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We investigate statistical properties of trails formed by a random process incorporating aggregation,
fragmentation, and diffusion. In this stochastic process, which takes place in one spatial dimension, two
neighboring trails may combine to form a larger one, and also one trail may split into two. In addition, trails move
diffusively. The model is defined by two parameters which quantify the fragmentation rate and the fragment
size. In the long-time limit, the system reaches a steady state, and our focus is the limiting distribution of trail
weights. We find that the density of trail weight has power-law tail P(w) ~ w™" for small weight w. We obtain
the exponent y analytically and find that it varies continuously with the two model parameters. The exponent
y can be positive or negative, so that in one range of parameters small-weight trails are abundant and in the

complementary range they are rare.
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I. INTRODUCTION

Processes by which objects may randomly merge or split
into smaller parts are found in a wide range of natural
and physical phenomena [1-6], including reversible poly-
merization [7-9], river networks [10,11], and force chains
[12,13]. Irreversible aggregation can lead to gelation where
a single aggregate forms and accounts for a finite fraction
of system mass [14—18], and irreversible fragmentation can
result in shattering where zero-mass fragments account for
a finite fraction of all mass [19-23]. When aggregation and
fragmentation compete, the system typically reaches a steady
state, and the precise balance between merger and breakup
controls the nature of the steady state [4,5,9].

Many studies of aggregation-fragmentation processes do
not implicitly account for aggregate mobility, nor do these
models allow for an underlying spatial structure [1]. In this
paper we investigate a stochastic process in which trajectories,
which we call “trails,” can diffuse, merge, or split. The trajec-
tories each carry a “weight,” or population, and the process can
serve as a model for migration trails of animals [24,25]. The
current investigation complements recent studies of chaotic
dynamics [26,27] which reveal distinctive trajectories, which
have qualitative and quantitative similarities to the trails which
are investigated here.

The stochastic process for the evolution of trails takes place
in one spatial dimension. In our model, both space and time
are discrete. At each time step, every trail may split, with
probability p, into two smaller trails or remain intact with the
complementary probability 1 — p (see Fig. 1). In the former
case, two trails are created with weights that are fractions r
and 1 — r of the weight of the parent trail, and, hence, the
overall weight is conserved. Trails also move randomly, and
essentially perform a simple random walk. Finally, when two
trails collide, they merge, with the overall weight being a
conserved quantity.

Regardless of the initial conditions, the system evolves
toward a steady state. We study the steady-state density P(w)
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of trails with weight w and find the power-law behavior,
P(w) ~ w7, (1)

for small weights, w — 0. Interestingly, the power-law expo-
nent varies continuously with the fragmentation probability p
and the fragmentation ratio r as y is a real root of the equation

3-p
1-p
Results of our numerical simulations are in excellent agree-
ment with this theoretical prediction. Depending on the
parameters p and r, the exponent y < 1 can be positive such
that small-weight trails are enhanced, or it can be negative
such that small-weight trails are suppressed. Our theoretical
approach assumes that spatial correlations are absent at the
steady state, and our extensive numerical simulations support
this assumption.

The rest of this paper is organized as follows. Section II
introduces the model, and Sec. III provides an elementary
derivation of the trail concentration. In Sec. IV, we analyze
the density of trail weights theoretically and numerically. We
obtain analytic expressions for moments of the trail density
and also obtain the distribution of small weights. Section V
addresses the weak fragmentation limit where aggregation and
fragmentation proceed independently. In this limit, dynamical
properties of voids between adjacent trails can be understood
using first-passage properties of an ordinary random walk. We
conclude in Sec. VI.

=yt = 2)

II. THE MODEL

Our aggregation-fragmentation-diffusion model takes place
on an unbounded lattice in one dimension. A lattice site labeled
i may be either vacant or occupied by a trail with weight w;.
The weight can also be understood as the density of a trail of
particles concentrated at location i. In the initial configuration,
each site is occupied by a trail with weight unity.
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FIG. 1. Illustration of (a) fragmentation with probability p, with
a fixed ratio between the two fragments, characterized by r, and
(b) random hopping with probability 1 — p.

