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Critical properties of electron eigenstates
in iIncommensurate systems

By M. WILKINSON
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1T L, UK.

(Communicated by M. V. Berry, F.R.S. — Received T July 1983)

This paper describes some properties of the eigenvalue equation

¢n+1 + 'ﬁn—l + 20 cos (21!:,3’)’&-[—[]) zﬁn = Ewn

This is an example of the more general problem of a Hermitian eigenvalue
equation in the form of a difference equation with periodic coefficients.
These equations arise in solid state physics; they occur in connection with
tight-binding models for electrons in one-dimensional solids with an incom-
mensurate modulation of the structure, and in models for the energy bands
of Bloch electrons moving in a plane with a perpendicular magnetic field.

The model studied has a critical point when o = 1. Following some
earlier work by Azbel (Azbel, M. Ya., Phys. Rev. Lett. 43,1954 (1979)), an
approximate renormalization group transformation is derived. This
predicts that the spectrum and eigenstates have a remarkable recursive
structure at the critical point, which is dependent on the expansion of fas a
continued fraction. Also, when £ is an irrational number, there is a
localization transition from extended states to localized states as a in-
creases through the critical point. This localization transition, which was
previously discovered by Aubry & André (Aubry, S. & André, G. Ann.
Israel phys. Soc.3, 133 (1979)) using the Thouless formula for the
localization length, is explained by the renormalization group trans-
formation derived here.

1. INTRODUCTION

This paper describes some properties of the eigenvalue equation

¢n+1+§[f,n_1+205(}08(2nﬂn+4)¢n = Ewn? (1'1)

in which f is an irrational number. This equation, as well as being interesting in its
own right, has applications in solid state physics; it has been used to model electron
eigenstates in a one-dimensional solid with an incommensurate modulation of the
structure (Aubry & André 1979), and in models of a Bloch electron in a magnetic
field (see, for example, Harper 1955).

There is a considerable mathematical literature, reviewed by Simon (1982), about
the problem of Schridinger equations with a quasi-periodic potential, of which (1.1)
is an example. It is known that, for a generic system of this type, the spectrum is a
Cantor set of non-zero measure (see, for example, Simon 1982) and by using
specialized perturbation theories it has been shown that localized and extended
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306 M. Wilkinson

eigenstates exist when the potential is very strong or very weak, respectively (i.e.
a > 1ora <1 for (1.1)); see Craig (1983) and Dinaburg & Sinai (1976).

This paper is concerned with two remarkable effects that occur when o = 1.
First, Azbel (1964a,b, 1979) predicted, by using a W.K.B. method, that the
spectrum of (1.1) is a Cantor set of zero measure when « = 1, with a structure
determined by the expansion of 8 as a continued fraction:

B =[n,nyng..]=1
ny+1
Ny+1
Ng+.... (1.2)

Azbel predicted that there would be (approximately) n, bands, each splitting into
n, sub-bands, each of which splits into n, sub-bands, ete.

Secondly, Aubry & André (19779) have shown, by using the Thouless formula for
localization length (Thouless 1972), that for almost all irrational £, (1.1) has a
localization transition at o = 1 from having all eigenstates localized, for a <1, to
all eigenstates extended, for & > 1.

It is the aim in this paper to give a physical interpretation of Azbel’s result, by
using an approximate renormalization group (r.g.) method. This method also
explains how the localization transition occurs, and a sufficient criterion for this
type of critical behaviour is proposed.

The renormalization group method proposed here can be summarized as follows.
The plan is to find approximate, localized solutions of (1.1), and to calculate the
matrix elements of the Hamiltonian in a basis of these approximate solutions. These
approximate solutions can be partitioned, in a natural way, into a set of energy
bands, and matrix elements corresponding to inter-band transitions are ignored,
as they are of little importance in localization problems. The remaining single band
Hamiltonian equation has the same form as (1.1), and describes the system on a
longer length scale and narrower energy scale, with new values of « and g. Under the
action of this r.g. transformation, & = 1 is an unstable fixed value, and £ has a
chaotic transformation related to its expansion as a continued fraction (1.2).

The use of a W.K.B. method to obtain approximate, localized solutions is
described in §2, and §3 describes how the analysis of tunnelling effects leads to
expressions for the intra-band matrix elements. Section 4 gives a description of the
r.g. transformation, and uses the results of §§ 2, 3 to give an explicit solution for the
r.g. recursion. Section 5 describes the properties of this r.g. transformation,
including the prediction of a hierarchical splitting of the spectrum and the expla-
nation of the localization transition. Section 6 describes the possible relevance of
the results to problems in solid state physics, and §7 gives a brief summary and
describes further work in progress on this and related problems.
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2. THE SEMICLASSICAL APPROXIMATION

This section describes how approximate solutions and eigenvalues of (1.1) can
be obtained by a W.K.B. method. Approximate, localized, solutions obtained in
this way are used, in §4, to form a new basis for the Hamiltonian equation (1.1).

The equation (1.1) can be written in the form

Y(x+5)+Y(x—4)+ 2a cos e (x) = Ef(x), (2.1)
where x, =nhi+A4, f=2np vy, =1y, (2.2)

This way of writing difference equations will be used extensively in this paper.
The symbol % is used because extensive use is made of semiclassical methods; it is
not of course the physical Planck constant of quantum mechanics. The parameter 4,
which sets the origin for the sampling points z,, will be referred to as the phase of
the solution.

Equation (2.1) can also be written

Ay (x) = (2 cos p+2cos?) Yr(x) = E;ﬁ(x),} 2.3)
P =—ifd/de, ’
so that (2.1) is obtained by quantizing a classical Hamiltonian given by

H(x,p) = 2cosp+2acos. (2.4)

In the limit in which # is small—the semiclassical limit —it is natural to obtain
approximate solutions of (2.3) by the W.K.B. method: write

Y(x) = etiZ@nm,
Se) = f " @) da’ +in(@)h + O(?), (2.5)
2 cos p(x) + 2acosx = K,

by requiring that (2.5) satisfy (2.1) to first order in 7, it is found that

V@) = inptexp| £ 3 [ 2 ar ], (2.6)

and better approximations are found by expanding X(x) to higher order in %.

The forms of the contours of H(z,p) in the phase plane are very important in
determining the nature of the solutions; these contours will be termed phase
trajectories. The phase trajectories of (2.4) may be of three types; they can be
closed curves, open in the p-direction, or open in the z-direction.

For o < 1, all the phase trajectories are either open in z, or are closed curves. For
o > 1, all are open in p, or else are closed curves. When a = 1, all the phase
trajectories are closed curves, except for the separatrices at £ = 0. These cases are
illustrated in figure 1.
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In the W.K.B. approximation, ignoring the effects of tunnelling (which will
be described in §3), the phase trajectories open in x support extended states, and
the other two types support localized eigenstates.

The energies for which the phase trajectories are open have a band spectrum, in
this approximation. For energy ranges over which the phase trajectories are closed
orbits, a discrete spectrum is predicted, in the absence of tunnelling effects; in this
case the spectrum is obtained using the Bohr-Sommerfeld quantization rule. It is
shown in Appendix A that the classical turning points of (2.4) are of the usual first
order type except at the separatrix £ = Eg, so that in the limit # — 0 the eigen-
values, E,, are given by the usual formula (Landau & Lifshitz 1958)

S(E,) = 2n(m+ %) %,

S(E) = § _Ep(x) de. (2.7)

Finally, as has been pointed out by Sokoloff (1981), the semiclassical method can
be extended to cases in which £ = 2/ is not small, but merely sufficiently close to
any rational number; in fact in this method the semiclassicality condition can
usually be satisfied to any desired accuracy. The basis of this method is described
briefly in Appendix B.

3. TUNNELLING BETWEEN CLASSICAL TRAJECTORIES

In the semiclassical case, the localization properties of the eigenstates, and the
fine structure of the spectrum of the Hamiltonian (2.3), are determined by tunnelling
between classical trajectories of the Hamiltonian. Tunnelling may occur in both the
x-direction and the p-direction.

For clarity of presentation, the cases of tunnelling in the - and p-directions will
be illustrated by two systems in which they occur separately.

First it is shown that the effect of tunnelling in the z-direction, between two
closed orbits, is equivalent to that of a matrix element, related to the z-tunnelling
coefficient, coupling states defined by adjacent Bohr-quantized orbits.

Secondly, it is shown that, for an eigenvalue equation in the form of a difference
equation, the dependence of the eigenvalue £ for a Bohr-quantized orbit, on the
phase 4 of the sampling points, is related to the p-tunnelling coefficient.

Both of these results will be very important in calculating an explicit asymptotic
solution for the renormalization group equations in §4.

(i) x-Tunnelling
To illustrate the notation used, consider the well known problem of tunnelling

between the classically bounded orbits in a periodic potential.
The Hamiltonian equation is:

() = (2/2m+ V(2)) P(x) = wa),}

V(z+2rn) = V(). (3.1)
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The classical phase trajectories are sketched in figure 2 for the Mathieu equation,
V(x) = cosx. If# is small, then for E; < E approximate eigenstates and eigenvalues
are given by Bohr-Sommerfeld quantization, as in (2.7), and the degeneracy of
these solutions is lifted by tunnelling through the classically forbidden regions.

open phase trajectory

pA

$ Ao Co /A1
%c“ b B@/Sﬁ o ‘Zi\i |
/—\ : //‘_}

separatrix,E=E,

Bohr quantized orbit

classically forbidden
region

F1oURE 2. Phase trajectories of the Hamiltonian A = $2/2m + V cos 4.

