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a b s t r a c t

We report that trajectories of a one-dimensional model for inertial particles in a random
velocity field can remain stable for a surprisingly long time, despite the fact that the system
is chaotic. We provide a detailed quantitative description of this effect by developing
the large-deviation theory for fluctuations of the finite-time Lyapunov exponent of this
system. Specifically, the determination of the entropy function for the distribution reduces
to the analysis of a Schrödinger equation, which is tackled by semi-classical methods. The
system has ‘generic’ instability properties, and we consider the broader implications of our
observation of long-term stability in chaotic systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper concerns a phenomenon illustrated by the peculiar nature of the trajectories x(t) of inertial particles (Fig. 1) in a
one-dimensional model, which is described in detail later (Eq. (2)). The plot shows a very large number of trajectories, which
start with a uniform initial density. The trajectories clearly show a strong tendency to cluster, and the plot is color-coded
(online version) using a logarithmic density scale to illustrate the very intense accumulation of probability density in distinct
regions. Clustering of trajectories of a dynamical system is usually characterized by showing that the highest Lyapunov
exponent of the dynamics is negative [1], and conversely a positive Lyapunov exponent is the essential characteristic of
chaotic dynamics. The flow illustrated in Fig. 1, however, is known to have a positive Lyapunov exponent, so the verymarked
clustering is only transient, as trajectories must eventually separate exponentially.

Earlier work has shown that one-dimensional chaotic systems may exhibit a temporary convergence preceding their
eventual separation (see, e.g. [2,3]), and it has been argued that the predictability of dynamical systems can be very strongly
dependent on initial conditions [4,5]. Fig. 1, however, reveals that: (a) the convergence can lead to clusters of trajectories over
timeswhich aremuch longer than the expected divergence time, and (b) the simulated trajectories tend to form surprisingly
dense clusters. It is the principal objective of this paper to describe and quantify the extent to which the phase space of this
chaotic system is permeated by islands of transient stability, and to argue that the reasoning extends to typical chaotic
systems. It complements another work [6] which quantifies the intensity of the clustering effect, and which also shows
examples of similar clustering effects in other dynamical systems. In the concluding remarks,we argue that this phenomenon
may be applicable, in some circumstances, to pricing futures and insurance contracts.
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Fig. 1. Density of trajectories, x(t), for the dynamical system described by Eq. (2) with ξ = 0.08, L = 2π , and the dimensionless parameter (cf. Eq. (9)) is
ϵ = 1.7678. The color coding is chosen so that blue and yellow correspond to sparse and highly dense regions, respectively, and the color bar is in natural
logarithmic scale.

2. Distribution of sensitivity to initial conditions

The tendency of the trajectories to exhibit converging behavior is illustrated in Fig. 2, which shows the cumulative
probability, Π , for the finite-time Lyapunov exponent (FTLE) at long times. The FTLE at time t for a trajectory starting at
x0 is defined by

z(t) =
1
t
ln

⏐⏐⏐⏐ ∂xt∂x0

⏐⏐⏐⏐
x(0)=x0

, (1)

where xt denotes position at time t . The expectation value of z(t) in the limit as t → ∞ is termed the Lyapunov exponent:
Λ = limt→∞⟨z(t)⟩ (angular brackets denote ensemble averages throughout). When Λ > 0, there is an almost certain
exponential growth of infinitesimal separations of trajectories. For the example in Fig. 1, we haveΛ = 0.075 γ , where γ is
a positive parameter of the model (cf. Eq. (2)). Fig. 2 shows that the cumulative probability distribution for z is very broad:
even at time t = 41/γ , which is comparable to the duration of the trajectories shown in Fig. 1, the probability of z being
negative is as high as 0.25. We shall see how this very broad distribution can be quantified.

It is usually assumed that when the highest Lyapunov exponent is positive, the long-term behavior of a system is
inherently unpredictable because of exponential sensitivity to the initial conditions. However, the phenomenon illustrated
in Figs. 1 and 2 indicates that there may be basins in the space of initial conditions which attract a significant fraction of the
phase space, giving a final position which is highly insensitive to the initial conditions. If the initial conditions which are of
physical interest lie within one of these basins, the behavior of the system can be computed accurately for a time which is
many multiples of the inverse of the Lyapunov coefficient.

