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Abstract – This paper discusses the evolution of the droplet size distribution for a liquid-in-gas
aerosol contained in a Rayleigh-Bénard cell. It introduces a non-collisional model for broadening
the droplet size distribution, termed “convective ripening”. The paper also considers the initiation
of rainfall from ice-free cumulus clouds. It is argued that while collisional mechanisms cannot ex-
plain the production of rain from clouds with water droplet diameters of 20 µm, the non-collisional
convective ripening mechanism gives a much faster route to increasing the size of the small fraction
of droplets that grow into raindrops.

Copyright c© EPLA, 2014

Introduction. – The dynamics of the onset of rainfall
from ice-free (“warm”) cumulus clouds is poorly under-
stood [1–4]. Coalescence of droplets which collide due
to differential rates of gravitational settling is effective
for droplets with radius a above 50μm, and leads to a
runaway growth to produce millimetre-scale raindrops [5].
Many clouds are found to contain droplets with radius of
approximately 8–15μm [1–4], which result from primary
condensation onto aerosol nuclei. For droplets in this size
range, growth by collisional coalescence is slow because
the product of the collision rate and the coalescence effi-
ciency is low [1]. This makes it difficult to explain obser-
vations of the rapid onset of rainfall from warm cumulus
clouds. (Rainfall from ice-bearing clouds is easier to ex-
plain: see [1] for a discussion of the Bergeron process.)

It is, therefore, desirable to formulate models for
non-collisional growth of water droplets, in which some
droplets are able to grow at the expense of others shrink-
ing, by transferring water molecules between droplets as
water vapour. Ostwald ripening [6] is one such mecha-
nism, but it is too slow to be significant in terrestrial
clouds [7,8], while it is relevant to test-tube models for
rainfall [9]. It has been suggested that condensation pro-
cesses may be able to cause the droplet size distribution
to broaden due to fluctuations in the degree of supersat-
uration. This possibility has been addressed by numerous
authors: see, for example, [10–18]. These investigations
have used numerical simulations, and it is difficult to draw
conclusions which are applicable to real clouds because of
the limited range of size scales which can be simulated

reliably. A difficulty with most of these models is that
the droplets both grow and shrink as the supersatura-
tion fluctuates. This work, however, introduces a model
for which there is an asymmetry between growth and
shrinkage.

This paper introduces a benchmark model for the broad-
ening of the droplet size distribution of an aerosol due to
convection. This process will be termed “convective ripen-
ing” to distinguish it from Ostwald ripening. This work
considers how the process works in the simplest relevant
model, which is an aerosol in a Rayleigh-Bénard convec-
tion cell. As well as having fewer physical parameters than
a cloud, this system can be subject to a carefully controlled
laboratory investigation.

Having described a non-collisional model for droplet
growth, this will be applied to rain initiation from ice-
free (“warm”) cumulus clouds. An important aspect of
this problem is that the conversion of a microscopic water
droplet into a rain droplet is a very rare event (this fact
was previously emphasised by Kostinski and Shaw [5]).
However, the growth of a droplet to the stage where run-
away growth occurs is a multi-stage process. The probabil-
ity for the required number of collisions is extremely small.
It is shown that droplets can grow much more rapidly by
the convective ripening mechanism.

Discussions of convection processes within clouds often
involve the complex and poorly understood issue of “en-
trainment” of air into a cloud (see, for example, [14,18]).
This paper argues that a Rayleigh-Bénard cell appears to
be a sufficient model to understand rainfall from warm
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cumulus clouds, implying that hypotheses about entrain-
ment do not appear to be necessary.

The convection cell model. – Consider a Rayleigh-
Bénard convection cell, in which the working fluid is a
gas (air, say) containing an aerosol suspension of liquid
droplets (water, say). The height of the cell is h and the
temperature difference between the upper and lower plates
is ∆Th. It is assumed that the horizontal dimensions of
the cell are large compared to h. The gas has volume-
specific heat capacity at constant pressure Cg, density ρg,
kinematic viscosity ν and thermal diffusivity is Dth. It
will be assumed the convection in the container is in a
turbulent regime, with rate of dissipation per unit mass ǫ.

The cell contains an aerosol of liquid droplets with den-
sity ρl and volume-specific heat of evaporation L. The
vapour of the aerosol liquid in the carrier gas has diffu-
sivity D. The number density of droplets is n0, and the
probability density function for the droplet radius a at
time t is P (a, t).