By a well known result (Berry & Mount 1972), the magnitude ¢, of the tunnelling
coefficient to cross the barrier from x, to z, is given, in the semiclassical limit, by

el ) "
P¥x)/2m+V(z) = E,

and the tunnelling coefficient 7, and reflection coefficient R, to pass from the
branch C, of p(x) to branches 4, and D, respectively, are given by:

T,=t, R,=-—ir,, r2+$2=1. (3.3)

Let the amplitudes of the W.K.B. wavefunctions at the classical turning points
2, and x, be ay, by, a,,b,... for the branches 4,, By, 4,, B, ... of p(x) (see figure 2).
Then it is easy to show (Arnold 1980) that these amplitudes are coupled by a
transfer matrix of the form

1 R¥

mE T m%
Ini1] _ [cﬂ] | T 3.4
[bn+1] e dn ’ a: —-R 1 ) ( )

T

T

x

T

xz
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Now consider the propagation of an eigenfunction of energy £ < E,. The transfer
matrix for crossing the classically allowed region between two turning points is

given by
] _ plan _[et? o
FAR P R it
h ) (3.5)
# = 1$2@)d = Z8(E),
the integral in (3.5) is evaluated around the closed orbit H(x,p) = K.
The overall transfer matrix is given by
[an+1] ! [an] . G=TF,
bua] = L0, 6
. 1[ etd  —ir elld '
= i e
Note that in all problems of this type
det§ = 1, (3.7

where § can be any transfer matrix; this expresses the fact that the Wronskian of
two linearly independent solutions is a constant.

The condition for eigenstates of (3.1) to satisfy the Bloch condition is that the
eigenvalues of g should be e+¥; by (3.7) this requires

cosk = 3Trg. (3.8)

In the semiclassical limit, in which ¢, is small, the energy bands are found by
writing

¢=2r(m+L)+x, x= % (%%)EMAE, 59)
%S(Em) =2n(m+}), E=E,+AE, '
where m = 0, 1,2, ..., so that E is given by
E =E,+2C,cosk, (3.10)
Cp = (= 1)™H15it, /(08 /0E)y, . (3.11)

Also, from (3.6) it can be shown that the amplitudes a,, satisfy the difference
equation
Om(an+1 +a,4)+ Eya, = Ea, (3.12)

and that b, is approximately equal to —ia, for solutions that are eigenstates, so

that the a, alone define the solution in the nth potential well. The important point

is that (3.12) is the equation of a tight-binding model for the mth band, with

hopping matrix elements C,,., The W.K.B. method thus gives an asymptotic
1I Vol 291. A
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formula for the hopping matrix element of a suitably defined tight-binding model,
with Bohr-quantized states as a basis set.

When E > E,, the analysis is much simpler; if weak reflections above the barrier
are ignored, the transfer matrix is simply given by

- et 0
g = [ 0 e..i-1¢:| > (3.13)
where now

16 =SE/A 8B = | pe)dz; (3.14)

in this approximation the spectrum is continuous for £ > E; and the Bloch wave-
vector k, given by (3.8), is related to the energy E by

@rm+k)% = S(E), m=0,+1, +2. (3.15)

(ii) p-Tunnelling
To illustrate the effect of tunnelling in the p-direction in the W.K.B. analysis of
difference equations, consider a discrete Schrédinger equation

Y@+h)+y@—)+ V(@)Y (@) = EY (@), (3.16)

when V(z) has a single minimum, for example V(x) = }kx?. Alternatively (3.16)
can be written explicitly as a difference equation

¢n+l+¢n—-l+Vn¢n = Ewm
Un=¥(@,), Vo=V(@,), ,=nh+A. (3.17)

Note that the eigenvalue E will be a function of the phase, 4, of the solution
(see figure 3). Because E depends on 4, the solution of (3.16) must be of the form

Y(x) = %an(A)S(x—nﬁ—A), (3.18)
80 that in the momentum representation the phase 4 becomes a Bloch wavevector:
Vo) = [dwe g,
= eip‘”ﬁZan(A)éﬂp, (3.19)
n

= e'P4 U y(p),
where U,(p) is 2r-periodic.
The W.K.B. method can be used to obtain approximate solutions when # is small;
(3.16) can be written

Ay(w) = (2008 P+ V() ¥(2) = E() (3.20)
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V(z) 4

A x ox ox x
3
Fioure 3. Illustration of the definition of the phase 4, which parametrizes solutions of the
difference equation Y(x +#%) + ¥(x — %) + K22 () = By (x), where x,, = nfi+4 and ¢, =
P(xn).

F1cure 4. Phase trajectories of the Hamiltonian H = 2 cos P+ 3K#?. Capital letters label

the branches of p(z), and lower case letters label the amplitudes of the corresponding
W .K.B. solutions.

I1-2
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so that the classical Hamiltonian corresponding to A is
H(x,p) = 2cosp + V(x). (3.21)

The contours of H(z, p) are sketched in figure 4 for the case V(z) = 1ka2.

The method for obtaining the W.K.B. solutions is analogous to the previous
problem. Consider first the closed orbits corresponding to E < E,. The transfer
matrix connecting solutions across the classically forbidden regions is written

1 R
a’n-l—l]:T[cn] T = T3 T3 3.99
ol -nla) 2 R, 1| (®22)
T, T
p p

The transmission and reflection coefficients 7},, B, are obtained in Appendix A;
they are given by:
. 1 [P
T,=it, t,=exp ( —%J; [z(p)] dp) R
R,=r, rp+ti=1 (3.23)

Note that (3.23) has the same form as (3.2), (3.3), apart from a change in phase of
the coefficients, and reversal of the roles of  and p.

Taking into account the fact that the reflection coefficients at the first order
classical turning points at 2, and z, are, by a standard result (Berry & Mount 1972),
—1, the transfer matrix for crossing the classically allowed region is

R A B

o =18(&), SE)= ffp(x)dx. (3.24)

By working out the overall transfer matrix, § = T, F, and applying (3.8) and (3.9),
E = E,, +2Cy, cos (2r4 /%), (3.25)
where S(B,) =2n(m+3})% and Oy = (—1)"*+t,%/(0S/0E)g,,. (3.26)

These equations show that the A-dependent correction to the Bohr-Sommerfeld
quantization (2.7) is due to tunnelling in the p-direction, and varies sinusoidally
with A. In the context of solving (1.1), this equation determines the variation in
site energies for the approximate localized states obtained by Bohr-quantization.
There are other, possibly larger, corrections to (2.7) obtained by expanding X(x)
in (2.5) to higher order in %, but these corrections are independent of A and not
important for the purposes of this paper.
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For completeness, the result for open phase trajectories in figure 4 for £ > E; is
analogous to (3.15),
2nmt + 214 = S(E),

S(E) = J;x(p)dp.

So, for £ < E, the eigenvalues E,, are determined by Bohr-quantization and have
an exponentially small dependence on 4, whereas for £ > Ej there is a continuous
dependence of E on 4, given by (3.27).

(3.27)

4. A RENORMALIZATION GROUP TRANSFORMATION

In this section an approximate renormalization group transformation is sug-
gested, which transforms (1.1) into a new difference equation of the same form as
(1.1), but with new values of o and 3, describing the system on a longer length scale
and a narrower energy scale.

(i) An approximate renormalization group scheme

The idea behind the method is as follows, given a Schrodinger equation in the
form of a tight-binding model, such as (1.1).

(@) Approximate, localized, solutions are formed, having a localization length of
L ‘atomic spacings’. These approximate solutions will be termed ‘ quasi-eigenstates’.

(b) The matrix elements of the Hamiltonian are found using a basis set formed
from these quasi-eigenstates.

(¢) The quasi-eigenstates are partitioned into N bands according to their energy.
The approximation that is made is that, for the purposes of examining solutions
with energy near E, say, only the interaction of states in the band containing the
energy E need be considered. The justification for making this approximation is
that the localization properties, and the fine structure of the energy spectrum,
depend more on resonances between widely spatially separated quasi-eigenstates of
similar energy, than on interactions with nearby states with widely separated
energies.

(d) To complete the r.g. transformation, two scaling operations are introduced:
the energy scale, AE, of the band considered is expanded to match the energy scale
of the original system, and the length scale is contracted by a factor L.

This procedure produces a new tight-binding equation, describing the system
on a longer length scale, and with the energy scale magnified near the energy £.

A similar r.g. scheme has been proposed by Wegner (1976) to study scaling laws
at the mobility edges in higher-dimensional Anderson models. This type of scheme
is especially well suited to the present problem however: the partitioning of the
quasi-eigenstates into bands according to their energies is not arbitrary, as it is in
the Wegner problem; it will be shown that the energy bands appear in a natural
way, and in the semiclassical case these bands are extremely narrow, so that the
‘single band’ approximation in step (c) is valid to a very high accuracy.
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The following subsections describe how the W.K.B. method can be used to
construct the quasi-eigenstates and the matrix elements describing their inter-
actions, and so to produce an explicit r.g. recursion. Other methods could, in
principle, be used when 7% is not small, but in practice the W.K.B. method gives
qualitatively correct answers in most cases of interest.

(ii) Approximate solutions used as a new basis

Given the approximate solutions obtained in §2, it is natural to use these,
wherever possible, as the quasi-eigenstates localized over a range of 2n. By using
the W.K.B. method, localized quasi-eigenstates can be constructed on phase
trajectories that are either extended in p, or that are closed orbits. For reasons that
will become apparent, phase trajectories extended in x are always associated with
extended eigenstates.

In each interval of length 2n there are an average of 2n/% = 1/f states. As an
example of how a new basis set of quasi-eigenstates could be constructed, consider
the important case when a = 1, where all the phase trajectories except those at
E = E, = 0 are closed orbits (see figure 1). It is possible to construct N pairs of
Bohr-quantized quasi-eigenstates (N states with £ > 0, N with E < 0) for every
interval of length 2, where N is given by the condition

0<1/8—2N <3, (4.1)

this leaves a residual density of 1/4’ states per interval of length 2=, associated with
open phase trajectories at the separatrix, E; = 0,

1/’ =1/8—2N. (4.2)
These states cannot be approximated by quasi-eigenstates localized over a range
of 2r; they can, however, be approximated by quasi-eigenstates with a longer locali-
zation length, but this will not be done here.

The Bohr-quantized states are degenerate in the absence of tunnelling. When
tunnelling is taken into account, these states are broadened into bands, and in the
subsequent analysis the assumption will be made that matrix elements corre-
sponding to inter-band transitions play no important role, and can be neglected —
in fact they will not even be calculated. So, in this problem, there is a natural
partition of the spectrum into energy bands.

It will be useful to have a convention for labelling the bands, corresponding to
Bohr-quantized orbits in phase space, in the case & = 1. The central band, corre-
sponding to E = E; = 0, will be labelled the v = 0 band, and the bands above and
below will be labelled v = + 1, +2,... and v = — 1, — 2, ... respectively, in order of
increasing and decreasing energy.

