

y2

Dy
−

(
xv0

Dx
+

yvy

Dy

)
 . (72)

Therefore, requiring that the minimum of Φ(x, y), on the line y  =  2X  −  x, is degenerate, and 
so lies at a negative value of x, gives (71). Note that equation (69) shows that in the degener-
ate case

Pε ∼
(
ln

1
ε

)− 3
2

εΛ−1 (73)

which is in the form of equation (5).

5. Advective flow model

5.1. Description of the model

As a specific example, consider the matrix representing the differential of a random flow. 
Suppose that the velocity field of the flow, u (x(t), t), is defined by a random potential φ (x(t), t) 
and a random stream function ψ (x(t), t) such that

u = ∇ ∧ψ + β∇φ, (74)

where β is a compressibility parameter. We assume that the fields ψ and φ are independent, 
have zero mean values and have the same correlation function, with rotationally and transla-
tionally invariant statistics. We consider the case where there are no temporal correlations, so 
that the position of a particle advected by the fluid, x(t), is a vector-valued random process 
satisfying

x (t + δt) = x(t) + u (x(t), t)
√
δt . (75)

This model was previously analysed in various works, for example [6, 8, 9]. As well as being 
a good model for the motion of particles advected on the surface of a chaotically stirred fluid, 
such as the experiments described in [10, 11], it is also a generic model for chaotic motion in 
two dimensions.

To leading order the separation δr = x1 − x0 of two nearby particles can be written as
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δr (t + δt) ≡ a(x0(t), t)δr(t) = [I + δa (x0(t), t)] δr(t) (76)

where

[δa (x0(t), t)]ij =
(
∂ui (x0(t), t)

∂xj

)√
δt. (77)

The elements of the matrix δa are random variables constructed from the second derivatives 
of the velocity field potentials evaluated at time t and position x0(t) :

δa =

(
ψxy + βφxx −ψyy + βφxy

ψxx + βφxy −ψxy + βφyy

)√
δt. (78)

All the derivatives have mean value zero, and are normalized so that their non-zero covari-
ances are:

〈ψ2
xx〉 = 〈ψ2

yy〉 = 3 , 〈ψxxψyy〉 = 〈ψ2
xy〉 = 1, (79)

and similarly for derivatives of φ. The non-zero elements of the diffusion tensor in equa-
tion (7) are therefore

D1111 = D2222 = (1 + 3β2)/2

D1212 = D2121 = (3 + β2)/2

D1122 = D1221 = (β2 − 1)/2 .

 (80)

Also, since the model is rotationally invariant, and since δãn , defined by (15) is a rotational 
transformation of δan the elements of δãn have the same statistics as those of δan.

From equations (78) and (79), using equations (29), (30) and (33), it follows that the drift 
velocity and diffusion tensor for this model are, respectively:

v =

(
1 − β2

−(1 + 3β2)

)
 (81)

D =
1
2

(
1 + 3β2, β2 − 1
β2 − 1, 1 + 3β2

)
. (82)

5.2. Theoretical predictions for γ

Using the above expressions for v and D to compute the function Φ(Z1, Z2) using equa-
tion (42) gives

Φ(Z1, Z2) =
1

2β

√
1 + 3β2

2(1 + β2)

√
(1 + 3β2)(Z2

1 + Z2
2) + 2(1 − β2)Z1Z2 + Z2 .

 

(83)

Considering the discussion immediately preceding equation (43), the critical point is

Z∗ = |X|u∗ = |X|
(
−1
−η∗

)
 (84)

where f ′(η∗) = 0 with f (η) ≡ Φ(−1,−η). Therefore, in terms of the compressibility param-
eter, β, we have
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η∗ =
7β4 + 10β2 − 1

(1 + 3β2)(1 − β2)
. (85)

Noting that

(η∗ − 1) =
2(1 + β2)(5β2 − 1)
(1 + 3β2)(1 − β2)

 (86)

if 1 > β > 1/
√

5 then we must have η∗ > 1 so that Z∗
2 < X = Z∗

1  and the critical point is non-
degenerate. However, if 0 � β < 1/

√
5 then η∗ < 1 so that Z∗

2 > X = Z∗
1 , in which case the 

critical point is degenerate.
In the non-degenerate case, we find that Φ(u∗) = f (η∗) = −2(β2 − 1)/(1 + 3β2) and, 

from equation (44),

γ =
2(1 − β2)

(1 + 3β2)
− 1 . (87)