The stochastic process has three elements. (i) Fragmen-
tation. With the probability p, a trail with weight w; splits
into two fragments with weights rw; and (1 —r)w;. One
of these fragments moves to neighboring site i — 1 and the
remaining fragment moves to neighboring site i + 1. The
two realizations are equally likely (see Fig. 1). (ii) Diffusion:
With the complementary probability 1 — p the trail remains
intact and it moves, with equal probabilities, to site i — 1
or to site i + 1. (iii) Aggregation. All sites are updated
simultaneously according to the fragmentation and diffusion
steps above. When two distinct trails arrive at the same site,
they immediately merge to form a new trail whose weight
equals the sum of those of the two original trails.

Hence, two parameters characterize the model: the frag-
mentation probability, p, with 0 < p < 1, and the fragmenta-
tion ratio, r, with 0 < r < 1. These parameters control how
the weight at each site evolves prior to the final aggregation
step,

with probability p,

w= with probability 1 — p.

rw,(1 —ryw
{w 3)

All trails are updated simultaneously, and time 7 is augmented
by one after each iteration, n — n + 1. Essentially, trails
perform a random walk (see Fig. 2), and importantly, mobility
is not coupled to weight. We stress that total trail weight
is conserved since both fragmentation and aggregation are
conservative processes.

Our Monte Carlo simulations were performed using a
regular lattice with N sites and periodic boundary conditions.
Initially, each site is occupied with a trail of unit weight. In
each iteration, all sites are updated simultaneously according
to the model rules. Namely, a trail jumps without splitting to a
neighboring site, with probability 1 — p, or decomposes into
two fragments, with probability p, as in Fig. 1 and Eq. (3). Two
trails landing at iteration n at the same location immediately
merge. Figure 2 shows trajectories in a space-time diagram
using simulation data.
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FIG. 2. A
fragmentation-diffusion process with » =0.01 and p = 0.05.
The color coding illustrates weights from low (blue) to high (yellow)
values, and the color bar is in natural logarithmic scale. Unoccupied
sites are dark purple.

numerical realization of the aggregation-

III. THE CONCENTRATION

We first study the trail concentration c, defined as fraction
of occupied sites. Our primary focus is the steady state, where
the competing processes of aggregation and fragmentation
balance each other. The fragmentation ratio r affects the trail
weight, but it does not affect the number of trails. Hence,
the concentration depends on the fragmentation probability
p alone. By assuming that occupations at neighboring sites
are not correlated, we can write a closed equation for the
concentration. In each fragmentation event a single trail
generates two trails and, conversely, in each aggregation event
two trails coalesce into one. At the steady state, the gain rate
and the loss rate balance,

2
pc:<1+pc> . 4)

2

The fragmentation rate on the left-hand side is proportional to
the concentration ¢ and the fragmentation probability p. The
aggregation rate equals the probability that two trails arrive
at the same site. The quantity in parentheses is the sum of
pc and 1_Tpc accounting for trail fragments and intact trails,
respectively (see Fig. 1). In writing the quadratic aggregation
term in (4), we make the assumption that the occupancy at a
site is not correlated with that at its next-nearest neighbor.

Rearranging Eq. (4) we find the trail concentration

c= 2P )

(1+p)?
Figure 3 shows a comparison of Eq. (5) with numerical
simulations of the model. The numerical results indicate that
spatial correlations in the trail concentration disappear in
the steady state. Qualitatively, the equilibrium concentration
of domain walls in the one-dimensional Ising model with
single-spin flip dynamics exhibits similar phenomenology
[28-30].
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FIG. 3. Numerically computed trail concentration c(p) versus
the fragmentation probability p. The dashed line corresponds to the
analytic expression (5), and the circles to Monte Carlo simulations
on a lattice of N = 10° sites.

The trail concentration has the following limiting behaviors:

4p
Cc =~
{1—ﬁ(1—p)2

The concentration vanishes linearly when p — 0, and, hence,
the average trail weight, which according to mass conservation
is inversely proportional to ¢, diverges in this limit. Also, the
fraction of vacant sites vanishes quadratically when p — 1.

p— 0,

p— L. ©

IV. THE WEIGHT DENSITY

We now turn to the main focus of our investigation, the
steady-state weight density. Our theory builds on the results
of Sec. III, and using the assumption that weights at different
sites are not correlated, we can accurately predict key statistical
properties of the weight density.

We define the weight density P(w) such that P(w)dw is
the fraction of sites occupied by a trail with weight in the
infinitesimal range [w : w 4+ dw]. Trail weight is conserved
throughout the aggregation-fragmentation-diffusion process
and, hence, the total weight density f dww P(w) is a constant.
The concentration ¢ equals the integrated weight density

o / ~ dwPw). )
0

The normalized quantity ¢~! P(w) is the probability distribu-
tion function for the weight.