(iii) An asymptotic form for the r.g. transformation
Consider the case in which 7 is small, so that semiclassical results are applicable,
and the states forming the vth band are all supported by closed orbits. In this case
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the results of §§2 and 3 enable an explicit calculation of the r.g. transformation to
be given, which is believed to be an asymptotic result for the semiclassical limit,
# - 0.

The energy of a Bohr-quantized quasi-eigenstate centred on « = 2nn is given by
(3.25); it includes the energy given by the Bohr-Sommerfeld quantization rule, plus
a correction for p-tunnelling. This tunnelling correction takes into account the
fact that the energy has a small dependence on the phase, 4,,, of the sampling points
(separated by a distance %) compared to the 2n-periodic modulation of the potential.
The phase for the quasi-eigenstate centred on x = 2xn is

4, = 2nnmod#Z, (4.3)
so that (3.25) shows that the energy of the quasi-eigenstates varies periodically
E, = E¥ +C cos 2y, } (4.4)
O =(— 1)1/ (08/0E)gw, S(EY) = 2m(m+3)4,

where (v) labels the energy band, and f, is given by
By =1/8-11/8] (4.5)

and [z] means ‘integer part of 2’, so that

2nA, [k = 4n2n/f = 2nn/f = 2nf;n mod 2x,

(4.6)
cos (2rn4,, /%) = cos 2w n.

There is an obvious relation in (4.3)-(4.6) to the expansion of £ as a continued
fraction. :

In §3 it was also shown that the effect of z-tunnelling between adjacent closed
orbits can be described by hopping matrix elements, 0Y, given by (3.11),

CP) = (= 1ym 1107/ (08 /OE) o, (4.7)

and, to first order in #,, the matrix elements for hopping beyond the nearest-
neighbour orbits are zero.

Applying the assumption contained in step (c) of the r.g. scheme, the eigen-
functions of energy close to E® are expanded as follows:

Y(x) = X a, ¢¥(x—2nn), (4.8)

where ¢® is the W.K.B. approximation for the eigenfunction for the vth band near
x = 0. Only quasi-eigenstates in the vth band are included, so that matrix
elements for inter-band transitions can be ignored.

Given the ‘site energies’ (4.4), and the ‘hopping’ matrix elements (4.7), the
amplitudes a, in (4.8) satisfy a tight-binding equation

CN @41+ Ap_y) + 209 cos (21, 1) a,, = (B — EV)ay,. (4.9)

This equation, after dividing through by 09, is of exactly the same form as (1.1),
except that the parameters o and 8 have new values, and is the end result of the
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first cycle of the r.g. transformation. The general form of the r.g. transformation is
described in §4 (iv).

An alternative derivation of this result, using W.K.B. theory throughout without
introducing matrix elements, is described in Appendix C.

It is believed that the result (4.9) represents an asymptotic solution in the limit
fi > 0, since in this limit the width of the vth band, determined by the tunnelling
formulae (4.4) and (4.7), becomes vanishingly small, which implies that the use of a
single band approximation (4.8) is increasingly better justified. Since the formulae
used for the site energies and hopping matrix elements (4.4) and (4.7) are asymptotic,
and other matrix elements for hopping beyond nearest neighbour phase trajectories
are of higher order in the transmission coefficients, the result (4.9) can probably be
regarded as an asymptotic formula.

(iv) The r.g. equations in general form

Now the equations can be given for the iteration of the r.g. transformation
described in § 3 (iii). The iteration number of the r.g. transformation will be denoted
by N, and the indices of the bands at all previous stages of the r.g. transformation
by (vy) = (¥g, ¥4, ..., Py) — meaning the vyth sub-band of the ... v;th sub-band of the
voth band.

At the Nth stage, the approximation to the wavefunction is written by

Yalx) = % A, YA (@y_y — 27m), (4.10)

where y{¥17(xy_,) is the localized approximate solution obtained at the (N — 1)th
stage, for the vy_,th sub-band of the vy_,th sub-band ... of the y;th band.
The scaled coordinate z_, is given by

N-1
Ty = fyaPya = (kgo ﬂk) z. (4.11)

The coefficients a,, satisfy the difference equation
Qi1+ By + 2047V cos (2nByn) a, = Eya,, (4.12)
this eigenvalue problem can also be written

Agy-vyry = Byiy,
ﬁl(\;’N—l) = OOS@N+OC?;N“1) cos Py, (4.13)

Py = —ifiyd/day,

and is of exactly the same form as (1.1), except that « and g are replaced by af¥-»

and ,BN.
By analogy with the results (4.3) to (4.9), a¥-V and Sy are given by
alN-1 = Cyx-v/0¢N-v (4.14)
and

(4.15)

By = 1/ﬂN—1“[1/ﬁN—1],}
fiy = 2nfy,
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where C0¥-v and C¢¥-V are defined by analogy with (4.4) and (4.6), by using
the classical Hamiltonian H{¥7® and the Planck constant %y_,, to evaluate these
formulae.

The scaled energy Ey is given by

E, = [Ey_,— E{350]/C¢~-Y, (4.16)

where E$ ;v is the energy of the (vy_,th) sub-band, expressed in the scaled energy
Ey_, for the (N — 1)th stage of the r.g. iteration.

If %, is small, a solution for the amplitudes a,, can be found by using the W.K.B.
method. If this solution corresponds to a closed phase trajectory of the Hamiltonian
H$¥-9, then the energy of this solution is given by the Bohr-Sommerfeld quanti-
zation rule. So

0 = GO (nliy), (4.17)

where ¢*» is the W.K.B. approximate wavefunction of energy E%¥, given by

SEE) = pu(a)dny = 2(m-+ Dy (4.18)
Hy=Ey

The substitution of (4.17) into (4.10) gives a localized approximation for yy(x), so

that equations (4.10)—(4.18) may be further iterated.

To summarize, assuming the expansion (4.10) for the wavefunction, the ampli-
tudes a,, are related by the recursion relation (4.12), which is equivalent to the new
Hamiltonian (4.13). The new values of o and £ are given by (4.14) and (4.15) and
the scalings of x and £ by (4.11) and (4.16), respectively. If the phase trajectories of
Hy, are closed orbits, and 7%, is small, an approximate W.K.B. solution is obtained
for the amplitudes a,, (4.17), and the r.g. transformation can be further iterated.

Note that this semiclassical solution for the r.g. transformation applies only so
long as the phase trajectories are closed, and the %, are small.

(v) The role of continued fractions
The transformation (4.15) applied to B, the ratio of the two periodicities present
in (1.1), is independent of that of all the other parameters:

By =1/By—=[1/Bn), Bo=P: (4.19)

and is equivalent to the coding of the number £ as a continued fraction

£ =[n,ngns...1=1
ny+1
ny+1
ng..., (4.20)

since

ny = [1/8], my=[1/B1]... nyyq = [1/BN] (4.21)



320 M. Wilkinson

It will be useful to list a few assorted facts about the continued fraction repre-
sentation of irrational numbers.
First, the sequence of rational numbers

ﬂN =pN/QN = [nl’nz’na"'-’nN] =1
n+1
ny+1

1 (4.22)
converges to f as N — co such that

|B—pn/an] < Clax (4.23)
for some constant C.

Another important property is that, for almost all irrational numbers g, the
coefficients n of the continued fraction form a statistically independent random
sequence for large N, for which the probability distribution P(n) of the coefficients
is

1 (n41)
Pn) = mlnn(n+2) (4.24)
(see Kac 1959), and satisfies
P(n) 11 (4.25)

woeo I 2 72

By (4.21) the semiclassicality condition at the Nth stage of the r.g. transfor-
mation is ny > 1. Equation (4.24) shows that, for almost all irrational numbers g,
this condition does not hold for every stage of the r.g. transformation.

An important class of irrational numbers, which do not have the property (4.24)
(and so are of zero measure), are the quadratic irrational numbers, for which the
sequence of coefficients ny is periodic for sufficiently large N. The simplest type of
quadratic numbers are those of the form g = [n,n,n,...] = §[(n?+ 1)} —x]; from
(4.15) it can be seen that these are invariant under the transformation of g.

For a more detailed description of the continued fraction representation of
numbers, see Khinchin (1964).

5. PROPERTIES OF THE RENORMALIZATION GROUP TRANSFORMATION

In this section the properties of the approximate r.g. transformation derived in
§4 will be described. The r.g. transformation predicts the hierarchical structure of
the spectrum and eigenfunctions when o = 1, and that a localization transition will
occur, with all eigenstates extended for « < 1 and all eigenstates localized for & > 1.
A criterion will be given for these remarkable properties to occur.

Although the r.g. transformation presented in § 4 is approximate, since it depends
on a semiclassical argument, the results are well supported by numerical evidence.
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Also, it will be seen that the extension of the semiclassical method described in
Appendix B provides further evidence for the validity of the results.

(i) The critical case, & = 1, in the semiclassical limit

Consider first the case in which & = 1, so that almost all the phase trajectories are
closed orbits, and the number g = [n,, 5y, 13, ...] is chosen so that all of the £, defined
by (4.15), are small; in this case W.K.B. theory is applicable.

At the lowest level of approximation the spectrum consists of 2N + 1 bands,
where N is given by (4.1); note that 2N +1 ~ n,, so that this is consistent with
Azbel’s statement (Azbel 1964 a, b) that there are approximately n, bands.

Of these 2N +1 bands, all but the central band can be treated with the r.g.
transformation (4.10)—(4.18); each band is then described by an equation of the
same form as (1.1), with « and g replaced by o, and f,. Because of the symmetry of
the classical Hamiltonian (2.4) between x and p when « = 1, the magnitudes of the
tunnelling coefficients T}, T}, for 2- and p-tunnelling are equal (see (A 7) and (A 17));
thus a; = o = 1. Since f, is assumed to be small, the W.K.B. method can be applied
to each of these new difference equations describing each new band; because o, = 1
there is again the same symmetry of the classical Hamiltonian and a splitting of
each band into approximately n, sub-bands occurs, etc.

Thus the value o = 1 is invariant under the r.g. transformation, and the r.g.
transformation predicts a hierarchical splitting of the spectrum; there are (approxi-
mately) n, bands, each splitting into (approximately) n, sub-bands, etec. At each
stage of this subdivision of the spectrum, the central band of any group is not
described by the r.g. transformation (4.10)-(4.18) (see §4(ii)), so that these
equations do not provide a complete description of the spectrum.

