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Spectral correlations: Understanding oscillatory contributions
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We give a different derivation of a relation obtained using a supersymmetric nonlinear sigma model by
Andreev and Altshuler@Phys. Rev. Lett.72, 902 ~1995!#, which connects smooth and oscillatory components
of spectral correlation functions. We show that their result is not specific to the random matrix theory. Also, we
show that despite an apparent contradiction, the results obtained using their formula are consistent with earlier
perspectives on random matrix models.
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Spectral correlations of complex quantum systems, s
as disordered metals and classically chaotic quantum
tems, are known to be nearly universal. For small range
energy they are well approximated by the Gaussian invar
ensembles of the random matrix theory~GXE, where X5O,
U, or S stands for orthogonal, unitary, and symplectic inva
ance! @1,2#. Deviations from GXE behavior at larger energ
scales may be consistently incorporated using semiclas
or perturbative approaches@3–5#. An interesting develop-
ment in this field was a paper by Andreev and Altshu
~AA ! @6# who introduced a relation that suggests a degree
nonuniversality in short-range spectral correlations. Th
calculations are based on the nonlinear sigma model.
paper will give an alternative derivation of this relation pr
viding additional physical insight.

AA @6# consider the spectral two-point correlation fun
tion, defined as

Rb~e!5D2^d~E1e/2!d~E2e/2!&21. ~1!

Hered(E)5(nd(E2En) is the density of states,En are the
eigenvalues of a HamiltonianĤ, andD(E)5^d(E)&21 is the
mean level spacing that is assumed to be independent ofE in
the following. The indexb51,2,4 distinguishes orthogona
unitary, or symplectic symmetry classes, respectively.

AA divide Eq. ~1! into a smooth and an oscillatory con
tribution, and propose that~for b52) these are related a
follows:

R2
av~e!.2

D2

4p2

]2

]e2
logD~e!, ~2!

R2
osc~e!.

1

2p2
cos~2pe/D!D~e!. ~3!

The relation is exact for the GUE with a suitable choice
D(e) and generalizations are approximately true for
other ensembles. AA propose that Eqs.~2! and ~3! are quite
general, and should be used to predict the oscillatory c
ponent from the average component. The quantityD(e) is a
spectral determinant.

The AA relation contained in Eqs.~2! and ~3! has at-
tracted considerable attention~see, for example,@7–9#!,
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partly because of the suggestion that it contains informa
about ‘‘resurgence.’’ This is to be interpreted in terms
Gutzwiller’s @10# relationship between periodic orbits an
the density of states: periodic orbits with periodt j are asso-
ciated with oscillations in the density of states of periode j
5\/t j . One interpretation of the concept of resurgence
that information about long period orbits is encoded in pro
erties of the short orbits. In this context,Rav(e) may be de-
rived using Gutzwiller’s relation from properties of short o
bits, and the AA relation then gives information abo
fluctuations in the spectrum with the wavelength equal to
mean level spacingD, corresponding to orbits of a perio
equal to the ‘‘Heisenberg time,’’tH52p\/D.

In the following we provide an alternative interpretatio
of the AA results using old ideas of the applicability of th
random matrix theory. Dyson@11# introduced a Brownian
motion model for the random matrix theory, giving a Lang
vin equation of motion for the response of energy levels t
stochastic perturbation. Dyson later suggested@12# that this
model may give valuable insights into why the random m
trix theory applies to generic systems. He considered
dynamics of the energy levels under the effect of a stocha
perturbation, which is large enough to shift energy lev
significantly, but which remains small enough to leave oth
features of the system~such as the classical dynamics! un-
changed. Dyson showed that the equations of motion s
plify if the discrete Fourier coefficientsak of the level dis-
placements are used as dynamical variables:

ak5
1

N (
n50

N21

DEn exp~22p ikn/N!, ~4!

whereDEn5En2nD, N is the number of energy levels, an
k takesN successive integer values. We will take the ma
mal k to be int(N/2). The long wavelength modes evolv
almost independently, with a long relaxation time, whi
scales ask21 @12,4#. The short wavelength modes rema
strongly coupled. The stochastic perturbation will bring t
short wavelength modes into equilibrium, giving statistics
the ak , which are identical to the random matrix ensemb
for sufficiently largek.

These arguments were later supported and extended
the aid of semiclassical estimates of matrix elements@4#. The
©2001 The American Physical Society03-1
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argument in@12# assumes that the matrix elements of t
perturbation are uncorrelated. It was shown that semicla
cal estimates are consistent with this hypothesis when c
sidering the stochastic force driving the largek modes. The
forces driving the smallk modes are modified by the class
cal dynamics of the system. The resulting picture is that lo
wavelength fluctuations are nonuniversal, but that at sh
wavelengths the excitations of the modes are precisely
same as for the appropriate GXE. In particular, there is
modification of the statistics of the Fourier coefficientsak
unlessuku/N is small.

