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We give a different derivation of a relation obtained using a supersymmetric nonlinear sigma model by
Andreev and AltshulefPhys. Rev. Lett72, 902(1995], which connects smooth and oscillatory components
of spectral correlation functions. We show that their result is not specific to the random matrix theory. Also, we
show that despite an apparent contradiction, the results obtained using their formula are consistent with earlier
perspectives on random matrix models.
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Spectral correlations of complex quantum systems, sucpartly because of the suggestion that it contains information
as disordered metals and classically chaotic quantum sysbout “resurgence.” This is to be interpreted in terms of
tems, are known to be nearly universal. For small ranges oButzwiller's [10] relationship between periodic orbits and
energy they are well approximated by the Gaussian invariarthe density of states: periodic orbits with perigdare asso-
ensembles of the random matrix thed@XE, where X=O,  ciated with oscillations in the density of states of perigd
U, or S stands for orthogonal, unitary, and symplectic invari-=#/t;. One interpretation of the concept of resurgence is
ance [1,2]. Deviations from GXE behavior at larger energy that information about long period orbits is encoded in prop-
scales may be consistently incorporated using semiclassicatties of the short orbits. In this conte®®?/(e) may be de-
or perturbative approachd8-5]. An interesting develop- rived using Gutzwiller’s relation from properties of short or-
ment in this field was a paper by Andreev and Altshulerbits, and the AA relation then gives information about
(AA) [6] who introduced a relation that suggests a degree ofluctuations in the spectrum with the wavelength equal to the
nonuniversality in short-range spectral correlations. Theimean level spacing\, corresponding to orbits of a period
calculations are based on the nonlinear sigma model. Ougqual to the “Heisenberg time,t,=2m#A/A.
paper will give an alternative derivation of this relation pro- In the following we provide an alternative interpretation

viding additional physical insight. of the AA results using old ideas of the applicability of the
AA [6] consider the spectral two-point correlation func- random matrix theory. Dysofil1] introduced a Brownian
tion, defined as motion model for the random matrix theory, giving a Lange-
vin equation of motion for the response of energy levels to a
Rg(e)=A*(d(E+ e/2)d(E~€/2)) - 1. (1) stochastic perturbation. Dyson later sugge$te2] that this

) ) model may give valuable insights into why the random ma-

Hered(E) =2,5(E—E,) is the density of state&, are the  yix theory applies to generic systems. He considered the

eigenvalues of a Hamiltoniar, andA (E)=(d(E)) *isthe  dynamics of the energy levels under the effect of a stochastic

mean level spacing that is assumed to be independdnirof  perturbation, which is large enough to shift energy levels

the following. The index8=1,2,4 distinguishes orthogonal, significantly, but which remains small enough to leave other
unitary, or symplectic symmetry classes, respectively. features of the systertsuch as the classical dynamiam-

AA divide Eq. (1) into a smooth and an oscillatory con- changed. Dyson showed that the equations of motion sim-
tribution, and propose thdfor B=2) these are related as plify if the discrete Fourier coefficients, of the level dis-

follows: placements are used as dynamical variables:
av, AZ (92 N—1
Relle)=—7— ~3loaDe), (2) ac=y 2, AE,exp—2mikn/N), 4)
1 _ .
ROY )= —— cog 2mel A)D(€). 3 whereAE,,=E,— r!A, N is the number of energy levels, anq
2 (¢) 2772 (2melA)D(e) ® k takesN successive integer values. We will take the maxi-

mal k to be int(N/2). The long wavelength modes evolve
The relation is exact for the GUE with a suitable choice foralmost independently, with a long relaxation time, which
D(e) and generalizations are approximately true for thescales ak ! [12,4]. The short wavelength modes remain
other ensembles. AA propose that E(®. and(3) are quite  strongly coupled. The stochastic perturbation will bring the
general, and should be used to predict the oscillatory comshort wavelength modes into equilibrium, giving statistics of
ponent from the average component. The quamify) isa  the a,, which are identical to the random matrix ensemble
spectral determinant. for sufficiently largek.