Fixed points of the r.g. transformation (4.10)—(4.18) are obtained when a =1
and £ is a simple quadratic number; £ = [n;,7,,n,, ...]. In this case both o and £
are invariant under the r.g. transformation, and for a nested sequence of sub-bands
(») = (vy, Vo, V35 ...) = (v, ¥, 1,0, ...) (i.e. the vth sub-band of the vth sub-band of ...
the vth band), the scale change of the energy variable (4.16) is the same at each
iteration of the transformation, so a fixed point of the r.g. transformation is
obtained. Plainly an infinity of such fixed points exist (labelled by » and v), and also
periodic orbits in the space of Hamiltonians are possible, for example when o = 1
and B is a quadratic number with a cyclic sequence of coefficients in its continued
fraction expansion.

These results are illustrated in figure 5 by displaying a magnified section of the
continuous spectrum obtained when o = 1 and £ is a rational number approxi-
mating a quadratic irrational as in (4.22). The way in which these computed results
were obtained is described briefly in Appendix F.

The eigenstates, as well as the spectrum, exhibit a hierarchical structure when
o = 1. They can be described by using the recursive definition contained in the r.g.
transformation (4.10)—(4.18); the functions ¥y (x) represent successive localized
approximations to y(z), exhibiting structure on successively larger length scales.
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The first two approximations to y(x) are

Yo(2) = X a,8(x—nfi—4),
n (5.1)
aﬂ = ¢(V0) (xn)’ xn = nh+A5}
and
'ﬁl(x) = Za’n’ﬁga)(x_znn),
n (5.2)
a, = ¢(yl) (nﬁl):
5
= | m
= | 6
e — ?—f
in .ll '1’ Il’ ll. Al
> 0 25 50
(a) (b n

Freure 5. Illustration of the self similarity present in the spectrum when « = 1 and § =
[n, n, n,...] is a quadratic irrational number. (@) The spectrum for £ = [7, 7] = %.
(b) An enlargement of the lowest lying of the seven bands of (@), consisting of seven sub-
bands.

Ficure 6. Illustration of self similarity in the eigenstates when a = 1 and f is a quadratic
irrational. The state is the k£ = 0, 4 = 0 eigenstate of the lowest of the 50 bands when
f = [7,7] = ¥ (see Appendix F). The envelope is the same over a range of 50 step
lengths, as it is over a range of 7 step lengths.

where ¢® is the W.K.B. quasi-eigenstate for the vyth band, and ¢ is the W.K.B.
quasi-eigenstate for the v,th sub-band of the yyth band. By using this notation, the
general term of the recursion can be written down. By following the r.g. equations
(4.10)—(4.17) this is

Yule) = Za, YRV (ey-y — 2mn), } (5.3)

Ty = PyaZy-1, iy =2nfy, a,= ¢ (nfiy).

So to form the Nth approximation to the eigenstate, the (N — 1)th approximation
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is duplicated at sites a distance 2r apart in its scaled coordinate xy_;, and the
resulting ‘comb’ function multiplied by an envelope given by the Nth W.K.B.
eigenfunction.

(—4,1) (4,1)

P/q

B =

(—4,0) 14,0)
E

F1aure 7. A plot of the spectrum of (1.1) when a = 1 for every rational value f = p/qwith ¢ < 40.
This plot (invented by Hofstadter (1976)) gives a vivid illustration of the hierarchical
properties of the spectrum.

An eigenstate is plotted in figure 6 to illustrate the hierarchical structure of the
eigenstates when o = 1. As in figure 5, the computed result is for a rational value of
B, By = Py/qy; the structure of the eigenstates in this case exhibits the hierarchical
structure described above only up to a length scale of ¢, ‘atomic spacings’; there-
after of course it is of Bloch form with period g, 7.
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(ii) T'he critical case, o = 1, away from the semiclassical limit

Even when the coefficients ny of the continued fraction expansion of £ are not all
large, it is found numerically that the r.g. transformation, (4.10)—(4.18), gives a
qualitatively correct description of the spectrum. Hofstadter (1976) invented an
interesting way of illustrating the hierarchical nature of the spectrum; his picture
is reproduced in figure 7. It consists of a plot of the continuous spectrum of (1.1) for
every rational value of £, # = p/q, with denominator ¢ less some maximum value,
against 8. It gives a good impression of the hierarchical properties of the spectrum
that are predicted for irrational values of S.

As mentioned earlier, the r.g. transformation derived in §4 does not apply to the
vy = 0 band (i.e. the central band), or to any nested sequence of sub-bands con-
taining the central (v = 0) band of any set of sub-bands. Numerical work, supported
by theoretical arguments, suggest that the v, = 0 band can be described by a similar
r.g. transformation to that given in § 4, with « = 1 invariant and £, replaced by £’,
defined by (4.2). Similar results seem to apply to the central sub-band of every set.

At first sight it may seem surprising that the approximate r.g. transformation
given in §4 gives a good description of the spectrum even when semiclassical
conditions do not hold. The extension of the W.K.B. method described in Appendix
B provides some insight into why this should be so. As proved in Appendix B, the
phase trajectories are again almost all closed orbits when a = 1, just as in the
standard W.K.B. method. The arguments based on tunnelling between Bohr-
quantized orbits can be adapted to this method to produce a difference equation
analogous to (4.9), describing the interaction of these quasi-eigenstates, which will
again be of the same form as (1.1), but with new parameters af and . In this case
also, a* = 1 is invariant under this new version of the r.g. transformation, and a
hierarchical subdivision of the spectrum is again predicted. If £ is itself sufficiently
close to a rational number for the method of Appendix B to be applicable, this new
r.g. transformation can be iterated. Since almost all £ are sufficiently close to some
rational number for this method to be applied with the semiclassicality condition
satisfied to any desired accuracy, this supports evidence that the spectrum probably
has a hierarchically clustered structure down to arbitrarily fine energy scales.

For a typical irrational number 8 = [n,,n,,n3,...], the ny form a statistically
stationary random sequence. The predicted hierarchical clustering of the spectrum
into ever narrower sub-bands is therefore a statistically self similar process, and the
spectrum generated by this process will be a fractal Cantor set (Mandelbrot 1982).
Because the distribution of the coefficients 7, takes the universal form (4.24) for
almost all 8, the fractal dimension, Dy, of the spectrum should have a universal
value, D¥, for almost all 8. It is conjectured that Df is equal to zero; a simplified
argument leading to this result is given in Appendix D. For particular values of g8
forming a set of zero measure the fractal dimension may have a non-zero value;
for example, when £ is rational D, is unity and when f is a quadratic number D,
has a non-trivial value between zero and unity.
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To summarize, the variable a has a fixed value under the r.g. transformation
when o = 1. In this case, the semiclassical theory predicts a hierarchical structure
of the spectrum, which is, for almost all §, a fractal Cantor set. The eigenstates all
have a hierarchical structure; they are extended and exhibit structure on all length
scales. Numerical evidence shows that the semiclassical predictions are qualitatively
correct even when the coefficients of the continued fraction expansion are not all
large. For typical numbers g, the r.g. transformation has a chaotic property due to
the ‘randomness’ of the continued fraction coefficients.

(iii) Stability of the fixed value o0 = 1
Now consider what happens when o = 1+ 8, where 8 is small, and assume that the
semiclassicality condition, that Sy < 1 for all NV, holds (the 8y are given by (4.15)).

By examining the equations describing how o is mapped under the r.g. transfor-
mation (4.10)-(4.18), (A7), (A 17),

a%l.v*_)l = YW OGN = (G [tm), \

D3
oM = exp ( - LJ. Zn(PN) de) s
ﬁ'N p 2 (5.4)

tgqv) = exp (__ﬁ_lj_vfxﬂpN(xN) de) ’

cos py + 2ay¥-1 cosxy = By, J

it can easily be shown that if ay = 1+4dy, and ay,; = 1+8y,,, then the ratio
Kyt = Oy41/0y satisfies ky > 1, so that @ =1 is an unstable fixed point of the
variable a: if o > 1, then the oy form an increasing sequence and if & < 1, the oy
form a decreasing sequence. The ‘critical exponent’ «ky, is estimated in Appendix E.

This result also applies if the extended semiclassical method of Appendix B is
applied in the case in which not all of the £y, are small; again when a is not equal to
unity, one of the tunnelling coefficients becomes progressively larger than the
other one as the r.g. transformation is iterated. So, once again, the method
developed in Appendix B shows that results derived in the semiclassical limit are
qualitatively correct in the general case.

As a diverges away from its critical point at & = 1, open phase trajectories appear
in the phase plane, and the r.g. transformation (4.10)—(4.18) ceases to be applicable
at those energies for which the phase trajectories are extended.

The significance of this instability of the variable o is as follows: suppose that
a > 1, so that the oy increase under the r.g. transformation at least up to the point
at which the equations (4.10)—(4.18) applying to closed phase trajectories cease to be
applicable. Then, if & > 1, the variation in ‘site energies’ of the successive tight-
binding models (4.12) (describing the system on longer length-scales) dominates
over the ‘hopping’ matrix elements; this implies a tendency toward localization.
Similarly, if ¢ < 1, the ay decrease, so that the ‘hopping’ matrix elements dominate
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over the variation in ‘site energies’, implying a tendency toward having extended
eigenstates. Since the r.g. transformation (4.10)—(4.18) breaks down when the phase
trajectories cease to be closed (and anyway is not exact), this is not a proof that a
localization transition does occur, and in fact it has been proved that there is a set
of values of B of zero measure for which no localization transition occurs (see
Gordon (1976); Simon (1982)).

(—2=%,2n) y \y &1211,21‘)
(a)
(—21:,—21:) (2«, 2m)

x

Ficure 8. Illustration of the quantization of the Hamiltonian defined in (5.11), which
has a fourfold symmetry in the phase plane. (a) Phase trajectories; (b) (opposite) a
plot analogous to figure 7, showing hierarchies of structure in the spectrum.