The objective is to understand how convection affects
the distribution of sizes of the aerosol droplets. It will be
assumed that the rate of collisions between the droplets is
negligible. It will also be assumed that collisions of aerosol
droplets with the walls of the container is not a significant
process. The validity of this assumption is not critical to
using this system as a model for cloud physics (because
there is no material container in that context).

In order to understand the ripening of the droplet
size distribution it is necessary to consider first how the
aerosols responds to changes in the temperature of the
surrounding gas, and then how the convection process in-
fluences the temperature.

Response to temperature fluctuations. – Changes
in the temperature T of the surrounding gas cause the size
of the droplets to change due to condensation or evapo-
ration. This is characterised by two parameters, T0 and
τeq, which describe, respectively, the sensitivity and the
timescale of the response. It will be shown that if the
majority of the aerosol droplets have radius close to a0,
the change δa0 of the equilibrium radius in response to a
temperature increment δT satisfies

δa0

a0

= −
δT

T0

(1)

to leading order in δT , and that the change in droplet ra-
dius occurs on a timescale τeq. In the following expressions
for both T0 and τeq are obtained. Equivalent calculations
can be found in many earlier works (reviewed in [1–4], see
for example, [8,18]), but with differences in physical mo-
tivation and notation. A brief derivation is given here to
make this paper unambiguous and self-contained.

The volume fraction of water molecules in the air, Φ,
may be assumed to be uniform throughout the container
because the system is well mixed by convection. This is
the sum of contributions from water in the liquid and the

vapour phase:
Φ = Φl + Φv. (2)

The equilibrium vapour content above a flat liquid surface
at temperature T is denoted by Φeq(T ), and there may be
a degree of supersaturation, denoted by s. It is assumed
that the droplets are sufficiently large that curvature and
hygroscopic effects of the aerosol condensation nuclei can
be neglected. The volume fractions of water in the vapour
and liquid phases are written in the form

Φv = Φeq(T ) + s, Φl =
4π

3
n0〈a

3〉 (3)

(throughout this paper 〈X〉 denotes the expectation value
of any quantity X). If the temperature of the gas changes,
the sizes of the droplets will change due to condensation
or evaporation. The rate of the condensation process is
determined by diffusion of vapour. The radius of a droplet
changes at a rate

da

dt
= jv = −

D

a
∆Φv, (4)

where jv is the volume flux density of condensing
molecules and ∆Φv is the volume fraction on the surface
of the droplet minus the volume fraction in the bulk of
the gas phase. The surface of the droplet is in quasi-static
equilibrium with the surrounding fluid, so there is no su-
persaturation at the surface. However, the temperature
of the liquid droplet may be increased by an amount ∆T
due to the latent heat of water condensing on the surface,
so that

∆Φv =
dΦeq

dT
∆T − s. (5)

The thermal flux density due to the latent heat is

jth = −L
da

dt
= −

DthCg

a
∆T. (6)

Combining (5) and (6) gives a simple expression relating
the rate of droplet growth to the supersaturation

da

dt
=

Deff

a
s, (7)

where the effective diffusion constant is

Deff =
D

1 + Θ
, Θ =

DL

DthCg

dΦeq

dT
. (8)

This treatment neglected the possibility of cross-coupling
between thermal and mass fluxes (the Soret effect). This
could be incorporated with a simple modification of the
theory, but the coefficients of the off-diagonal terms of the
transport matrix do not appear to have been definitively
determined.

In the case where the temperature of the system varies
extremely slowly, the supersaturation is always negligible,
and the relation between droplet size and temperature is
determined by writing Φ = 4πn0a

3
0(T )/3+Φeq(T ) so that
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a small change in temperature δT results in a small change
of radius δa0 given by (1), with coefficient

T0 = 3Φl

(

dΦeq

dT

)

−1

. (9)

Now consider the effect of varying the temperature of the
aerosol at a finite rate, but still assuming that it is spatially
homogeneous: write T = T0 + δT (t), a = a0(T0) + δa(t),
so that

Φ =
4π

3
n0(a0 + δa)3 + Φeq(T0) +

dΦeq

dT
δT (t) + s. (10)

Taking the leading order in the small fluctuation δa and
using (7) yields the following equation for the response of
the droplets to fluctuations in temperature:

dδa

dt
= −

1

τeq

δa −
a0

τeqT0

δT (t), (11)

where the relaxation time is

τeq =
a2
0

3ΦlDeff

=
1

4πn0a0Deff

. (12)