The AA relation contained in Eq92) and (3) has at- These arguments were later supported and extended with

tracted considerable attentiofsee, for example[7-9]), the aid of semiclassical estimates of matrix elemghisThe
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argument in[12] assumes that the matrix elements of theing oscillatory contribution. Using Eq5) we have, upon
perturbation are uncorrelated. It was shown that semiclassexpanding the slowly varying window function in E(),
cal estimates are consistent with this hypothesis when con-
sidering the stochastic force driving the larigenodes. The av ” = , ,
forces driving the smak modes are modified by the classi- Rg(€)= _1+An=§;w ledf w(e—e€)pg(n,e’)
cal dynamics of the system. The resulting picture is that long
wavelength fluctuations are nonuniversal, but that at short *
wavelengths the excitations of the modes are precisely the =—1+A E
same as for the appropriate GXE. In particular, there is no
modification of the statistics of the Fourier coefficierts (8)
unless|k|/N is small.

These observations appear to contradict the AA relationgAssuming thato(n) is a slowly varying function of, we
A nonuniversal form folR3'(e) will be reflected in nonuni- May approximate the sum overas an integral and obtain
versal statistics of tha, for smallk. The AA relations sug-
gest that there will be corresponding nonuniversal statistics
for largek, determiningR3°{€). This apparent contradiction
has two possible resolutions. Either there are previously un-
suspected nonuniversal modifications of thefor largek,  Consider now the oscillatory contributi®f’{ €). Assuming
which are not captured by the semiclassical approximationgat af;(n) is slowly varying, these can be evaluated from

in [4], or it must be possible to derive the AA relations from Eq. (5). Using a Poisson summation, and assuming the
the Brownian motion model described [4] without such ps(n,e) are Gaussian,

modifications at large times. In the following we show that
the latter is the case. * ) 2 )

The remainder of this article is organized as follows. We Ry (e)= > 2cog2m un)e” @TmoEM2AT (10
will first describe a simple derivation of the AA result, and w=1
comment on its applicability. We will then describe the
Brownian motion model and use it to derive the correlation
function Rg(e€) for the case of a system with diffusive elec-
tron motion. In this calculation we assume that the statistic
of the Fourier coefficients are unchanged for lajkle The
fact that we reproduce existing results fg(e) verifies that
corrections to the Brownian motion model with a large wave
number are not required. Finally, we will comment on the
correlation function for classically chaotic systems.

Our starting point is the following general expression for
the correlation functiorR4(€):

w(e—nA)+ %W”(e—nA)az(n) .

av 1 (92 2
RB(G)ZEWUB(TU, e=nA. 9

This sum is dominated by the=1 term wheno?(n) is
sufficiently large. DefiningD (€)= 42 exp[—Zﬂ'zazB(n)/AZ]
e obtain relation$2) and(3). We remark that these formu-
as are valid for any correlation function that can be approxi-
mated as a sum of Gaussians, in regions where the variance
satisfieso>> A2, and wheres? varies sufficiently slowly as
a function ofn. RelatingD (¢€) to o®(n) gives a clear insight
into its meaning. Relation§2) and (3) may be easily ex-
tended by considering higher-order derivatives in yand
higher Fourier components in E3). Extensions to non-
Gaussian spacing distributions are possible. Also, we empha-
o size that these relations are not specific to spectral correlation
Rg(€)=—1+A > pa(n,e), (5)  functions. For example, they are applicable to density corre-
n=—o lations in solids: for thermal excitation of phonons the cor-
responding two-point function is a sum of Gaussians, and
wherepg(n,e)de denotes the probability of finding that the &2(n)~lognin d=2 dimensiong13].
differe.nce betweel, and E.” is in the interval[ €,e+d€]. Next we consider the calculation @fy(n,e) and 02(”)
We will show below that in many cases, tipg(n,e) are  ysing Dyson’s Brownian motion modgl1]. Here the matrix
well approximated for a large by Gaussians, with variance elements of the HamiltonialA undergo a diffusive evolution

2
‘Tﬁ(”)' as a function of a fictitious time variable We denote the

de:\llr:(tj’ ff;gvmvei\zlgr(,S\)NeV\?: (\)/vV\r/itr(]aOW relatio® and(3) can be g i cimal change ofl by 5H. In the GOE case, we have
T for n>m andn’>m’,