Next we describe the equations of motion which were used to generate Fig. 1. They correspond to

ẋ = v,

v̇ = γ [u(x, t) − v], (2)

where x and v are the position and velocity, respectively, of a small particle in a viscous fluid [7,8]; γ is a constant describing
the rate of damping of the motion of a small particle relative to the fluid and u(x, t) is a randomly fluctuating velocity field
of the fluid in which the particles are suspended. In Fig. 1 we simulated a velocity field where the correlation function
is white noise in time, satisfying ⟨u(x, t)⟩ = 0 and ⟨u(x, t)u(x′, t ′)⟩ = δ(t − t ′)C(x − x′). The correlation function is
C(∆x) = Dξ 2 exp

(
−∆x2/2ξ 2

)
, where D and ξ are constants. Trajectories which leave the interval [0, L] are returned there

by adding amultiple of L to x. Eq. (2) and relatedmodels have been studied intensively as descriptions of particles suspended
in turbulent flows: see [9] and [10] for reviews.

3. Large-deviation analysis

In the large-time limit the probability density of z is expected to be described by a large deviation approximation [11,12]:

P(z) ∼ exp[−tJ(z)], (3)

where J(z) is termed the entropy function or the rate function. Large deviation methods have previously been applied to
analyze the distribution of finite-time Lyapunov exponents in a variety of contexts: [13,14,15] are representative examples.
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Fig. 2. Cumulative probability,Π , for the value of the FTLE, z(t), at different times (in dimensionless units). The distribution of z(t) is very broad, even for
large values of t . The parameters are the same as for Fig. 1.

Fig. 3. The transformed probability density function − ln P(z)/t approaches a limit, termed the large deviation entropy function J(z). When t → ∞, we
find excellent agreement with a theoretical prediction for J(z) (dashed line).

In this Letter we are able to explain the broad distribution illustrated in Fig. 2 by determining the entropy function J(z): if the
second derivative, J ′′(Λ), is small, the FTLE has a very broad distribution, giving a quantitative explanation for Fig. 2. In Fig. 3
we transform the empirical distributions of z for different values of the time t to determine the entropy function J(z): the fact
that the curves for different values of t are quite accurately superimposed implies that the values of t displayed in Fig. 2 are
already sufficiently large for large deviation theory to be applicable. In Fig. 3 we also compare the entropy function obtained
from our empirical distributions of z with a theoretical curve (described below). There is very satisfactory agreement as
t → ∞, indicating that the effect illustrated in Figs. 1 and 2 has been understood quantitatively.

Our theoretical approach involves the analysis of a cumulant generating function, λ(k), which is defined by

⟨exp(kzt)⟩ = exp [tλ(k)] . (4)

The large deviation principle, as represented by Eq. (3), implies that

⟨exp(kzt)⟩ =

∫
∞

−∞

dz exp[t(kz − J(z))]. (5)

The function J has a minimum at z = Λ. A Laplace estimate shows that λ and J are a Legendre transform pair:

λ(k) = kz − J(z), J ′(z) = k. (6)

For the model described by Eq. (2), the cumulant can be determined as an eigenvalue of a differential equation. Following
the approach discussed in [16], we can obtain a Fokker–Planck equation for the variables Y and Z defined by Z =

δẋ
δx and
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Z = Ẏ :
∂ρ

∂t
= −∂Y (Zρ) + F̂ρ, (7)

where we have defined F̂ρ ≡ ∂Z (v(Z)ρ)+Dγ 2∂2Z ρ with v(Z) = −γ Z −Z2. Note that Y = zt , so that the Lyapunov exponent
isΛ = ⟨Z⟩. The cumulant λ(k) is the largest eigenvalue of the operator F̂ + kZ [17]:

F̂ρ(Z) + kZρ(Z) = λ(k)ρ(Z) . (8)

It is convenient to make a transformation of coordinates:

x = (γD)−1/2Z , ϵ =

√
D
γ
, E = −

λ

γ
. (9)