Now consider how to estimate the parameters T0 and
τeq. The rate of change of the saturation volume frac-
tion is obtained from the Clausius-Clapeyron relation,
dp/dT = L/T∆V , where ∆V is the volume change on
a phase transition. Assuming that the vapour pressure is
sufficiently low that the ideal gas law is applicable,

p =
RT

Vm

Φeq, (13)

where Vm is the molar volume of the liquid. Also, the vol-
ume change per mole associated with the phase transition
is ∆V = Vm/Φeq. The Clausius-Clapeyron equation can
therefore be written in the form

dp

dT
=

L

T
Φeq. (14)

Comparing (13) and (14) yields an expression for
dΦeq/dT , and hence

T0 =
3RT

LVm − RT

Φl

Φeq

T. (15)

For water at T = 278K, L = 2.4 × 109 Jm−3, Cg =
800 Jm−3, Vm = 1.8 × 10−5 m3mol−1, Φeq = 7 × 10−6,
D = 2.5× 10−5 m2s−1 and Dth = 1.9× 10−5 m2s−1 [1,19].
These data yield Θ ≈ 1. If the liquid water content is
10% of the total water content, then T0 ≈ 5K: that
is, the droplet size is very sensitive to changes of tem-
perature. If the droplets are of size a = 10μm and
density n0 = 4 × 108 m−3 (which are typical values for
clouds [1,2,4]), the equilibration time is τeq = 1.6 s.

Ripening in a turbulent convection cell. – Now
consider the response of the aerosol to convective motion
in the cell. This is a consequence of how the temperature

changes along the trajectories of the aerosol droplets
(which are assumed to be advected by the flow).

Turbulent convection in a Rayleigh-Bénard cell is re-
viewed in [20–22]. The upper and lower plates are at
temperatures Tup and Tlow, respectively. The expectation
value of the temperature is close to Tav = (Tup + Tlow)/2
(with small logarithmic corrections) [23], except in the
vicinity of the upper and lower plates, and at any time
most of the gas in the convection cell is at a tempera-
ture close to Tav. Gas which is in contact with the lower
plate of the cell is heated to a temperature Tav + ∆T
(where 0 ≤ ∆T ≤ ∆Th/2), and joins a plume of rising
gas. The plumes are mixed by the turbulence in the in-
terior of the cell. The plumes form fronts and later ten-
drils of approximately homogenous gas, which remain at a
temperature close to the temperature that they had upon
separation from the top or bottom plate until the last
stage of the mixing process. In the final stage of mixing a
tendril formed by the plume mixes rapidly with gas from
the interior of the cell, which is at a temperature close
to Tav. The final stage of mixing occurs very rapidly, on
the Kolmogorov timescale, τK =

√

ν/ǫ. The time τmix

between a plume separating and the gas surrounding a
given aerosol particle becoming mixed is highly variable:
τh ≫ τmix ≫ τK, where τh = (h2/ǫ)1/3 is the turnover
time of the largest eddies. The equilibration timescale
will be assumed to lie between the timescales describing
the flow: τmix ≫ τeq ≫ τK.

The consequence of this picture is that droplets in a
rising plume are at a temperature, Tav + ∆T , and while
the plume forms they equilibrate to a smaller radius: to
leading order

a− = a0 − Λ∆T, Λ ≡
a0

T0

. (16)

The gas in the plume rises, without cooling due to heat
exchange, until it reaches the interior of the cell. After a
timescale τmix, the gas in the plume starts to mix with the
gas in the interior. This mixing happens on a timescale
which is short compared to the phase equilibration time,
so that droplets of size a− are mixed with the droplets in
the bulk, which are of size a0. Similarly, plumes of cold gas
which form on the upper plate at a temperature Tav−∆T
inject larger droplets, of radius a+ = a0 + Λ∆T . The
final stage of this mixing happens on a timescale of the
Kolmogorov time τK, which is small compared to the time
τeq required for aerosol droplets to come into equilibrium.
It follows that while the temperature fluctuations asso-
ciated with the plume are dissipated, fluctuations in the
droplet size remain “frozen in”, resulting in a broadening
of the droplet size distribution.