Rs(e)=R3(e)+RYe). 6
p€)=R(e) + R (e) © (SHm =0, (SHmn0Hmn)=CM 8761 Sy (11)
Ay
HereR5'(e) is defined as (extensions for GUE and GSE are given[ir]). The diag-
. onal elements obey
Rav — f de’ —€)R ’ , 7 .
ple)= | de'wlem eDRg(e’) " (Hp) =0, (SHpuoHo=2578"1CI9. (12

wherew(€) is a suitable window functiofwhich could be a  Dyson|[11] originally discussed the case wheBd?9= 5, ,
Gaussian centered around zero with a variance much largand C" =1, for which the statistics of thE,, are the same
than aé(n) and normalized ta\™*). R*{e) is the remain-  as for the GXE. We will argue below that nonuniversal de-
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viations from the GXE are encoded @d2%=C9%9 (and pﬁ(n,e):[Zmr%(n)]‘1’2e‘(f‘”A)2’2"§(”). (19
cof =" ). Using the second order perturbation theory

leads to a Langevin equation The variancer(n) may be calculated in terms ¢y ay.),
5 with summation ovek, k’. We use the fact that the ampli-
SE.— 2 | 8H il +5H (13) tudes are uncorrelated whék|/N<1, with intensity given
n nn by Eq.(18), and the assumption that they are universal when
|k| is comparable toN. The resulting expression may be
for the energy level shift$E,. Thus, written as a single sum ovés and approximated by an in-
tegral. Writingt=tk/N, andNI,=1(t),

m#n En_ Em

Con
(Bw=or2 £ “E. 19 2 207 [ 'nZ(mA) 20
ogsnN)=—— - Sl -5
. B :B7T2 0 t B 2h
(SEnSE,) =287 tCdag | (15)

whereJ (1) =1(t) for t<1, andJ4(t) takes a universdbut
Semiclassical estimatd44] indicate that theC" decrease to us, unknowhform whent is not small. For the Gaussian
for large values oh, i.e., the repulsive interaction is screenedinvariant ensemblegwhere I(t)=1], the variances grow
at long range. This effect was considered[i5]; for our  logarithmically withn: for n>1,
purposes it is not significant, and we will sﬁﬁ”= 1
throughout. We now use E4) to obtain the same equations 5
of motion in terms of the Fourier variables,. Using op(n)= ﬁ“og(zwanﬂ]- (21
SAE,= 6E,, we have

2

SettingC,= —logy2, C,=0, andC,=log(4/7), and using
this expression in Eq42) and (3) gives the correct leading
order contributions tR%'(€) and R3*{€) in the limit e/A
—o (c.f. Ref.[2]).

Next we consider how the functidift) must be modified
at smallt to take account of classical dynamics. For small
values of|k|, the amplitudesa, can be estimated semiclas-
2 sically [4],

27K
<5ak> =— Wakér. (17)

(Saydaly=2678"by (16)

wherel,=N"13,C%9exp(—27ikn/N). The transformation
of the drift term is less straightforward. In geneah,) is a
complicated function of all of the,, but in the limit|k|/N
—0 the equations decouple and oléyp 4]

2mh

= K 22
T _tHNy (22

Z| =

1 N
5ak~Ntr[5HU(t)], t=
By solving a Fokker-Planck equation for the real and imagi-

nary parts ofa,, these are found to have a steady state dis- - A . ,
tribution that is Gaussian. The value ¢f,|2) can be de- where U(t) =exp(—iHt) is the evolution operator. We first

duced by requiring thafja,(7+ 6T)|2)=<|ak(r)|2>. Writing consider diffusive system@lectrons in disordered metals

_ i then systems with a chaotic classical limit.
+67)= +6 d Eqgs(16) and (1
?Il:fg pro?idefijj(kTaN<T and using Eqs(16) and (17) we Diffusive systemdn this case we may consider the per-

turbation 5H to be uncorrelated random changes of the site
NAZI, energiesV, in an Anderson tight-binding modgl5]
(18)

2\ _
)= .
(lal®) 2723k ) )
SH=2, VP, (8VadVo)=6nn (23

We cannot determing|a,|?) for larger values ofk| from "
this approach. We now make our key assumption, that thereh B s th ‘ection for locati lect latii
are no short-range correlations between the diagonal matri erer, IS the projection for localing an electron on lattice

elements, i.e.,Cﬂii‘?n~ Som- Semiclassical arguments that siten. Using a semiclassical approximation of Eg2), I()

support, but do not prove, this assumption are givepdin is seen to to b_e proport?onal to the p_rc_)bability of returning to