The parameter ϵ is a dimensionless measure of the strength of inertial effects in the model (2). It is known that the
Lyapunov exponent Λ is negative, indicating almost certain coalescence of paths, when ϵ < ϵc = 1.3309 . . . [18]. For
ϵ > ϵc, the Lyapunov exponent is positive so that the motion is chaotic. All of the illustrations in this paper are at
ϵ = 1.7678 ≈ 1.33 · · · × ϵc, where Λ ≈ 0.075 γ . In the coordinates defined by (9), the cumulant obeys an equation
of the form

∂x(∂x + x + ϵx2)ρ(x) + kϵxρ(x) + Eρ(x) = 0 . (10)

4. WKB method for cumulants

We now transform (10) so that it takes the form of a Schrödinger equation. Write F̂ = ∂x[∂x + x + ϵx2] and consider
a transformation Ĥ = exp[−Φ(x)]F̂ exp[Φ(x)] with Φ(x) = −x2/4 − ϵx3/6. The cumulant λ(k) is then obtained from the
ground-state eigenvalue E0 of a Hermitean operator

ψ ′′
− V (x)ψ = Eψ (11)

where λ = −E0/γ and the potential is

V (x) =
1
4
(x + ϵx2)2 −

1
2

− ϵ(k + 1)x . (12)

Note that Eq. (11) corresponds to a Schrödinger equation with m =
1
2 and h̄ = 1. We remark that, when ϵ is small, the

potential V (x) has two minima, close to x = 0 and to x = −1/ϵ.
The WKB method [19,20] provides a powerful tool for understanding the structure of solutions of the Schrödinger

equation. It works best when the potential energy is slowly varying. In the case of Eq. (11), ϵ is the small parameter of
WKB theory, because the minima of the potential move apart as ϵ → 0. In fact, a change of variable x = ϵX formally
reduces Eq. (11) to an expression where theψ ′′ term has a small coefficient. We will find, however, that WKBmethods yield
surprisingly accurate results even when ϵ is not small. Define the momentum

p(x) = +

√
V (x) − E, (13)

with p(x) = 0 where V (x) < E. The action integral is

S(x) =

∫ x

0
dx′ p(x′), (14)

and define a pair of WKB functions

φ±(x) =
1

√
p(x)

exp[±S(x)] . (15)

Then, aswe get further away from turning pointswhere p(x) = 0, the solutions of (11) are asymptotic to a linear combination
of WKB solutions f (x) = a+φ+(x) + a−φ−(x), where a± are approximately constant, except in the vicinity of turning points
where E = V (x).

The Schrödinger equation (11) has unusual boundary conditions. The gauge transformation implies that the solutions of
(10) and (11) are related by

ψ(x) = exp[−Φ(x)]ρ(x) = exp
[
x2

4
+ ϵ

x3

6

]
ρ(x) . (16)

Integration of Eq. (10) gives∫
∞

−∞

dx (kϵx + E)ρ(x) = 0, (17)
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so that ⟨x⟩ must be finite. Then Eq. (16) implies that the coefficient of a− must be zero as x → −∞ (so that ρ(x) does not
diverge). Furthermore, ρ(x) has an algebraic decay as x → ±∞ and the coefficients of these algebraic tails must be equal in
order for ⟨x⟩ to be finite. In terms of the coefficients a±, the appropriate boundary conditions are therefore limx→−∞a+ = 1
and limx→−∞a− = 0. At large positive values of x, we have

lim
x→+∞

{
a+ = exp(Σ)
a− = c (18)

where c is indeterminate, and whereΣ is defined by the finite limit of the following expression:

Σ = lim
x→∞

[S(x) − S(−x) −Φ(x) +Φ(−x)] . (19)

We can determine the smallest eigenvalue E(k) by using a shooting method to find a solution which satisfies (18). Solving
numerically (11) amounts to propagating a two-dimensional vector a(x) = (ψ(x), ψ ′(x)). We can take an initial condition
for xi large and negative in the form ai = (1, p(xi)) exp(Φ(xi)), corresponding to the asymptotic form of the solution
which decays as x → −∞. We numerically propagate this solution for increasing x, and find that the solution increases
exponentially. If the first element of the solution vector at xf ≫ 1 is a1(xf) = ψ(xf), we can express the eigenvalue condition
in the following form:

f (k, ϵ, E) ≡
ψ(xf) exp[Φ(xf)]
ψ(xi) exp[Φ(xi)]

= 1 . (20)

This shooting method does provide very accurate values for the cumulant λ = −γ E0. We used this method to obtain
the cumulant. Performing a Legendre transform gives the theoretical curve in Fig. 3. We remark that while the entropy
function is well approximated by a quadratic, corresponding to the FTLE having an approximately Gaussian distribution
for the parameter values reported here, our calculation can be used to accurately determine the non-Gaussian tails of the
distribution of the FTLE.