Now consider how this model is used to model the evo-
lution of the droplet size distribution, P (a, t). The plumes
carrying gas away from the lower plate have a distribution
of temperature. Let J(∆T ) δ∆T be the volume of gas
per unit area, per unit time, which rises from the lower
plate and which has a temperature Tav + ∆T , with ∆T in
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the interval [∆T, ∆T + δ∆T ]. It is assumed that the flux
from the upper plate may be described by the same func-
tion J(∆T ), where the temperature of the falling plume is
Tav − ∆T . The material in this small temperature range
δ∆T occupies a volume fraction of the gas in the column
which increases at a rate

1

V

dV

dt
=

J(∆T )

h
δ∆T. (17)

The droplets in this volume fraction undergo a change of
radius equal to ∆a = −Λ∆T . Taking account of contri-
butions from the upper and lower plates, this results in a
change of the droplet size distribution which satisfies

∂P

∂t
(a, t) =

∫

∞

0

da′ K(a, a′)P (a′, t), (18)

where the kernel may be approximated by K(a, a′) =
K(a − a′) with

K(∆a) =
1

Λh
[J(∆a/Λ) + J(−∆a/Λ)] −

1

τr

δ(∆a). (19)

Here the delta function ensures conservation of particle
number, and τr is an estimate for the timescale of a con-
vection roll:

1

τr

=
2

h

∫

∞

0

dx J(x). (20)

The time τr cannot exceed the integral timescale of the
flow: τr ≤ τh = (h2/ǫ)1/3.

The change in droplet radius arises from the abrupt
change in temperature at the hot and cold plates of the
convection cell. The droplets change size discontinuously,
with a magnitude comparable to δamax = Λ∆Th/2. Con-
sider the evolution of a droplet which spends some time
close to the top of the cell and which has repeated en-
counters with the cold plate. As its temperature rises
and falls, we might expect that the radius of the droplet
would increase and decrease, with a minimal net effect.
However, there can be a marked asymmetry between the
timescales of heating and cooling. In a convection cell the
gas is cooled relatively slowly by the upper plate, before
being warmed rapidly by turbulent mixing when a plume
falls into the interior. If the cooling occurs slowly com-
pared to τeq, droplets grow by condensation. If the warm-
ing due to mixing is on a timescale τK ≪ τeq, the larger
droplets do not evaporate to their original size. The asym-
metry between the cooling and heating processes allows
the droplets to have a systematic growth, rather than a
cyclic fluctuation of size.

The production of rain from clouds depends upon
droplets reaching a size which is significantly larger than
their original size. In the context of the Rayleigh-Bénard
model, this would require a droplet to undergo repeated
encounters with the cold plate. The time τmix that an
aerosol particle spends in a plume before it is mixed is
highly variable and it will usually be very short compared
to the integral time τh. It follows that some droplets may
experience many interactions with the upper plate in rapid
succession, as illustrated in fig. 1.

Fig. 1: Schematic plot of the temperature of a convected
aerosol particle. The time τmix between contacts with the up-
per plate may be as short as τK. There may be a very large
number of contacts with the upper plate before the particle
reaches the lower plate, which requires a much longer time, of
order τh.

The problem of warm rain initiation. – A cloud
contains water droplets formed by condensation onto mi-
croscopic nuclei such as salt granules, dust grains, or par-
ticles of organic matter. Their concentration and droplet
radius are quite variable, but the remainder of this paper
uses the following representative values [1–4] for a convect-
ing cumulus cloud which could produce precipitation. The
typical droplet radius is a0 = 10μm, the number density is
n0 = 4× 108 m−3, and the cloud depth is h = 103 m. The
rate of decrease of temperature with height (lapse rate) is
3 ◦C per 1000 ft, which exceeds the adiabatic lapse rate by
1 ◦C per 1000 ft, so that the effective temperature differ-
ence between the top and bottom of the cloud is ≈ 3K.
The typical vertical velocity of air inside the cloud has
magnitude 2m s−1, so that the eddy turnover time may
be taken to be τh = 103 s [1,2]. An estimate for the rate of
dissipation is ǫ ≈ h2/τ3

h = 10−3 m2s−3, which gives an es-
timate of the Kolmogorov time τK ≈ 10−1 s. Rain falls as
droplets of size approximately a = 1mm. A rate of rain-
fall of 3.6mm h−1 = 10−6 m s−1 is described as moderate
to heavy rainfall [1].

The coalescence efficiencies ε of small droplets are some-
what uncertain, but it is widely accepted that they are
low [1,2]. If the larger droplet has radius below 20μm,
it is believed that ε ≤ 0.1, and that for radius 10μm,
ε ≤ 0.03 [2]. For droplets of size a = 50μm colliding with
droplets of size a = 10μm, however, the efficiencies are
expected to be close to unity [1,2].