(The existence of short-range correlations would represent%1e original .S'te after fime. Normalizing so thal(t) ap-

type of “resurgence,” in the sense discussed eatliender proaches unity for large we have

this assumption, the equations of motion of theare iden- m

tical to those for the Brownian motion model describing ()=, e—Dkit’ (24)

Gaussian invariant ensembles. We therefore conclude that »=0

when |k|/N is not small, the mode intensitig$a,|?) are

identical to those of the Gaussian invariant ensembles.  where the sum is over the eigenmodes of the Helmholtz
For largen, the level spacing&,,—E, are seen to be a equation V2+ ki) ¢, (r)=0 with Neumann boundary condi-

sum of many independent random variables and are thugons. In a quasi-one-dimensional systéap= 7v/L. In this

Gaussian distributed, case we obtain from Eq20)
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Ref. [4] that when the motion is chaotic, th#a, have sta-
tistics corresponding to random matrix theory for latgé
simple model capturing the essential features of this case is
to replace the lower limit of the integral in E(RO) with the
periodt, of the shortest periodic orbit. This gives

2mnt t
Ci( il 0) —Iog(—O
ty ty

' | — |o This model has the feature thalé(n) is finite in the limit
/'t n—co, corresponding to the behavior of Dysoks statistic
FIG. 1. The form factoK(t) for a quasi-one-dimensional dif- for systems with a smooth classical lini]. We note that

fusive system. Numerical simulations for banded random matrice£hls |mp||es[u§|ng Eqs..(2) and(3)] that the oscillatory part
(+), are conpared with theoretical results—) according to Egs. of the correlation function does not decay to zero. The form

2A%

Uzﬁ(n):ﬁ

. (26

2

1072 10"

(9), (10), and(25). The GUE result is also show@ - -). factor is seen to have &function at the Heisenberg tiniq,
with a magnitude proportional ta{/t,)**. This feature has
oA2 1® n2 not been remarked upon in earlier papers that ha\_/e_ d?scussed
o2(n)=——|log(2mn)+Cyz+ > >, log| 1+ _) the form factor for chaotic systeni—9], although it is im-
P Bm? 251 g%v* plicit in the model discussed in Ref17].

(25 A more precise estimate off;(n) for specific systems can
be obtained using the periodic orbit theory, following the
approach used in Ref3]. The conclusions are unchanged:
af;(n) remains finite as—oo, and there must exist oscilla-

I in the f f he Heisenberg tions in the correlation function that do not decay. In general,
sal structures In the form factor at the Heisenberg tpme however, thepg(n, €) are not precisely Gaussian. Moreover,
We have verified their existence in numerical simulations;

d ble of | itian banded rand 'small deviations from a Gaussian distribution can have a
We used an ensembie of complex Hermitian yanded ran O'T%rge effect on the Fourier transform, which determines the
matrices (of dimension N=1000 and bandwidthb=35)

; ) . . L magnitude of the oscillations in E¢10). We infer that the
modeling a quasi-one-dimensional diffusive sys{a®l. We s relations must be treated with caution when applied to

fitted the dimensionless conductance, using states from tl”me spectra of systems with a smooth classical limit
center of the spectrurfobtainingg=2.0). The results are In conclusion, we have shown that the AA relations have

shown in Fig. 1 and are in good agreement with the theorety gimpe interpretation, independent of quantum mechanics.

ical predictions, Egst9), (10), and(25). They are precisely a5 we have shown that despite an apparent contradiction,
equivalent to the AA result§7) and (14) in [6]. We have ci'fo

X ’ | ey are consistent with the Brownian motion model for
thu_s sho_vvn that their results are consistent with the approacihaciral statistics described in RE4).
to justifying the random matrix theory discussed 4.

Classically chaotic systemg&onsider expressiof22) for It is a pleasure to acknowledge illuminating discussions
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the period of a periodic orbit. Moreover, it was shown in Grant No. GR/L02302.

whereg=7?4D/L?A is a dimensionless conductance.
The “form factor” K(t) is the Fourier transform of
Rg(€). As discussed by AA, Ed3) gives rise to nonuniver-
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