5. Bohr–Sommerfeld quantization for cumulant

It is also desirable to be able to make analytical estimates of the eigenvalues. The coefficients a± can be approximated
as changing discontinuously when x passes a turning point, where E − V (x) is zero (or close to zero). Depending on the
value of E there may be one or two double turning points. We must take account of the fact that the amplitudes a± can
change ‘discontinuously’ in the vicinity of turning points. Close to a double turning point, the equation is approximated by
a parabolic cylinder equation

d2ψ

dx2
−

1
4
x2ψ + Eψ = 0. (21)

We are interested in constructing a solution which is exponentially increasing as x increases, both when x → −∞ and
for x → +∞. We can use this solution in the form φ(x) = A(x) exp[S(x)]/

√
p(x) where A(x) is asymptotically constant as

x → ±∞, and we take A(−∞) = 1. By adapting a calculation due to Miller and Good [21], we find that as x → +∞, the
solution is approximated by A(x) = F (E), where he function F (E) is

F (E) =

√
2π

Γ ( 12 − E)
exp[E(1 − ln |E|)], (22)

and has zeros at E = n +
1
2 , n = 0, 1, 2, . . .. It approaches unity as E → −∞ and it oscillates approximately sinusoidally

with amplitude equal to 2 as E → +∞. Eq. (22) can be used to determine the amplitude of the exponentially increasing
solution after passing through a double turning point.

The eigenvalue condition (20) can also be expressed using the WKB approximation, leading to a generalization of the
Bohr–Sommerfeld quantization condition. We consider cases where the potential has a closely spaced pair of real turning
points, which will be treated as a double turning point, close to x = 0. The effect of the double turning point is to cause
the WKB amplitude of the exponentially increasing solution φ+(x) to change by a factor F (E), which we assume to be given
correctly by the expression for a parabolic potential, Eq. (22). Because the potential is not precisely parabolic at the double
turning point, the energy argument of F (E) should be replaced by F (σ/π ), where σ is a phase integral:

σ =

∫ x2

x1

dx
√
E − V (x), (23)

with x1 and x2 being the turning points where E = V (x). This is the most natural choice of replacement variable, because it
reproduces the standard Bohr–Sommerfeld condition in the case where the solution of the Schrödinger equation is square-
integrable. In the more general case that we consider, the WKB eigenvalues are the solutions of

F (σ/π ) exp(Σ) = f (24)
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Fig. 4. The generalized Bohr–Sommerfeld quantization condition, Eq. (24), produces remarkably accurate eigenvalues. The upper curves are eigenvalues
with the usual boundary condition (square-integrable wavefunction), with f = 0, comparing the numerically exact eigenvalue with that obtained by the
Bohr–Sommerfeld condition. The lower curves are for the criterion f = 1which applies to our cumulant eigenvalues. These data are for the case ϵ = 1.7678,
and the dashed line in Fig. 3 is the Legendre transform of the numerically exact eigenvalue for f = 1.

where f = 1 corresponds to the correct boundary condition for our eigenvalue equation. Eq. (24) is a generalization of
the usual Bohr–Sommerfeld condition, and it corresponds with the standard form of the Bohr–Sommerfeld criterion, which
applies to bound-state problems, when f = 0. We find that it does produce remarkably accurate eigenvalues, as illustrated
in Fig. 4, despite that fact that ϵ is not small. In order to emphasize the fact that the modified Bohr–Sommerfeld condition
does give very different eigenvalues, in Fig. 4 we display results for the conventional Bohr–Sommerfeld condition, f = 0,
as well as for f = 1, which approximates the cumulant. We see that the modified Bohr–Sommerfeld condition provides
accurate information about the cumulant λ(k) in terms of two integrals of the momentum

√
V (x) − E, namelyΣ and σ .