In the degenerate case, setting η∗ = 1 so that Z∗
1 = Z∗

2 = X , and noting that, since X  <  0, √
Z∗

1 Z∗
2 = |X| = −X , gives Φ(u∗) =

√
(1 + 3β2)/(2β2)− 1 so that

γ =
1
β

√
1 + 3β2

2
− 2 . (88)

5.3. Exact equations for evolution of singular values

In order to understand the degenerate case in more detail, we need to consider a more refined 
treatment that does not assume Z1 > Z2. Using the statistics for the increments dãij, obtained 
from (78) and (79), the exact equations of motion in the the (x, y) coordinate system, equa-
tion (49), become:

dx = (dã11 − dã22) + 2(1 + β2)
1 + ν2

1 − ν2 dt

dy = (dã11 + dã22)− 4β2dt
 (89)

and the second moments of the increments are therefore

〈dx2〉 = 4(1 + β2)dt, 〈dy2〉 = 8β2dt, 〈dxdy〉 = 0 . (90)

Noting that ν = λ2/λ1 = exp(−x) we see that x and y make independent diffusive motions, 
with the following drift velocity and diffusion tensor:

v =

(
2(1 + β2)coth(x)

−4β2

)
, D =

(
2(1 + β2) 0

0 4β2

)
. (91)

These results are consistent with the remarks regarding vy and vx in section  4.1 and 4.2, 
respectively: vy is constant and, since vx(x) = 2(1 + β2)coth(x), we have v0 = 2(1 + β2) and 
vx → ∞ as x → 0.

6. Ratio of singular values

Thus far we have considered the PDF of the norm, ε, of the matrix product in the limit 
as ε → 0, showing that it is a power-law, with an additional logarithmic correction in the 
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degenerate case. We can also consider conditional probabilities. One interesting example is 
the distribution of the ratio of singular values λ2/λ1, for a given value of ε. Equivalently, we 
can consider the PDF of x = ∆Z = Z1 − Z2 = ln(λ1/λ2), for a given value of X = ln ε, this 
will be denoted P∆Z|X.

In the non-degenerate case it is clear from the discussion in section 3 that the ratio λ2/λ1 
approaches zero as ε → 0. In the degenerate case, however, the values of Z1 and Z2 are com-
parable and the distribution of ∆Z  is non-trivial. Accordingly, we concentrate on P∆Z|X for 
the degenerate case. To simplify the discussion we only give explicit formulae for the case 
where |∆Z/X| � 1.

The joint distribution of Z = (Z1, Z2) takes the form given by equation  (47), namely 
PZ(Z) ∼ (Z · D−1Z)−1/4 exp[−Φ(Z)]. We are interested in the distribution

P∆Z|X =
PZ(X, X −∆Z)∫∞

0 d∆Z PZ(X, X −∆Z)
. (92)

Provided the dependence of the pre-exponential factor in (47) on ∆Z  can be neglected and 
we have

P∆Z|X = K exp[Φ(X, X)− Φ(X, X −∆Z)] (93)

where K is a normalisation factor. Equation  (93) is based upon the assumption that the Zi 
undergo diffusion with a constant drift velocity. This assumption ceases to be valid close to 
the reflecting boundary, x  =  0 where ∆Z  is very small and the drift velocity is given by (91).

We are interested in finding a solution which matches (58) when x � 1 but which obeys 
the correct Fokker–Planck equation, namely

1
2(1 + β2)

∂tP = ∂2
x P − ∂x

[
1

tanh(x)
P
]

. (94)

Making the same transformation to Hermitean form as equations  (51)–(53), and setting 
ψ(x, t) = φ(x) exp[−v2

0t/4Dx] in order to find a solution which matches (58), we find that 
φ(x) satisfies:

φ′′ = − 1
4 sinh2(x)

φ. (95)

We require a solution φ(x) which approaches a constant as x → ∞ and which approaches 
zero as x → 0. Close to x  =  0 the differential equation is approximated by φ′′ = −φ/4x2. This 
has general solution φ(x) =

√
x(a + b ln(x)), where a and b are arbitrary constants. Since 

φ(x) → 0 as x → 0 we conclude that φ(x) ∼
√

x  as x → 0.
From equation (51) with vx = Dx coth(x) we have χ(x) = ln(

√
sinh(x)) and, therefore, 

exp(χ(x)) →
√

x as x → 0. Hence, from equations (51) and (92) we conclude that P∆Z|X is 
of the form

P∆Z|X = F(∆Z) exp[Φ(X, X)− Φ(X, X −∆Z)] (96)

where F(∆Z) ∼ ∆Z  for ∆Z � 1, but where F(∆Z) approaches a constant as ∆Z → ∞.