These observations appear to contradict the AA relatio
A nonuniversal form forR2

av(e) will be reflected in nonuni-
versal statistics of theak for small k. The AA relations sug-
gest that there will be corresponding nonuniversal statis
for largek, determiningR2

osc(e). This apparent contradiction
has two possible resolutions. Either there are previously
suspected nonuniversal modifications of theak for large k,
which are not captured by the semiclassical approximati
in @4#, or it must be possible to derive the AA relations fro
the Brownian motion model described in@4# without such
modifications at large times. In the following we show th
the latter is the case.

The remainder of this article is organized as follows. W
will first describe a simple derivation of the AA result, an
comment on its applicability. We will then describe th
Brownian motion model and use it to derive the correlat
function Rb(e) for the case of a system with diffusive ele
tron motion. In this calculation we assume that the statis
of the Fourier coefficients are unchanged for largeuku. The
fact that we reproduce existing results forRb(e) verifies that
corrections to the Brownian motion model with a large wa
number are not required. Finally, we will comment on t
correlation function for classically chaotic systems.

Our starting point is the following general expression
the correlation functionRb(e):

Rb~e!5211D (
n52`

`

pb~n,e!, ~5!

wherepb(n,e)de denotes the probability of finding that th
difference betweenE0 and En is in the interval@e,e1de#.
We will show below that in many cases, thepb(n,e) are
well approximated for a largen by Gaussians, with varianc
sb

2(n).
First, however, we show how relations~2! and~3! can be

derived from Eq.~5!. We write

Rb~e!5Rb
av~e!1Rb

osc~e!. ~6!

HereRb
av(e) is defined as

Rb
av~e!5E

2`

`

de8w~e2e8!Rb~e8!, ~7!

wherew(e) is a suitable window function~which could be a
Gaussian centered around zero with a variance much la
thansb

2(n) and normalized toD21). Rb
osc(e) is the remain-
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ing oscillatory contribution. Using Eq.~5! we have, upon
expanding the slowly varying window function in Eq.~7!,

Rb
av~e!5211D (

n52`

` E
2`

`

de8w~e2e8!pb~n,e8!

.211D (
n52`

` Fw~e2nD!1
1

2
w9~e2nD!sb

2~n!G .
~8!

Assuming thatsb
2(n) is a slowly varying function ofn, we

may approximate the sum overn as an integral and obtain

Rb
av~e!.

1

2D2

]2

]n2
sb

2~n!, e5nD. ~9!

Consider now the oscillatory contributionRb
osc(e). Assuming

that sb
2(n) is slowly varying, these can be evaluated fro

Eq. ~5!. Using a Poisson summation, and assuming
pb(n,e) are Gaussian,

Rb
osc~e!. (

m51

`

2 cos~2p mn!e2(2pm)2sb
2(n)/2D2

. ~10!

This sum is dominated by them51 term whensb
2(n) is

sufficiently large. DefiningD(e)54p2 exp@22p2s2(n)/D2#
we obtain relations~2! and~3!. We remark that these formu
las are valid for any correlation function that can be appro
mated as a sum of Gaussians, in regions where the vari
satisfiess2@D2, and wheres2 varies sufficiently slowly as
a function ofn. RelatingD(e) to s2(n) gives a clear insight
into its meaning. Relations~2! and ~3! may be easily ex-
tended by considering higher-order derivatives in Eq.~2! and
higher Fourier components in Eq.~3!. Extensions to non-
Gaussian spacing distributions are possible. Also, we emp
size that these relations are not specific to spectral correla
functions. For example, they are applicable to density co
lations in solids: for thermal excitation of phonons the co
responding two-point function is a sum of Gaussians, a
s2(n); logn in d52 dimensions@13#.

Next we consider the calculation ofpb(n,e) and sb
2(n)

using Dyson’s Brownian motion model@11#. Here the matrix
elements of the HamiltonianĤ undergo a diffusive evolution
as a function of a fictitious time variablet. We denote the
infinitesimal change ofĤ by dĤ. In the GOE case, we hav
for n.m andn8.m8,

^dHmn&50, ^dHmndHm8n8&5Cmn
off dtdnn8dmm8 ~11!

~extensions for GUE and GSE are given in@11#!. The diag-
onal elements obey

^dHnn&50, ^dHmmdHnn&52dtb21Cmn
diag. ~12!

Dyson @11# originally discussed the case whereCmn
diag5dmn

andCmn
off 51, for which the statistics of theEn are the same

as for the GXE. We will argue below that nonuniversal d
3-2
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viations from the GXE are encoded inCmn
diag5Cm2n

diag ~and
Cmn

off 5Cm2n
off ). Using the second order perturbation theo

leads to a Langevin equation

dEn5 (
mÞn

udHmnu2

En2Em
1dHnn ~13!

for the energy level shiftsdEn . Thus,

^dEn&5dt (
mÞn

Cm2n
off

Em2En
, ~14!

^dEmdEn&52dtb21Cm2n
diag . ~15!