Changes in trail weight occur in two stages: first, before
trails move and, then, after they move. In the first stage, trail
weight may change by fragmentation. Let G(w) be the weight
density of trails produced at the first stage. According to the
random process (3), we have

G(w) = BP(E) + 2 p(E ) ra—pPw). 8
r r 1—r 1—r

Here, the first two terms on the right-hand side account
for fragments and the last term accounts for intact trails.
As also follows from Eq. (8), weight conservation sets
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Jdww G(w) = [ dww P(w), and the fragmentation rule (3)
implies [ dwG(w) = (1+ p) [ dwP(w).

In the steady state, the trail density before an itera-
tion, P(w), is unchanged after one iteration of the com-
bined aggregation-fragmentation diffusion process. This is
expressed by the nonlinear-integral equation:

tp

P(w) = (1 — ! C)G(w) + %/ dvGw)G(w —v). (9)
0

The first term on the right-hand side accounts for the scenario
where there is no aggregation. It is a product of three factors:
(i) the quantity G(w)/2, which represents a trail produced at
a neighboring site and where the factor 1/2 accounts for the
equal distribution of weight from one site to its two neighbors;
(ii) the factor 2 accounting for two neighbors; and (iii) the
probability 1 — H_TPC that such a trail avoids aggregation. This
probability sums 1 — ¢ and 1%‘”c for a vacant and an occupied
next-nearest neighbor, respectively. The second term on the
right-hand side is the aggregation term; it is a convolution
of two identical terms of the form G(w)/2, with G(w) given
by (8). By integrating Eq. (9) over all weights, we recover
Eq. (4), and furthermore, this equation is consistent with mass
conservation.

We stress that substitution of Eq. (8) into Eq. (9) turns the
latter into a closed, nonlinear, equation for the weight density
P(w). Compared with Eq. (4), the steady-state equation (8)
makes an even stronger assumption that weights at different
sites are not correlated. Indeed, the convolution term in (9),
which accounts for the weight of aggregates, is quadratic in
the density P(w).

A. Moment analysis

To examine the validity of this no-correlation assumption,
we study the moments of the weight density,

M = /dwka(w). (10)

Of course, the zeroth moment corresponds to the total con-
centration My = c¢, and the first moment M; = 1 corresponds
to the total weight density which is a conserved quantity.
As shown in Fig. 3, the numerical simulations confirm the
predictions of (9) for the zeroth moment.

We now introduce the Laplace transform M(s)=
fooo dwe™" P(w), which is the generating function of the
moments,

00k
M =Y ( ks') M,. (11)
n=0 :

By first substituting the concentration (5) into (9), then
multiplying Eq. (9) with ¢™*%, and finally, integrating over
weight, we find that the Laplace transform obeys the nonlinear
equation

M) = L U + 0% (12)

s)=—U(s — s),
1+p 4

with U(s) = pM(rs)+ pM(s —rs)+ (1 — p)M(s). The
quantity U(s) is the Laplace transform U(s) =
J dwe " G(w), and it can be conveniently expressed in terms
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FIG. 4. The normalized second and third moments m,(n) =
M;>(n)/2 and m3(n) = M3(n)/6, versus (a) n~"/? and (b) n. Shown
are results of Monte Carlo simulations on a ring with 10% sites for
the case r = p = 1/2. A fourth-order polynomial fit to m,(n) versus
n~!/2 yields the asymptotic values 1.0001 and 1.0002 for m,(o0) and
m3(00), respectively.

of the moments M,

o (=)
Us)=Y_ M (13)
n=0 .

Here, u; = 1 — p[1 — r* — (1 — r)¥], and we quote the values
up=1+ p,u; = l,andu, =1 —2pr(1 —r).Using M(0) =
¢ and U(0) = (1 + p)c, we can recover from (12) the trail
concentration (5). Mass conservation dictates that M, equals
the initial mass density. In general, the moments satisfy the
recursion

k-1
1 k

My = ——— MMy, 14

[’ 4(1_uk)2(l)ulukl 1M (14)

=1

when k > 2. In particular, the second and third moments are
given by

M? 3us M
=—1 M= .
2(1 = ur) 4(1 = up)(1 — u3)

For the special case p =r = 1/2, with M; =1, we have
My = 8/9, M, = 2, and M3 = 6. Results of our Monte Carlo
simulations are in excellent agreement with these theoretical
predictions (see Fig. 4). We also verified numerically that (15)
holds for other values of the fragmentation probability p and
the fragmentation ratio » and for a variety of initial conditions.