This localization transition at o = 1 was previously predicted by Aubry &
André (1979) using a more or less rigorous argument based on the Thouless formula
(Thouless 1972). The results obtained here are only approximate, but they do give
a physically understandable picture of why there is an abrupt localization transition,
independent of # and E, at o = 1.
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(iv) Generalization to other difference equations

A natural generalization of the Hamiltonian (2.4) is to consider the most general
Hamiltonian that is periodic in x and p,

H(z,p) = 3 Ay expliln(ax +bp) +n'(cx +dp)]},

(5.5)
A =A%, .
(—8,1) (8,1)
(b)

Ay

&

I

L%
(—8,0) (8,0

Ficure 8 (b). For description see opposite.

By a suitable linear canonical (i.e. symplectic) transformation:

[;] - [;] = J[;], det A =1, (5.6)
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followed by a (non-canonical) rescaling of  and p; any such Hamiltonian can be
written in the form H@',p') = nZ A, exp[i(na’ +n'p')]. (5.7)
n

Since (5.5) is a multilinear operator and the canonical transformation (5.6) is
symplectic, the classical Hamiltonians (5.5) and (5.7) are equivalent not only
classically but also quantum mechanically. This can be proved in the Weyl-Wigner
formalism (see Groenewold 1946), in which multilinear operators f= J(Z,P) map
to Weyl-Wigner representative functions f (x, p) in the phase-plane, and the Wigner
functions W(x, p) of eigenstates (), as well as the representative functions of the
operators, map classically under a symplectic transformation of the phase plane
(Ozorio de Almeida & Hannay 1982). The non-canonical change of scale can be taken
up by rescaling 7.

(—2x,2n) y (2m,2%)
(a)
%
N
(—2n,—27) (2%, 2%)

8]

FIGURE 9. Quantization of H = 2 (cos #+ cos $) + cos 2 + cos 2&. (a) Phase trajectories;
(b) (opposite) a plot of the spectrum, analogous to figure 7.

When (5.7) is quantized it yields a difference equation with periodic coefficients:
B=H@,p) = T Anyexplitnd +n'p)],

ﬁ¢(x) =3 (3 4, eins e—nnh ginhy gin' Dy (z), (5.8)
By(x) = 2(Z A elnee~inn®) (x4 n'h) = B (x)

(a Baker-Hausdorff relation has been used to evaluate exp [i (22 + »n'D)]).
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Conversely, any Hermitian eigenvalue equation of the form of a difference
equation with periodic coefficients is equivalent to a classical Hamiltonian of the

form (5.7); the coefficients 4,,,. may be functions of the step length #.

(—3,1)

(i | e

2Nt

3,

B=nple

(6,1)

(b)

(—3,0)

F1cure 9 (b). For description see opposite.

(6,0)

The critical behaviour that occurs in (1.1) when -« = 1, in which hierarchical
structures occur in the spectrum and eigenstates for all values of £ and 8, can also
occur for other Hamiltonians of the form (5.7). From the arguments in §§ 3, 4 and 5,
it can be seen that the r.g. transformation normally maps the Hamiltonian toward
having extended phase trajectories along some preferred’ direction in phase space,
along which tunnelling occurs most easily. When a = 1, and the Hamiltonian (2.4)
has points of fourfold symmetry in the phase plane, this tendency is frustrated and
the critical behaviour described in §§5(i), 5(ii) occurs. These considerations lead
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to the proposal of an at least sufficient criterion for this type of critical behaviour
in a difference equation of the type (5.8), formulated in terms of the corresponding
classical Hamiltonian (5.7). If the classical Hamiltonian is such that, under the
effect of a suitable symplectic transformation, every direction in phase space can be
transformed into at least one distinct direction, while leaving the classical Hamil-
tonian invariant, then the critical behaviour will occur (i.e. the spectrum and eigen-
states of the difference operator exhibit hierarchical structures for all # and all E).

|| [
o —— o
(a) () (c)

Fieure 10. Ilustration of the universality of the Hamiltonian H = cos @+ cos P, in the
semiclassical limit. (a) Spectrum of H =2 (cos $+ cos &)+ cos 2p +cos 28, for f=[7, 7]
= g, which may be considered small. (b) A band of this spectrum is enlarged, showing
seven sub-bands. (¢) The spectrum of H = cos £+ cos § for f = [7] = 4, showing a strong
resemblance to (b).

This criterion can be rephrased as follows. If the classical Hamiltonian H(x, p),
periodic in z and p, is such that, by a suitable symplectic transformation, it is
transformed into a form with centres of 3, 4 or 6-fold symmetry in the phase plane,
then the ‘critical’ behaviour results. This result, which shows that a rotational
symmetry in the phase plane can have a physical significance, is surprising, but it
is well supported by numerical evidence.

For classical Hamiltonians with a fourfold symmetry, expressed by the relation

Ann’ = An‘—n (5'9)
between the Fourier coefficients in (5.7), the Hamiltonian
H = cosz+cosp (5.10)

(i.e. the case a = 1in (2.4)) represents a universal Hamiltonian in the semiclassical
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limit. This is to be understood in the following sense. Consider the simplest case, in
which there is only one Bohr-quantized orbit per unit cell at the energy considered.
Then the W.K.B. analysis can be followed through in just the same way as for (1.1),

(4.2,0.25)

B=np/q

(4.2,0.2)

(2.4,0.2)
E

Froure 11. Further illustration of the universality of the Hamiltonian A = cos &+ cos p.
Apart from a distortion, this enlargement of the region in the small rectangle in figure 9 (b)

shows a strong similarity to figure 7.

and the tunnelling results show that the W.K.B. quasi-eigenstates have a sinusoidal
variation in site energies, and constant nearest neighbour hopping matrix element,
which, by symmetry, is equal in magnitude to the amplitude of the variation in site
energies. So, in the semiclassical case, the quasi-eigenstates are coupled by a
difference equation corresponding to the ‘fixed point’ Hamiltonian (5.10).
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Examples of the quantization of Hamiltonians with fourfold symmetry are
illustrated in figures 8 and 9, which show contour plots, and diagrams of the spectrum
analogous to figure 7, for the Hamiltonians

H = 2[cosx+ cos p+ cos (22 — p) + cos (x + 2p)) (5.11)
and
H = 2 (cos p+ cos x)+ cos 2p + cos 2z (5.12)

respectively. These plots illustrate the hierarchical structures present in the
spectrum.

The universality properties of the Hamiltonian (5.10) are illustrated in figure 10;
some of the fine structure present in the spectrum of (5.12) for a rational value of
fis compared with a comparable spectrum obtained from the universal Hamiltonian
(5.10); a strong similarity is observed. Also, in figure 11, an enlargement of part of
figure 9 is shown, which bears a strong resemblance to figure 7, which illustrates the
spectrum of (5.10).

An important point is that the Hamiltonian must normally have an exact four-
fold symmetry to exhibit the hierarchical properties described here. It is not
sufficient for (5.9) to hold only in the limit # — 0, as suggested by Azbel (1964.).

Hamiltonians with other than fourfold symmetries have been investigated.
Classical Hamiltonians with either centres of threefold or sixfold symmetry belong
to the same universality class, which is distinct from that for fourfold symmetry
described here. The eigenstates and spectrum also exhibit remarkable hierarchical
properties, which can be understood by a W.K.B. analysis similar to that presented
here. It is found that the universal Hamiltonian, analogous to (5.10), is

H = cosx+ cos }(x +4/3p) + cos 3(x — 1/3p), (5.18)

which has centres of sixfold symmetry. The quantized Hamiltonian corresponding
to (5.13) describes the eigenstates and spectrum of these systems on large spatial
scales and small energy scales. This Hamiltonian has previously been studied
numerically by Claro & Wannier (1979).

6. POSSIBLE APPLICATIONS IN SOLID STATE PHYSICS

Apart from the intrinsic interest of the equation (1.1), there are two areas of
solid state physics where these results may be relevant.

(i) Electrons in incommensurate structures

There is an obvious application to the study of electrons and phonons in ‘one-
dimensional’ systems where there are two periodicities present, for example for a
quasi-one-dimensional solid with an incommensurate soliton lattice.
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In these systems a single-band tight-binding model for the electron Hamiltonian
would have the form of a difference equation with periodic coefficients of the form
(5.8). For instance, (1.1) would arise from a tight-binding neodel with constant
nearest neighbour hopping matrix elements and a sinusoidally modulated site
energy.

The critical behaviour described in §5(iv), in which the classical Hamiltonian
(5.7) corresponding to these difference equations (5.8) has a fourfold symmetry in
the phase plane, does not occur generically in this problem since a symmetry in the
phase plane has no physical significance in this context. In general there will not be
a global localization transition as a parameter of the model is varied, but a move-
ment of a ‘mobility edge’ through the spectrum.

When the ratio, g, of the atomic spacing to the period of modulation is small,
the semiclassical method can give useful information, however. From the results
already discussed, it is apparent that in the semiclassical case contours of the
classical Hamiltonian that are open in the z-direction are associated with extended
eigenstates, and contours open in the p-direction usually correspond to localized
states: closed contours may be associated with either extended or localized eigen-
states, depending on which of the magnitudes of the z-tunnelling or the p-tunnelling
coefficients is larger, respectively. Thus an approximate criterion for the mobility
edge can be given in the semiclassical case, # < 1. The magnitudes t,(E), ¢, () of the
- and p-tunnelling coefficients between closed phase trajectories are calculated as
a function of the energy, E. Following the discussion in §§4 and 5(iv), the quantity

a(B) = t,(B)/1,(B), (6.1)

which is analogous to o, obtained in (4.14), characterizes an equation of the form
(4.12) coupling these closed orbits. Then the discussion in §5(iii) shows that the
condition for the ‘mobility edge’is o(E) = 1, with extended eigenstates for «(E) < 1
and localized eigenstates for a(E) > 1. (These results need to be modified slightly
according to the type of lattice formed by the closed phase trajectories at energy
E)

(ii) Bloch electrons in a magnetic field

Eigenvalue equations of the form (5.8), i.e. difference equations with periodic
coefficients, also arise in the problem of solving the Schrédinger equation in two
dimensions for a periodic potential with a magnetic field applied perpendicular
to the plane of the motion.