We remark that Fyodorov et al. have studied very closely related equations which occur inmodeling pinning of polymers,
including a related WKB analysis [22].

6. Discussion and generalization

We have demonstrated, for the system described by Eqs. (2), that the usual definition of chaos, based on the instability
of trajectories in the long time limit, does not preclude the existence of large islands of long term stability illustrated by the
clustering of trajectories in Fig. 1. We argued that this clustering is related to the broad distribution of finite-time Lyapunov
exponents, with a large probability of having negative values. In our analysis of Eqs. (2) we determined the cumulant, and
performed a Legendre transform to obtain the large-deviation entropy function of the FTLE. We further showed how Bohr–
Sommerfeld quantization gives an accurate approximation to the cumulant. This analytical approach allows considerable
scope for generalization, for example to determine analytical approximations to the correlation dimension which describes
the clustering of trajectories [23,16]. We expect to explore this in a subsequent publication. We also anticipate that the
methods will find quite direct application to clustering of particles advected on fluid surfaces, such as is seen in experiments
reported in [24] and [25].

We should consider the extent to which the behavior illustrated in Fig. 1 is expected to be a general feature of chaotic
dynamical systems. The differential structure of the equations of motion (2) has no properties which distinguish it from a
generic dynamical system, and our argument was based upon considering the distribution of the FTLE, which has generic
properties. In fact we can propose a simple criterion for observing the effect illustrated in Figs. 1 and 2. We showed that the
clustering is a consequence of there being a substantial probability to observe a negative FTLE at time t . Using Eq. (3), and
making a quadratic approximation for J , we have P(z) ∼ exp[−tJ ′′(z −Λ)2/2], which indicates that P(0) is of order unity up
to a dimensionless timescale given by:

t∗Λ =
2

J ′′(Λ)Λ
. (25)

The natural expectation is that transient clustering may occur on a timescale such that Λt is of order unity. However,
Eq. (25) indicates that the timescale over which transient clustering is observed may be much larger, and that J ′′(Λ)/Λ
is the relevant dimensionless measure of the clustering effect illustrated in Fig. 1. This quantity diverges at the transition to
chaos, and itmay remain large evenwhen the system is not close to a transition. For example, in Eqs. (2)we have 2/J ′′Λ ≈ 13
when ϵ/ϵc = 1.33. We remark that the dimensionless parameter in Eq. (25) can be expressed in terms of an integral of a
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correlation function:

t∗Λ =
2
Λ

∫
∞

−∞

dt
[
⟨Z(t)Z(0)⟩ −Λ2] (26)

where Z(t) =
d
dt [tz(t)]. This expression can be useful in cases, such as Eq. (2), where it is practicable to write an equation of

motion for Z(t) [23]. It is readily derived by estimating the variance of tz(t).
Smith and co-workers (see [5,4], and references cited therein) have emphasized thewide variability of the local instability

of chaotic dynamical systems, indicating that the Lyapunov exponent is not sufficient to characterize chaos. Our work
indicates that the transient stability can be very long-lived, and we propose that 1/J ′′Λ should be adopted as a parameter
characterizing the transient stability lifetime of chaotic systems. Our observation that trajectories of a generic chaotic system
maybe stable for surprisingly long times over a substantial domain of phase space implies in practice that small perturbations
may not be amplified, making the system ‘‘predictable’’ longer than naturally expected. One potential application of this
observation is to insurance or futures transactions, where someone takes a fee in exchange for writing a contract which
requires a payment to bemade if there is a loss or an unfavorable change in the price. The predictability of the behavior of the
system over very long times for certain initial conditions, implied by ourwork, may be used to gain advantage. In some areas,
such asweather-dependent risks, itmay be possible to understand the conditions leading to amuch smaller uncertainty than
expected, so that the risk in a contract would be reduced. Finally, we remark that there are relations between our results and
studies of the possibility of negative entropy production in systems out of equilibrium [26,27]. The twoprocesses are different
because entropy is a property of phase-space volume, whereas the Lyapunov exponent describes distances between phase
points. Whether the theoretical results developed in this context can lead to a better understanding of our system remains
to be explored.
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