We have also examined numerically the empty-interval
probability E; that / consecutive sites are vacant. As expected
given the absence of spatial correlations, we confirmed the
exponential behavior E; = E ’1, with E; = 1 — ¢ and ¢ given
in (5).

(15)

M,
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We also studied a continuous-time analog of the
aggregation-fragmentation-diffusion model with sequential
dynamics where sites are updated one at a time. The
continuous-time version admits an analytic solution for con-
centration, but apparently an exact solution for the weight
distribution is not feasible. We find that spatial correlations
do not vanish, and therefore, qualitative features of the steady
state are sensitive to the details of the dynamics.

Below, we discuss the small-weight statistics of the
trail density and provide numerical results that confirm the
theoretical predictions. Based on the simulation results, we
conclude that at the steady state, spatial correlations in trail
weight disappear. A similar behavior occurs in adsorption-
desorption processes [31-33], where gaps between adsorbed
particles in one dimension essentially undergo an aggregation-
fragmentation process, and also, in a related model for the
propagation of force chains in granular matter [13].

The results of Sec. III imply that in a finite system, every
configuration with N; occupied sites and N, vacant sites is
realized with the equilibrium probability ¢'(1 — )™ that
corresponds to a noninteracting two-state system. The moment
analysis indicates that an even stronger statement applies as
all states with the same configuration of weights are equally
probable. In essence, the weight density P(w) completely
describes the system.

B. Small-weight statistics

We now focus on the small-weight tail of the density P(w).
In the limit w — 0, the nonlinear terms become negligible. If
we substitute the concentration given in (5) into (9), we find
that the small-w tail of the steady-state density P(w) satisfies
the linear equation

1 /w 1 w 3—p
-P(—)+1 rP( )z —, Pw. {19

r r 1—r 1

From this equation we arrive at our main result, the power-law
behavior P(w) ~ w™”, with the exponent y being root of
Eq. (2). Clearly, the exponent y < 1 varies continuously with
the model parameters r and p. In the special case r = 1/2 we
have y =2 — (In fj—Z)/ In2.

The small-weight statistics also follow from the Laplace
transform. When M(s) is small, the nonlinear term in the
governing equation (12) is negligible, thereby leading to the
linear equation (1 + p)M(s) = (1 — p)U(s). This equation
implies the large-s decay M(s) ~ s?~!, which is equivalent
to the power-law behavior (1), with the exponent y root of
Eq. (2).

Our numerical simulations provide excellent support for
Eq. (2). Figure 5 demonstrates the power-law tail of the
weight density, and Fig. 6 compares the numerically computed
exponent y for different model parameters with the theoretical
prediction.

In a finite system of size N, the power-law tail (1)
holds in the range N~'/U=") « w « 1. The lower limit
follows from the criterion N fOZ dw P(w) ~ 1, which gives
an estimate for the scale z of the smallest weight in the system
[1]. The scaling law z ~ N ~/0=7) explains the large variation
in the extent of the power-law regime observed in Fig. 5.
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FIG. 5. The power-law tail of the weight density P(w). The
curves shown here correspond to different values of p, indicated in the
legend, and are obtained from Monte Carlo simulations on a lattice of
N = 10° sites. Dashed lines correspond to the theoretical predictions
of Egs. (1) and (2). The value of r was chosen to be r = 0.01. The
inset displays the case r = 0.25 and p = 0.7 for which y = —0.32.

Equation (2) implies that there are two distinct regimes of
behavior, since the exponent y vanishes when
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FIG. 6. (a) The exponent y for different values of p and r. The
lines correspond to the theoretical predictions, given by Eq. (2), for
different values of r; see the legend. The inset shows the region of
negative y as shaded. (b) When data are plotted as r*~! + (1 — r)7~!
they collapse into the curve (3 — p)/(1 — p) (solid line) in accord
with (2).
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As shown in Fig. 6(a), y can be positive, in which case, the den-
sity of small-weight trails is enhanced. In the complementary
regime, y is negative and small-weight trails are suppressed.
When p < 1/3 the exponent is always positive, y > 0.