In the low magnetic field limit, a difference equation of this type is usually
obtained through the use of the Peierls substitution (Peierls 1933; Harper 1955;
Hofstadter 1976), which ignores the effect of inter-band transitions introduced by
the magnetic field. In the high magnetic field limit, difference equations of this type
arise through considering the matrix elements of the Hamiltonian in a basis of
Landau states (Rauh 1974, 1975; Schellnhuber ef al. 1981); in this case the difference
equation is obtained by ignoring the matrix elements between Landau states of
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different quantum number. So, in both cases, the difference equation arises through
the neglect of inter-band effects.

In both of these cases, it is found that the classical Hamiltonian corresponding
to the difference equation obtained has the same symmetry (which may, in some
cases, only be revealed by making a suitable symplectic transformation) as the
periodic potential. This fact is almost self-evident for the Peierls substitution (see
Hofstadter (19776) for a simple derivation), and in the high magnetic field limit the
result follows from the work of Schellnhuber et al. (1981), which obtain the matrix
elements coupling Landau states for a general periodic potential.

So the possibility arises, as first hinted at by Azbel (1964 a), that the hierarchical
properties of the spectrum and eigenstates found for ‘critical’ cases of these
difference equations may represent properties of real systems, i.e. the Bloch
electrons in a crystal with a magnetic field applied along an axis of 3-, 4-, or 6-fold
symmetry; the symmetry in phase space required for the criticality condition is
provided here by a physical symmetry of the crystal lattice.

It remains to be seen whether these hierarchical structures really do have a
physical significance. Apart from questions of their relevance to many electron
systems in real materials, and of the difficulty of experimental observations (see
Hofstadter 1976), it still remains to be seen whether these structures occur in exact
solutions of the problem when inter-band transitions are not ignored. This question
will be discussed in a future paper.

7. CONCLUDING REMARKS

The results presented here show how the critical behaviour of (1.1), which gives
rise to hierarchical structures in the solutions throughout the spectrum when a = 1,
may be understood in terms of an approximate renormalization group trans-
formation. This renormalization group transformation also explains the locali-
zation transition predicted by Aubry & André (1979).

The results are probably somewhat stronger than they may at first appear, since
the renormalization group transformation is obtained in what is probably an
asymptotic form, and the small parameter 7% can usually be made arbitrarily small
by using the extended semiclassical method of Appendix B.

An exact renormalization group transformation, based on multiplying strings of
transfer matrices, has also been found, and an approximate fixed point has been
determined numerically for « = 1, # = [1,1,1,...] = }(/5—1). These results may
be described in a later paper. Some work along these lines has also been done by
Ostlund et al. (1983), and Kohmoto et al. (1983), who studied an equation related to
(1.1) for which it is particularly simple to set up an exact renormalization group
recursion.

The critical behaviour described in this paper is strongly related to the symmetry
properties of the underlying classical Hamiltonian; the universality class of
Hamiltonians of fourfold symmetry has been described in some detail in this paper.
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The other universality class, that of Hamiltonians of threefold and sixfold sym-
metry, will be described in a future paper.

In the application of these results to the problem of Bloch electrons in a magnetic
field, these symmetries in phase space, which determine the critical properties, may
be provided by a geometrical symmetry of the crystal lattice, in models obtained
using a single-band approximation. The question of whether these hierarchical
structures also occur in exact solutions is also being investigated.

The method of Appendix B, as well as being important for the argument pre-
sented here, has an independent interest: it leads to an observable consequence of
the non-single-valued nature of wavefunctions under continuation in a parameter
space related to that discussed by Berry (1983), expressed as a new form of Bohr-
Sommerfeld quantization. This effect also has applications in calculating corrections
to the Bohr—Sommerfeld quantization condition for the motion of Bloch electrons
in a weak magnetic field, and in other problems. An extended discussion of this
method will also be given in a later paper.

While this paper was being prepared for publication I learned of papers by
Thouless & Niu (1983) and Thouless (1983), which contain conclusions that overlap
with those of this paper, although they use different methods. As this paper goes to
press I have learnt of a paper in which Suslov (1982) arrived independently at many
of the same results. I have also learnt of a paper by Ostlund & Pandit (1983) that
describes an exact r.g. transformation for (1.1), based on multiplying transfer
matrices.

I would like to thank Professor M.V.Berry, F.R.S., and Dr J.H. Hannay for
reading the manuscript and making useful suggestions.

I also wish to thank the U.K. Science and Engineering Research Council for a
postgraduate studentship.

APPENDIX A

This appendix describes how the tunnelling coefficients connecting the various
branches of the Hamiltonian (2.4) can be obtained. The method used is the ‘ complex
method’ of W.K.B. theory, which is well reviewed in a book by Heading (1962).

Consider the function p(z) defined by

H = E = 2cosp(z)+2acosz, (A1)
this is singular whenever cosp(z) = + 1, which leads to turning points z; satisfying
coszy = (3B £ 1)/e. (A2)

Note that the turning points are normally of first order, for example near points
where cosp = +1:

cos p(z) ~ 1—1p?, } (A3)

cosp(z) = A[E —acos(z—2)] ~ 1+ fasinzy(z—2) + ...,
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80 that in the neighbourhood of a turning point
P? = asinzy(z—zy) +..., (A4)

thus the turning points are of first order, except when sinz, = 0, corresponding to
values of E for which the turning point is a saddle point of H(x,p). The following
results describe the treatment of first order turning points only; the solution near
saddle points is given by Azbel (1964a,b), who only treated this case.

P}
C\L/)’
cld TR
‘“_
a
A A
— >
0 n A x
| |
c D: :cu
I |
X1 X2

Ficure 12. Phase trajectories of H = 2 cos p+ 2a cos 2, when & = 1, defining the branches
of p(x) (capital letters) and amplitudes of solutions (lower case letters) referred to in
Appendix A.

Consider the branches of p(x) labelled 4, B, ... in figure 12. The solution ¥(z) is a
linear combination of solutions

Ve z0) = Ginpx@)exp [ Sxe. )
» (a5)

Sx(e20) = f Px()d2,

where 2, is the phase reference level, and X labels a branch of p(z). These solutions
are combined with amplitudes labelled a, b, c, ... at the points indicated in figure 12.

By a well known result (Arnold 1980), the amplitudes e, f, g, k are related by the
formula

1 —RX
forf) 2% L w

1
. T



Electrons in tncommensurate systems 337

where 7', is the tunnelling coefficient to go from branch B to branch 4”, and R, is the
corresponding reflection coefficient to go from branch B to branch D.
The transmission coefficient is easily shown to be given by the usual formula

T, = exp [% I’p(x')dx’] , (A7)

where the branch of p(x) between the real turning points z, and , is chosen to make
T, small; note that 7}, is real. Also, treating the turning point at = «, in the usual
way gives

R, = —ir, (A 8)

where 7= |Ry|, t,=|T,|, ri+t2=1. (A9)

Now consider the more interesting problem of the relation between the amplitudes
a,b,c,d, which will be written

1 R

¢l _m[o | T

[d]_ﬁ’[b}’ %= -R, 1| 419
Tp Tp

The transfer matrix T'p describes tunnelling in the p-direction; 7}, is the coefficient
for tunnelling from branch 4 to branch ¢’, and R, the coefficient for reflection from
branch 4 onto branch B. In more conventional terms, considering motion along
the x-axis, T, is the reflection coefficient for the weak reflection caused by complex
turning points of p(2) at z, = + ia (given by A 2), and R, is the corresponding trans-
mission coefficient.

To calculate 7}, require that a solution in the region # > 0 hasno contribution from
¥p-; by using the connection formulae the solution in the region # < 0, and therefore
T,, can be found.

Take the phase reference level, z,, for the solutions (A 5) to be the turning point at
—1ia in the lower half plane. The action integrals

Sxler7g) = f:px(z')dz' (A11)

can be split into a regular part (z—z,)p,, Where p, is the momentum p(z,) at the
turning point, and a singular part

Sk(eraa) = [ (0x(e)-p0) @12

The pattern of Stokes lines, defined by Im S* = 0, and antiStokes lines, defined
by ReS* = 0, associated with the pair of turning points at z, = + ia is sketched in
figure 13 (see Heading (1962) for a review of the Stokes phenomenon).

The solution ¥ (2, —ia) is dominant over ¥ 5(2, —ia) in domain 1 in figure 13,
which includes the positive real axis. To verify this, consider the quantity

s Lo
exp[;—i y px(z)dz], (A 13)
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which can be seen, by inspection of figure 14, to be smaller for the branch px(z)
connecting to the point p = p,, than for p;(z) connecting to p = p,. Similarly, in
domain 2 in figure 13, ¢, is dominant over .

’
/
\

\

/
\

\
)

------ Stokes lines

antiStokes lines

Avasaaar branch cuts

domain 2 domain 1

(=
R“

F1eure 13. Sketch of Stokes lines and antiStokes lines associated with the pair of
complex turning points of p(z) at x = 0.

On crossing a Stokes line in the positive (anticlockwise) sense, Heading (1962)
shows that the Stokes constant is +i. So the connection formula for going from
domain 1 to domain 2 in figure 13 is

domain 2 domain 1

V4=, —ia) +iYolz, —ia) < ¥(2) > ¥z, —ia). (A 14)

Now make the origin, z = 0, the phase reference level

<0 1 [—ie >0
vatw, 0 +iexp (3 | 106 - pe@1 4| Yoo, 0) <y > ¥1e 0, (A15)

80 that the reflection coefficient is, in this approximation,

i [—ia
T, =iexp [t [ " ra)-psN &) = iexp (-3 W), 419
where W is the area shaded in figure 14. The important point is that T, can also be
written as
. i y 2 1 [P
T, =iexp [ﬁf x(p)dp] = exp[—;—i |x(p)|dp], (A17)
Y2

2
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as is obvious from inspection of figure 14. This formula is analogous to (A7), and
allows the interpretation of T, as a tunnelling coefficient in the p-direction. The
magnitude of 7}, |T,| = e /%, could be deduced immediately since this must be
invariant under the canonical transformation z - 2’ = p, p - p’ = —x. The phase
of T, is not invariant, however, since transmission in the p-direction does not involve
a classical turning point of motion along the x-axis.

FI1GURE 14. Branches of p(z), 2 = x+1y, are labelled 4, B, C... for real 2, as in figure 12,
and K, L, ... for imaginary z.