7. Numerical investigations of the advective flow model

Our analysis of the matrix contraction process has led us to consider a diffusive model for the 
evolution of the singular values. The predictions of this model are a consequence of the fact 
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that the diffusion process has an unusual combination of reflecting and absorbing boundary 
conditions. Because the problem is too complex for a rigorous analysis to be practicable, we 
have tested the predictions by means of numerical simulations.

The results of direct simulations of the matrix contraction process, using the random advec-
tion model discussed in section 5 to generate the ensemble of random matrices, are given in 
plots (a) and (b) of figure 2. In plots (c) and (d), which deal with the degenerate case, we show 
the results obtained using the exact equations of motion for the singular values, as given in 
section 5.3 (having first verified that these equations produce identical results to the direct 
simulation approach). These results show that the predictions for γ are correct for both the 
non-degenerate case (1 > β > 1/

√
5) and the degenerate case (0 < β < 1/

√
5).

Figure 3 shows the result of a simulation of the conditional PDF, P∆Z|X, where ∆Z = Z1 − Z2 
and X = ln(ε), for the degenerate case where β = 0.3, with ε0 = 0.01 and X  =  −10. The plot 
also shows segments of two fitted curves: the straight line P∆Z|X = K1∆Z  where K1 is a con-
stant (shown in black) and the exponential tail P∆Z|X = K2 exp [Φ(X, X)− Φ(X, X −∆Z)] 
where K2 is a constant (shown in blue). These demonstrate that the form of P∆Z|X is as given 
in equation (96).
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Figure 2. Simulation of the PDF of the matrix norm for the matrix contraction process, 
where the matrices are stability matrices for the random advection model discussed in 
section 5. The simulated distributions are plotted in red, the theoretical distributions 
are in blue. For (a), β = 0.8, and (b), β = 0.6, the stationary point is non-degenerate, 
and the distribution is a simple power-law, with equation (87) predicting γ = −0.753 
and γ = −0.385 respectively. For (c), β = 0.35, and (d), β = 0.25, the stationary point 
is degenerate and the PDF of ε has a factor 

(
ln 1

ε

)−3/2. Equation  (88) predicts that 
γ = 0.363 and γ = 1.082 respectively.

M Wilkinson and J Grant J. Phys. A: Math. Theor. 51 (2018) 105002



18

We remark that it is not actually necessary to compute the velocity field to simu-
late the matrices δa. Defining the vectors C = (C1, C2, C3) = (ψxx,ψyy,ψxy) and 
D = (D1, D2, D3) = (φxx,φyy,φxy) then the covariance matrix of C and of D is

K = 〈CiCj〉 =




3 1 0
1 3 0
0 0 1


 . (97)

Therefore if ξ = (ξ1, ξ2, ξ3) and η = (η1, η2, η3) are each vectors whose elements are uncorre-
lated Gaussian random variables with zero mean and unit variance, we may write C = K1/2ξ, 
and D = K1/2η, where

K1/2 =
1√
2




√
2 + 1

√
2 − 1 0√

2 − 1
√

2 + 1 0
0 0

√
2


 . (98)

We used this approach to simulate the stability matrices of the random flow model.

8. Conclusions

We have investigated a process which occurs naturally in models for chaotic dynamical sys-
tems, considering the distribution of small values of the norm of the product of stability fac-
tors, and resetting the process to the identity whenever the norm ε ceases to be small. For the 
scalar version of this problem, the distribution of ε is always a power-law [1]. In this paper we 
investigated case where the stability factors are matrices. We considered a model involving 
a product of matrices which are close to the identity, and which have diffusive fluctuations. 
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Figure 3. The result of a simulation of the conditional PDF P∆Z|X, for the degenerate 
case where β = 0.3, with ε0 = 0.01 and X  =  −10. The result is consistent with 
equation (96): for |∆Z/X| � 1 P∆Z|X ∼ ∆Z and for |∆Z/X| � 1 the distribution has 
an exponential tail.
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The analysis of this matrix contraction process proved to be a complex problem, and we spe-
cialised to the case of 2 × 2 matrices. We found that the distribution is of the form (5), with 
two possible values of μ (0 or  −3/2). It would be of interest to know about the distribution of 
ε for more general classes of matrix. We hypothesise that Pε is also of the form (5) in higher 
dimensional examples, but this will have to be tested on a case-by-case basis.
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