The linear equation (16) reflects the nature of the fragmen-
tation process in which weight “cascades” from small trails
into even smaller trails according to w — rw,(1 — r)w . This
cascade process is balanced by aggregation of small trails into
larger trails. The power-law behavior is valid over a substantial
size range, and throughout this range only terms that are linear
in P(w) dominate Eq. (9). Qualitatively similar cascades,
where the full nonlinear theory reduces to a linear theory for
extreme-value statistics, are found in wave turbulence [34,35]
and inelastic gases [36]. Yet, the cascade process described
by Eq. (16) has two distinctive features. First, the tail (1)
can be vanishing or diverging. Second, in Eq. (9), the term
linear in P(w) is also proportional to the trail concentration
c. Consequently, the prefactor on the right-hand side of (16)
depends on the steady-state value (5) of the concentration,
and despite its linear nature, this equation does incorporate a
two-point correlation.

For completeness, we mention that we also numerically
studied the large-w tail of the weight density. In contrast with
the broad power-law tail that may occur at small weights,
we find that large weights are exponentially rare, P(w) ~
exp(—const. x w) for w >> 1. This behavior is consistent with
the large-size statistics found in irreversible aggregation [18]
and in the closely related g model for force chains [12,13].

C. Stochastic fragmentation

The fragmentation process in (3) is deterministic in the
sense that the sizes of the two trail fragments are fixed
fractions of the original trail. We briefly mention a natural
counterpart, stochastic fragmentation, where the fraction
0 <r <1 is drawn from the distribution n(r). We require
that the distribution be (i) normalized [ drn(r) =1 and
(i1) symmetric n(r) = n(1 — r). It is straightforward to gener-
alize the above theoretical analysis to stochastic fragmentation,
and, in particular, Eq. (2) becomes

1 _
/ dmnr’ "+ (1 —rY 1= 37p, (18)
0 1—-p

For the so-called random-scission model [1,13] where the
fraction r is uniformly distributed, n(r) = 1, we find

1—

y=2-_F2 (19)

3-p
In this case, the exponent y satisfies 0 < y < 2/3, and the
small-weight tail of the distribution is enhanced, regardless
of p.

V. WEAK FRAGMENTATION

We now analyze the small- p case and show that aggregation
and fragmentation proceed independently in this regime. In the
limit p — O, the trail concentration vanishes; see Eq. (5), and,
consequently, P(w) & p. By keeping dominant terms of the
order O(p?) and neglecting subdominant terms of the orders
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O(p?) and O(p*), we find that Eq. (9) simplifies to
0=4 1P<w> () - pw)
=°P r r 1—r 1—r W

+ / dyP(y)P(w — y) — 2cP(w). (20)
0

The first two (linear) terms account for fragmentation, while
the next two (nonlinear) terms account for aggregation between
two intact trails. Thus, fragmentation and aggregation are
not coupled when fragmentation is weak. As a check of
self-consistency, we integrate (20) to find =4 pc. Hence, the
concentration is proportional to the fragmentation probability
¢ ~4p asin (6).

In the limit w — 0, the nonlinear term in Eq. (20) is
negligible, and the linear terms satisfy

lp<£> 41 p(L> =3P(w) 2D
r 1—r ’

r 1—r

This linear equation accepts a solution of algebraic form
P(w) ~ w™7 for small w, where the exponent y < 1 is root
of the equation

A=yt =3. (22)
Figure 7 shows a plot of y(r) as given by the above equation,
where we observe that the minimal value y =2 — % is

attained when r = 1/2.

As discussed above, when fragmentation is weak, the trail
concentration is low. Moreover, since fragmentation events are
rare, fragmentation and aggregation proceed independently. In
this limit, it is relatively simple to characterize the dynamics of
voids between adjacent trails. In the limit p — O, trails merely
perform a random walk, and when two trails come to within
distance of two sites, there is a finite probability for the two to
coalesce. Hence, the problem is equivalent to a first-passage
process of a simple random walk (the distance between two
independent random walks itself performs a random walk).
Let T be the lifetime of a void between two trails and Q(T') be
the probability a void has a lifetime 7T [see Fig. 8(a)]. Using
the well-known return probability of a random walk [37], we
conclude [see Fig. 8(b)]

o(T) ~ T2, (23)

PHYSICAL REVIEW E 96, 012142 (2017)

Furthermore, we can also consider the area S of a void in a
space-time diagram [see Fig. 8(a)]. Because the edges of the
void are random walks, the width of the void scales as T'!/2
and consequently the area scales as S ~ T3/2. Using R(S) for
the probability of observing a void with area S, the scaling
behavior [see Fig. 8(c)],

R(S) ~ §~43, (24)

follows immediately from (23). Our numerical simulation
results, shown in Figs. 8(b) and 8(c), support the first-passage
behaviors (23) and (24).