The simplified calculation described here does not determine R, directly; by the
usual considerations R, is given by

R,=r, r3+8=1L1 (A 18)

Finally, although the results here apply specifically to the phase trajectories of
(2.8), these methods can be used to analyse the tunnelling problem for all the
Hamiltonians considered in this paper.

ArPENDIX B
Sokoloff (1981) has argued that W.K.B. methods can be applied to difference
equations with periodic coefficients, such as (1.1), even when the ratio, 8, of the
periodicities is not small. This appendix describes some points about this method
of particular relevance to this paper.

Suppose that g is a rational number; # = p/q, where p and q are coprime integers.
Then (1.1) takes the form

Yniat ¥aat+2acos 2rpn/q+A) Y, = B, (B1)

which has a solution in Bloch form

Y, = e 'S 4, (A)exp (2nipmn/q). (B2)

m=0
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If § is very close to the rational number /g, then the solution should locally be
very similar to the Bloch solution (B2), with a phase 4 that varies slowly and
linearly with position. By writing

B=p/q+48,
% = 2nAp, (B3)

¢ln = ¢(xn)’ Ly = nf,

where 48 is small, (1.1) can be written
Y(x+#)+yY(x—%)+ 2a cos (2rnpx/ gt + x) Y(x) = Eyfr(x), (B4)

so that the phase 4 in (B 1) varies slowly with the coordinate x in (B4). Since,
locally, the solution of (B 4) is close to the Bloch form (B 2), an approximate solution
takes the form

(@) = A(@) exp[iS()/H] % ap(a)exp (2ripma/ah), (B5)

i.e. a slowly varying amplitude 4(z) multiplying a solution in Bloch form. The
potential is almost periodic over a range ¢# ,and the Bloch wavevector is §q.

By using (B 5) as a trial solution, it is found that, to lowest order in 7%, the slowly
varying Fourier coefficients a,,(x) satisfy the difference equation

ae g, +ae?q, ,+2cos(2npm/q+8’)a, = Eay,. (B6)

The eigenvalue F, and amplitudes a,, in (B 6), depend on the two parameters x and
8’; a,(x) and 8'(x) are found by solving (B 6) at constant energy E.

The contours of E(x, 8’) in the (z, 8’) plane will be termed phase trajectories, since
they play the same role as the phase trajectories introduced in §2, i.e. E(z,S’) is an
effective classical Hamiltonian. Note that E(x, S’) is a ¢-valued function, since (B 6)
can be solved by diagonalizing a ¢ x ¢ matrix.

Now consider some properties of the phase trajectories of (B 6). Note that (B 6)
is of the same form as the equation for the site amplitudes ¥, in Bloch form (cf.
(B1),

lbn — An elkn
e*4, . +e k4, +2cos(2npn/q+x)A4, = EA,. (B7)

This equivalence can be expressed by a duality transformation (previously
considered by Aubry & André (1979)) between (B 6) and (B 7); given the equation
(B 6) for the a,,s, the equation for the 4, s is obtained by the substitutions

oa—>1/e, E—>E/a,} (B8)

z—>—-k S -z
So (B 6) is invariant under the canonical transformation (z,S’) - (—k, x) when

a = 1, so that the phase trajectories of (B 6) also have a fourfold symmetry in the
phase plane when o = 1.
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It follows immediately from (B 6) that
E@,8')= Ex+2np/q,S') = E(x+2x,8'),

so that, since p and g are coprime, & is periodic in 8’ with period 2r/q. Also, applying
the duality transform (B 8), the same results apply to the z-coordinate, so that E
is periodic with period 27/q in both z and S".

In fact it can be shown that E(x,8’) takes the form

Ex,8') = f,, j(cos g8’ +a?cos qx), (B9)

where f, ;is a function that depends on the parameter & and has ¢ branches (labelled
by j). This result can be proved as follows. Consider (B 7) in the form

[57]-mewm )

M(x,E): E—2acosx —1 , (B 10)
1 0

Lpy1 = xn+2np/q’ Xy =12,
so that, at the position z,

'ﬁ( +1) q+1] Vi [lb +1]
" =T (z,E)|* net1|, B 11
[ 'ﬁ(n+l)q ( ) 'ﬁnq ( )
T,(z,B) = M(x+2n(q—1)p/q, E) ... B (x+ 2np/q, E) M (=, E).
Now, for the -, to form a Bloch solution with Bloch wavevector 8’q requires that,
since 7'is unimodular,
cosS'q = 3Tr T (z, E). (B12)

By using the duality transformation (B 8) this condition can also be written
coszg = Tr Ty, (=8, E/a). (B13)

Now (B 12) and (B 13) are two equivalent eigenvalue conditions in the form of
gth order polynomials in E, so that their coefficients must be proportional to each
other. By comparing (B 12) and (B 14), it can be seen that only the constant term
can be a function of « or §’, and that this term must contain only a linear combi-
nation of cosxg and cos 8’q. Then from (B 11) and (B 12), it follows that the eigen-
value condition takes the form

P,(E)=cosS'q+a? cos g, (B 14)

where P,(E) is a gth order polynomial in E with coefficients that depend on the
parameter «. Since the phase trajectories can be found by diagonalizing a ¢ x ¢
complex Hermitian matrix, the classical effective Hamiltonian has ¢ branches. In
the generic case, no degeneracies between the ¢ sheets of E(x,8’) are expected to
occur, since three parameters must be varied to degenerate the eigenvalues of a
generic complex Hermitian matrix (see Von Neumann & Wigner (1929); Berry
(1983)). Because of the special form of (B 6), there are sometimes degeneracies where
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sheets of the classical Hamiltonian E(z, S’) meet at points in the phase plane. These
degeneracies are of a type recently studied by Berry & Wilkinson (1983). From
these remarks it is clear that (B 14) can be inverted to give the phase trajectories in
the form (B 19). Equation (B 14) has also been obtained by Bellissard & Simon
(1982) in another context.

Given the effective classical Hamiltonian E(z,S’), solutions supported by its
phase trajectories can be constructed, as in standard W.K.B. theory. The analysis
of turning points, Bohr-Sommerfeld quantization, tunnelling between phase
trajectories, etc. will not be pursued here; the results are similar in most respects
to those of standard W.K.B. theory.

The importance of this extended W.K.B. method is as follows. When g is very
close to a rational number p/q, the W.K.B. method can still be used, and from (B 9)
the phase trajectories have the same combinations of open and closed curves for any
given o as occur in the standard W.K.B. method. This means that many of the
results of §§ 4, 5, which depend only on the form of the phase trajectories, carry over
to the general case in which 8 is not small.

Now consider the condition for the validity of the extended W.K.B. method
proposed here. This is that the period, 27/q, of the classical Hamiltonian E(x, 8’) in
the phase plane should be much greater than the period, ¢, of the underlying

potential, i.e.
gk < 2n/q (B 15)

or |B-p/a| ¢?/2m < 1. (B16)

By some elementary properties of the continued fraction representation of
irrational numbers (see Khinchin 1964) (see also §4(iv)) it follows that, for almost
all g, there exist numbers p, ¢ such that the left side of (B 16) can be made arbitrarily
small, so that the conditions for the W.K.B. method to be applicable can be satisfied
to any desired accuracy.

Finally, a very interesting point arises in connection with the Bohr-Sommerfeld
quantization condition in this scheme. The Fourier coefficients, a,,, which can be
obtained by diagonalizing a ¢ x ¢ complex Hermitian matrix, cannot be given as
single-valued and continuous functions of position in the phase plane; when they
are transported in the appropriate way around a closed orbit, they are multiplied
by a complex phase factor when they return to their starting point. This phase
change is related to an effect that occurs in adiabatic theory, discussed by Berry
(1983). The noval feature in this application is that the phase change is directly
observable as a correction to the Bohr-Sommerfeld quantization formula. This
correction to the Bohr-Sommerfeld formula has wider applications, and will be
discussed in detail in a future paper.
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AprrENDIX C

This appendix gives an alternative derivation of the renormalization group
transformation in the semiclassical limit, by using a W.K.B. method throughout.
This was the method originally used by Azbel to study this problem.

The transfer matrix describing the coupling of a general rectangular lattice of
closed phase trajectories is given, together with an example of how this is used to
derive (4.9) in the semiclassical limit. These results are more general than those
given by Azbel (1964a,b), in that Azbel only considered the case of exact fourfold
symmetry, and only considered orbits-close to the separatices, where the assump-
tions underlying the method start to break down.

oA

E>0, E=E=0

F1cure 15. Phase trajectories of H = 2 cos p+2a cos # when o = 1, defining branches of
(), Apm> Bums --- and amplitudes a,y,, bpm, ... referred to in Appendix C.

The labelling of the branches of p(x) is illustrated in figure 15; the orbits centred
on (2nn, 2mm) are labelled by integers and half-integers » and m, and the branches
of p(x) by the letters 4, B, C, .... Lower case letters a,, by, m -, indicate the ampli-
tudes of the solution at various positions and on various branches of p(x).

Following the results of §3(ii) to construct a solution of the difference equa-
tion (1.1) out of the approximate W.K.B. solutions in the region of = 2nn, the

12 Vol. 391. A
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W.K.B. solutions supported by the »,m orbit are combined with a phase factor 27,
where z,, is given by
2 = oida/h i, ©1)

So the amplitudes a,, ,, by, 1, --., are related by the Bloch condition as follows:

P, m+1 = 2 P, mo (C 2)

where x is any one of @, b, ¢, .... This constraint leaves two undetermined coefficients
at any value of z, as are required for the solution of a second order equation.
A transfer matrix, §,, will be obtained relating the amplitudes a,,, b, in successive

unit cells
Ap 1, 0] _5 [an, o] C3
[bn+1,0 gn bn,O ( )

It is assumed that the transfer matrices 7%, 7', describing tunnelling in the 2- and
p-directions, are known:

[ 1 B
[an+1,m] — Tac [gn, m] , Tx — T; T:;:k ,
bn+l,m k'n.,m —Ra: _1_
L T T,
x x (C 4)
- —];_ —_ RZ
[dn, m+l] — T [cn, m] T = TZ T;
fn,m+l P 6n,m ’ P —Rp _1_
T T,

The calculation of T, T}, R,, R, in the semiclassical limit is described in Appendix

x o

A. By using (C2) and (C4), it is found that

] == ] = %)

II

1 -T%z, (C5)
€n, 0 = _1_ % [c’n,O]
fuol B | Tyt 7 21 1dn,o
and that ?
g 1 edid -T2,
wo —rpei| [m], C6
[kn, o] R} [T* —— | Lbn,o ©6)
D
where
1
$=35E), SE) = pld ©)
so that §, is given by
1 RXTH RETY T%
%145 D -1 4 e~ 1¢____
. | TETL© o (C8)
Gn = 5% :
" RBi|-R T3 —T% RT3
Todig 4 P -1 _ P e~ " X 20
/AR AT AU et

x x xz
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This result generalizes that given by Azbel (19644, b). It applies to the coupling
of W.K.B. solutions that are supported by closed phase trajectories and satisfy the
Bloch condition (C 2).