Collisions between droplets settling at a different rate
yield a very small collision rate. The Stokes law for the
drag on a sphere at low Reynolds number indicates that
the gravitational settling rate is [1,2]

v = τpg = κa2, κ =
2

9

ρl

ρg

g

ν
, (21)

where τp is the response time characterising the Stokes
drag on a droplet. Inserting values for air and water at
5 ◦C gives κ ≈ 1.4 × 108 m−1s−1. The collision rate of a
droplet of radius a + ∆a with a gas of particles of radius
a is

R = πεn0(2a + ∆a)2κ[(a + ∆a)2 − a2] ∼ 8πκεn0a
3∆a.

(22)
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Setting ∆a = 2.5μm and ε = 0.03 in addition to the
parameters defined above gives R ≈ 10−4 s−1. The rate of
coalescence of typical sized water droplets due to collisions
is therefore very small.

Saffman and Turner [24] investigated the role of turbu-
lence in facilitating collisions between water droplets. In
the case of very small droplets, the collision rate due to
turbulence is a consequence of shearing motion, so that
the collision speed is of order a0/τK. They argue that the
corresponding collision rate is

Rturb =

√

8π

15

n0ε(2a)3

τK

. (23)

For the parameters of the cloud model, the gives Rturb ≈
2×10−6 s−1, which is negligible. The effects of turbulence
are dramatically increased when the effects of droplet in-
ertia are significant. Inertial effects are measured by the
Stokes number, St ≡ τp/τK. The collision rate is greatly
enhanced by effects due to caustics for St > 0.3 [25], but
the parameters of our cloud model yield St ≈ 10−2, where
there is no significant enhancement.

After a droplet has grown to a size where it is much
larger than the typical droplets, and where the coales-
cence efficiency is approximately unity, it falls rapidly and
collects other droplets in its path. Consider a droplet of
size a1 falling through a “gas” of small droplets, which
can be characterised by the liquid volume fraction Φl =
4πn0〈a

3〉/3. The large droplet falls with velocity v = κa2
1

and grows in volume at a rate πa2
1Φlv, so that

da1

dt
=

κΦla
2
1

4
. (24)

Solving this equation shows that the droplet radius di-
verges in the time

τdiv =
4

κΦla1

. (25)

For the model parameters, a droplet of size a1 = 50μm
requires time τdiv ≈ 2×103 s to undergo divergent growth.
According to (25) the time before runaway growth is ex-
pected to occur increases rapidly as the droplet size gets
smaller, and this estimate must be a lower bound because
it ignores the effects of collision efficiency and the settling
velocity of the smaller droplets.

Rare events and rain initiation. – Consider the
rate at which droplets must reach the size threshold for
runaway growth. Rainfall at a rate of 3.6mm h−1 =
10−6 m s−1 is considered as “moderate”. If the raindrops
have size a ≈ 1mm, this corresponds to raindrops falling
at a rate of approximately 250m−2s−1. Given the as-
sumed cloud depth of h = 103 m, the volumetric rate of
production of raindrops is approximately 0.25m−3s−1. If
the microscopic droplets have density n0 = 4 × 108 m−3,
then the rate of conversion of each microscopic droplet
into a “collector” droplet undergoing runaway growth is

approximately 6 × 10−10 s−1. An alternative statement
is that if a shower lasts for five minutes, the probability
that any given water droplet has grown to become a rain
droplet is small, approximately 2× 10−7. The problem of
rain initiation is, therefore, concerned with the frequency
of very rare events. This point has also been made by
Kostinski and Shaw [5].

Despite the fact that the required conversion probabil-
ity is very small (of order 10−7), growth of droplets is too
slow by a collisional mechanism. On growing from 10μm
to 50μm, the volume of a droplet increases by a factor of
125, that is, there are roughly 100 collision events. It was
argued above that the rate for the first collision events is
small, R0 ≈ 10−4 s−1. Even allowing for the fact that the
collision rates increase as the droplet grows, the probabil-
ity for the obtaining 100 collisions after t = 103 s will be
much smaller than 10−7.