VI. DISCUSSION

We have studied an aggregation-fragmentation-diffusion
random process that describes the evolution of trails of
particles with local weight density. In our model, a trail may
fragment into two or it may stay intact. In addition, trails
move randomly, essentially performing diffusion. Aggregation
occurs when two trails arrive at the same location. The
model is characterized by two parameters: the fragmentation
probability, which controls the relative strength of the frag-
mentation process, and the fragmentation ratio, which controls
the size of the produced fragments. An equilibrium state is
found, where the two competing processes of aggregation
and fragmentation balance each other. In this steady state,
the small-weight tail of the fragment density has a power-law
tail. The exponent governing this tail varies continuously with
the model parameters.

At the core of our theoretical approach are the assumptions
that the occupancy and even the weights of trails at different
locations are uncorrelated. Our extensive numerical simula-
tions confirm this behavior. The aggregation-fragmentation-
diffusion model therefore provides a rare case where a discrete-
time model admits an exact solution for the steady-state
behavior, despite the fact that the time-dependent behavior
involves nontrivial spatial correlations.

Ultimately, the system achieves an equilibrium state, where
aggregation and fragmentation are in perfect balance, with
the remarkable property that all configurations with the same
number of trails are equally probable. Usually, it is possible to
trace such behavior to a detailed balance condition where there
is zero net flux between any two microscopic configurations
of the system. It is an interesting challenge to construct an
equivalent condition for our synchronous dynamics.

Interestingly, our numerical results also show that spatial
correlations do exist at all times and only at the steady state do
they strictly vanish. It is straightforward to convert the steady-
state equation (9) into a discrete-time recursion equation
for the weight density. Such recursion equation implies fast
exponential relaxation toward the steady state, d My/dn ~
exp[—(1 — ux)n] for k > 2. However, our simulations reveal
slow algebraic relaxation instead (Fig. 4) d My /dn ~ n=3/2, for
k > 2. Spatial correlations, which steadily diminish with time
and eventually disappear altogether, are responsible for slow
relaxation toward the steady state. The diffusive relaxation
we observe numerically is consistent with the first-passage
behavior (23) and is reminiscent of time-dependent behavior
in reaction-diffusion processes involving aggregation in one
spatial dimension [38—40].
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FIG. 8. (a) Voids are defined as closed regions of unoccupied sites, and they are defined by an area S (blue region) and duration 7. (b),(c)
Probability distribution function of the void durations and sizes, respectively, for two different values of p and r = 0.01. Solid red lines

correspond to a power law with exponents —3/2 (b) and —4/3 (c).

The aggregation-fragmentation-diffusion process provides
insight into the highly inhomogeneous distributions of parti-
cles advected by turbulent, compressible flows. Specifically,
we refer here to a model of transport of inertial particles by a
turbulent fluid [41-46],

X =0,

v = plu(x,t) — v, (25)

where @ is a constant, proportional to the fluid viscosity,
describing the rate of damping of motion of a small particle
relative to the fluid and u(x,t) is the randomly fluctuating
velocity field of the fluid in which the particles are suspended.
The velocity is characterized by the correlations (u(x,t)) = 0
and (u(x,t)u(x’,t")) = C(x — x")8(t — t’), where the angular
brackets denote ensemble averages, and the function C is a
Gaussian.

Numerical studies of (25) reveal particle trajectories that
share many similarities with the trails displayed in Fig. 2:

Particle trajectories may meander in space, merge, or split
[26,27]. There are also strong quantitative similarities between
the two models. The distribution of empty regions with area S
in the space-time diagram defined in Fig. 8(a) is characterized
by a power-law tail with an exponent 4/3 [26], in agreement
with Eq. (24). Further, the distribution of trajectories with
weight w has a power-law tail as in (1) with a positive
exponent y . It would be interesting to explore further analogies
between the aggregation-fragmentation-diffusion model and
the theoretical model for particle transport by compressible
turbulent flows. The resulting theoretical understanding could
provide insight on experimental observations on the dispersion
of particles on a surface flow [47].
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