To illustrate the significance of (C 8), it will be used to rederive the renormali-
zation group transformation in the semiclassical limit # — 0, by using the formulae
for the connection coefficients derived in Appendix A

T,~t, T,x~it,

B,~—i, R,~1,
1% 1 [P
t, = exp ( -7 | 1@ dw) » tp=exp (—%f |2(p)] dp) ; (C9)
Z ¥ 2
so that §, is approximated by
1 [edd—t, 271 —i(e~HP—t,2,)
In = ZL_ [i(e,m; —t,zgl) e Ho— ty 2 ] ) (C10)

which is the general formula for the transfer matrix in the semiclassical limit.
Because of the approximations |R,| = |R,| =1, (C10) no longer satisfies the
condition det §,, = 1, but this does not matter for the subsequent analysis presented
here.

From (C 10), a second order difference equation will be found, which the ampli-

tudes a,, = a,, ( satisfy. Given
~ 4, Bn] ~
= , detg, =1, (C11
=lor o der )
the amplitudes o, satisfy the equation
Bn-—l Api1t Bn O (Aan—l + Bn D,_;)cy. (C12)

For the present purposes only the terms of lowest order in the transmission
coefficients will be obtained; using the form (C 10) for §, gives

(e"’l‘l¢ - tp z’n—l) %yt + (e‘i‘iib - tp zn) Up—1
= 21- [(eiigﬁ - tp z’l_bl) (em;‘li¢ - tp zn—l) + (e-—éiq& - tp zn—l) (e_§l¢ - tp zn)] Ko (C 13)
3

Making the substitutions

¢ =2n(m+1)+x, %S(E’m) =2n(m+4%), x= <§§)E AE (C14)

and retaining only lowest order terms,

1/08
(= 141 gty a) + (= P90, /2t 500 2 = 5 (37) BB (€15)
Now, by writing "
2y = oD — b,y = 1/4—[1/B], (C16)

where [#] means ‘interger part of z’, (C 15) reads

O™ty g+ Xpyq) + 208 cos (2mfym) t, = Ao, (C17)

12-2
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where
o = (— 1)m+1ﬁtp/(aS/8E)Em, O™ =(— 1)m+1ﬁtw/(8S/aE’)Em. (C18)

These equations (C 17), (C 18) are equivalent to (4.9); the amplitudes e, describe
the amplitudes of Bohr-quantized quasi-eigenstates centred on 2 = 2nn, and (C 17)
is the Hamiltonian equation describing the interaction of these states.

One final point concerns the application of the Bloch condition (3.19) in the
p-direction, which expresses the fact that the superposition of W.K.B. solutions
corresponds to the solution of a difference equation. In (C 1), (C 2) a different Bloch
wavevector is applied to each row of closed orbits along the p-direction. This is
because the approximate wavefunctions are confined to different regions of the
x-axis, separated by classically forbidden regions, and they are therefore treated
separately, with different phases 4,,. This approximation will break down for states
at the separatrix where the semiclassical W.K.B. solutions are not well separated.
The exact, global solution of the difference equation (1.1) will, of course, have a
single Bloch wavevector associated with it in the p-representation, in just the same
way as has (3.16). This fact is of little use in analysing (1.1) to determine the form
of its solutions, however.

APPENDIX D

This appendix gives a simplified discussion of the fractal dimension of the
spectrum of (1.1) when a = 1, for almost all 3.

The discussion of the r.g. transformation in §5(ii) predicts that, when o = 1, the
spectrum is a fractal Cantor set (see Mandelbrot 1982), provided the coefficients n,
of the continued fraction expansion of 8 form a statistically stationary sequence.

It is natural, therefore, to try to characterize the spectrum by its fractal dimen-
sion, especially as this would, by the discussion in §5(iv), be expected to be a
universal quantity for all Hamiltonians with given symmetry, for almost all 8.

For the purposes of this paper the fractal dimension, Dy, will be defined by:

D, = lim - 2A®). (D1)
p—0 lnp

where A(p) is the minimum number of intervals of length p required to cover
the set. This definition of dimension (due to L. Pontrjagrin and L. Schnirelman) is
easier to use than the definition preferred by Mandelbrot (1982) (due to F.
Hausdorff and A.S. Besicovitch), and in most cases gives the same answer.

Consider the following simplified model of the spectrum. Assume that the
spectrum can be generated recursively as follows. Take an interval and split it into
n, equal subintervals of length p(n,). Split each of these subintervals into 7, equal
subintervals of length p(n,) ... etc. The numbers n, are taken to be the coefficients
of the continued fraction expansion of .

In the semiclassical limit the fraction of the width of the vyth sub-band occupied
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by the v, ,th sub-band is given by the energy scaling factor for the r.g. trans-
formation (4.1),

0 = exp| — 5 [ |pt@)] da] i/ @ /2E) e, (D2)

NJ &

which depends on the sub-band considered as well as on the value of 7. The fact
that all the sub-bands are of different width is very difficult to deal with, and is
ignored in this present discussion. The function p(ny) used in this model only takes
account of the variation of (D 2) with %;

plny) = Afiy o=, (D3)
80 that, using the fact that iy ~ 2rn/ny, p(n) is taken as

’

A
plny) = - oxp(~B'n,) (D4)

in the semiclassical limit, where 4’ and B’ are constants.
Now consider how to calculate the fractal dimension of this set. After N stages of
the recursion generating the set, there are

N
Ny = I n (D5)
i=1
intervals, each of length
N
py = 11 p(my), (D6)

and it is obvious that the fractal set can be covered by .y intervals of length py
(in fact this is usually the most economical covering, but this fact will not be
needed). Thus
N N
D, < lim — 3, Inn, / 3 Inp(ny), (D7)
1

N—w i=1 i=

or Dy < {Inny/{Inp(n)p, (D8)

where the angle brackets denote an average over the distribution P(n) of the n;s. Now
for almost all 8, P(n) takes the universal form (4.24), and using the limiting form
(4.25) for large n, and the semiclassical result (D 4) for p(n), it is easily found that
the denominator in (D 8) diverges to —oo. The numerator, however, has the value
In2.686. So (D 8) gives

D;=0 (D9)
for almost all g.

The use of the semiclassical form for p(n) is justified because the semiclassical
results are asymptotic for large » (small 7), and this is just where the divergence of
the mean of In p(n) comes from. The result (D 9) is found to be unchanged when the
different sizes of the sub-bands formed at each stage of the r.g. recursion are taken
into account; the calculation is lengthy, however, because of the difficulty of
finding the asymptotic behaviour of .4#"(p); some of the results of this calculation
have an independent interest and the author hopes to publish them separately.
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AprrPENDIX E

The appendix gives details of the divergence of « from its fixed point, &« = 1, and
estimates the critical exponent of this divergence in the semiclassical limit.
The r.g. recursion relation for « is given by

-1
N

where the action integrals X¢M, X" over the classically forbidden regions of the
z- and p-axes are found through

P T

E = Hy = 2cosp+2aycosz, (E2)
P(x;) = p(z) = 2(py) = #(p,) = 0.
So X, and X, are given by
2n—x,
Z, = f arccosh [1F — (1+ &y) cosu] du,
2n—p, E3
2, =f arc cosh [1 £ — (1 + 8y)t cos u] du, (E3)
p 21
x, = arccos [(JE —1) (1+6y)71], p, =arccos[(3E—1)(140y)]
and ay =148y
provided that, at the energy considered, the phase trajectories are closed.
When ¢ is small, its mapping under the r.g. transformation is given by
—1(0%, 0
Ay = 140y, =€x [—(—‘1———”)8]
N+1 N+1 P ﬁ‘N EE) FE) N (E 4)
~1gl (aﬁ _ Q_E_x)
=\ T8 ) [
Therefore the ratio &y,,/8y is given by
1
On1/On = 3 o(B), (E5)
N
0 m—2*  —2cosudu
where o(B) = %(zp-zx)b:o = L‘ [E—cosuf— IV’ (E6)

x" = arcos (3£ —1).
When E is small, it is easily shown that
o(f)~2rn, E<I, (E)
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and since, by symmetry, o(E) varies quadratically at B = 0, (E 7) is a fair approxi-
mation to o(Z) for most of the energy range.

When g =7 /2rn is a quadratic irrational number and there are fixed points of
the r.g. transformation, then

On11 1
KN+1‘“W—WU(E) (E8)

is a critical exponent of the r.g. transformation, describing the instability (x > 1)
of a fixed point in the semiclassical limit, £ < 1.

AprpENDIX F

This appendix gives a brief explanation of how the figures showing the spectra
and eigenstates were prepared.

Even though this paper is primarily concerned with the properties of (1.1), and
similar equations, when the ratio £ of the periodicities is irrational, all the figures
show solutions calculated for rational values of 5. The exact spectra for an irrational
B cannot, of course, be calculated since they are pathological sets, but the continuous
spectrum for a nearby rational value of £ will show the first stages of the hierarchical
properties of the Cantor set spectrum.

The spectra of (1.1) were computed as follows. If £ is a rational number, § = p/q,
then (1.1) can be solved in Bloch form

e*a,, ,+e%a, ;+2acos(2npn/q+4)a, = Ea,, ¥, =-ek"a,, (F1)

where the a,, form a periodic sequence of period ¢; the a,, and E are periodic functions
of period 2r/q in both k and 4. The plots of the spectra show the range between the
maximum and minimum values of E in the (k,4) plane, found by finding the
eigenvalues E of the ¢ x ¢ Hermitian matrix equation equivalent to (F' 1). The other
equations considered were solved in the same way.
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