Fast droplet growth by the convective mecha-

nism. – As well as the theoretical difficulties of explain-
ing droplet growth by collisional processes, observational
evidence is difficult to reconcile with a collisional mech-
anism. Clouds may exist for long periods, before quite
suddenly producing rainfall. The rapid onset of rainfall is
usually associated with convective instability, which (be-
cause of the large Reynolds number) implies turbulent mo-
tion. Equation (23) indicates that the role of turbulence
in facilitating particle collisions is negligible for the small
droplets in the model treated here, implying that the rain-
fall is triggered by some other aspect of the convective pro-
cess. If a parcel of air is lifted by convection, condensation
occurs as the temperature falls. However, the fractional
increase of the droplet size which can be achieved is not
large enough to start runaway growth, and increasing the
size of droplets by condensation also reduces the disper-
sion of their radius.

For these reasons it is desirable to find other mecha-
nisms whereby convection can result in runaway growth.
The Rayleigh-Bénard cell can serve as a model for convec-
tive motion in a cloud, and it will be argued that the con-
vective ripening mechanism can result in droplet growth
rates which are more rapid than the collisional mechanism.

Droplets can grow or shrink due to changes in the level
of supersaturation. Consider the circulation of a droplet
in a rising packet of air. This air mass is cooled slowly

(on a timescale which is much larger than τeq) by radia-
tion when it reaches the top of the cloud. The droplets
that it contains increase in size by condensation, due to
capacity of the surrounding air to carry water vapour be-
ing reduced. The cool packet of air then becomes part
of a “plume” of descending air, which falls far into the
body of the cloud before being rapidly mixed with am-
bient air (on a timescale τK ≪ τeq). The mixing occurs
so rapidly that the droplets are unable to evaporate, and
their increased sizes are “frozen”. Note that the asym-
metry between a slow cooling and a rapid warming en-
sures that the mass gained by condensation is not lost to
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evaporation. The mechanism requires τeq ≫ τK. This in-
equality is easily satisfied for the model cloud parameters,
where τeq ≈ 1 s and τK ≈ 10−1 s.

The temperature of the descending plume increases due
to adiabatic compression as the air pressure rises, but it
is still colder than the surrounding gas at the time when
mixing occurs.

Despite the characteristic temperature T0 being quite
small, one single cycle of this process is not sufficient to
bridge the bottleneck and achieve runaway growth. Some
aerosol droplets will make a large number of contacts with
the upper surface of the cloud, increasing their size on
each cycle, and it is proposed that these droplets become
the collectors which undergo runaway growth. Only a
very small proportion (≈ 10−7) of aerosol droplets have to
reach the required size. The time for an aerosol particle
at the top of the cloud to join a descending plume, un-
dergo mixing, and then to be advected back to the upper
surface of the cloud is highly variable. The time between
these growth events can be as short as few multiples of τeq.
This timescale is typically less than 10 s, which is much
smaller than the timescale between collisional coalescence
of small droplets (typically 103 s). These considerations
show that the convective ripening mechanism is a strong
candidate for creating “collector” droplets.

Equation (7) implies that growth of water droplets by
condensation increases the area of a droplet by an amount
which is independent of the droplet size on each cycle.
This means that as well as having a faster attempt rate,
the convective ripening mechanism also has the advantage
that the radius increases by a factor of N1/2 after N steps,
instead of N1/3 for the collisional process.

Conclusion. – This paper has described a non-
collisional model for increasing the dispersion of droplet
sizes in a Rayleigh-Bénard cell. This leads to a pro-
posed resolution of the droplet growth bottleneck prob-
lem in cloud physics. It has been argued above that the
dominant mechanism for creating larger droplets is that
droplets grow by condensation at the cold upper surface
of a cloud, but that the increased size is frozen in when a
falling plume of cold air is mixed rapidly in the interior of
the cloud.

The convective ripening mechanism was compared with
collisional growth in clouds. Both processes require many
growth events to produce a rare collector droplet which un-
dergoes runaway growth. The convective ripening mech-
anism discussed here allows the growth steps to occur at
a much higher rate. Further work in required to quantify
the statistics of repeated contacts with the cool plate of
the convection cell, because this determines the rate at
which the largest droplets can grow.

This paper has presented a benchmark model for the
growth of aerosol droplets by condensation. Real clouds
are extremely complex structures with a substantial num-
ber of competing physical processes. The temperature
profile and the mechanism of cooling at the upper surface

are very different from a Rayleigh-Bénard cell. It will be
a useful exercise to assess the extent to which this model
can be developed to provide a quantitative description of
real clouds.
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