Semiclassical estimates@14# indicate that theCn
off decrease

for large values ofn, i.e., the repulsive interaction is screen
at long range. This effect was considered in@15#; for our
purposes it is not significant, and we will setCn

off51
throughout. We now use Eq.~4! to obtain the same equation
of motion in terms of the Fourier variablesak . Using
dDEn5dEn , we have

^dakdal* &52dtb21I kdkl , ~16!

whereI k5N21(nCn
diagexp(22pikn/N). The transformation

of the drift term is less straightforward. In general^dak& is a
complicated function of all of theak , but in the limit uku/N
→0 the equations decouple and obey@12,4#

^dak&52
2p2k

ND2 akdt. ~17!

By solving a Fokker-Planck equation for the real and ima
nary parts ofak , these are found to have a steady state d
tribution that is Gaussian. The value of^uaku2& can be de-
duced by requiring that̂uak(t1dt)u2&5^uak(t)u2&. Writing
ak(t1dt)5ak(t)1dak and using Eqs.~16! and ~17! we
find, provideduku/N!1,

^uaku2&5
ND2I k

2p2bk
. ~18!

We cannot determinêuaku2& for larger values ofuku from
this approach. We now make our key assumption, that th
are no short-range correlations between the diagonal m
elements, i.e.,Cn2m

diag ;dnm . Semiclassical arguments th
support, but do not prove, this assumption are given in@4#.
~The existence of short-range correlations would represe
type of ‘‘resurgence,’’ in the sense discussed earlier!. Under
this assumption, the equations of motion of theak are iden-
tical to those for the Brownian motion model describi
Gaussian invariant ensembles. We therefore conclude
when uku/N is not small, the mode intensitieŝuaku2& are
identical to those of the Gaussian invariant ensembles.

For largen, the level spacingsEn2E0 are seen to be a
sum of many independent random variables and are
Gaussian distributed,
04520
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pb~n,e!5@2psb
2~n!#21/2e2(e2nD)2/2sb

2(n). ~19!

The variancesb
2(n) may be calculated in terms of^ak* ak8&,

with summation overk, k8. We use the fact that the ampl
tudes are uncorrelated whenuku/N!1, with intensity given
by Eq.~18!, and the assumption that they are universal wh
uku is comparable toN. The resulting expression may b
written as a single sum overk, and approximated by an in
tegral. Writingt5tHk/N, andNIk5I (t),

sb
2~n!5

4D2

bp2E0

tH/2 dt

t
Jb~ t !sin2S ntD

2\ D , ~20!

whereJb(t)5I (t) for t!1, andJb(t) takes a universal~but
to us, unknown! form whent is not small. For the Gaussia
invariant ensembles@where I (t)51#, the variances grow
logarithmically withn: for n@1,

sb
2~n!.

2D2

bp2
@ log~2pn!1Cb#. ~21!

SettingC152 logA2, C250, andC45 log(4/p), and using
this expression in Eqs.~2! and ~3! gives the correct leading
order contributions toRb

av(e) and Rb
osc(e) in the limit e/D

→` ~c.f. Ref. @2#!.
Next we consider how the functionI (t) must be modified

at small t to take account of classical dynamics. For sm
values ofuku, the amplitudedak can be estimated semiclas
sically @4#,

dak;
1

N
tr@dĤÛ~ t !#, t5

2p\

D

k

N
5tH

k

N
, ~22!

where Û(t)5exp(2iĤt) is the evolution operator. We firs
consider diffusive systems~electrons in disordered metals!,
then systems with a chaotic classical limit.

Diffusive systems. In this case we may consider the pe
turbationdĤ to be uncorrelated random changes of the s
energiesVn in an Anderson tight-binding model@15#

dĤ5(
n

dVnP̂n , ^dVndVn8&5dn,n8 , ~23!

whereP̂n is the projection for locating an electron on lattic
site n. Using a semiclassical approximation of Eq.~22!, I (t)
is seen to to be proportional to the probability of returning
the original site after timet. Normalizing so thatI (t) ap-
proaches unity for larget, we have

I ~ t !5 (
n50

`

e2Dkn
2t, ~24!

where the sum is over the eigenmodes of the Helmh
equation (¹21kn

2)cn(r )50 with Neumann boundary condi
tions. In a quasi-one-dimensional system,kn5pn/L. In this
case we obtain from Eq.~20!
3-3
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sb
2~n!5

2D2

bp2 F log~2pn!1Cb1
1

2 (
n51

`

logS 11
n2

g2n4D G ,

~25!

whereg5p2\D/L2D is a dimensionless conductance.
The ‘‘form factor’’ K(t) is the Fourier transform o

Rb(e). As discussed by AA, Eq.~3! gives rise to nonuniver-
sal structures in the form factor at the Heisenberg timetH .
We have verified their existence in numerical simulatio
we used an ensemble of complex Hermitian banded ran
matrices ~of dimension N51000 and bandwidthb535)
modeling a quasi-one-dimensional diffusive system@16#. We
fitted the dimensionless conductance, using states from
center of the spectrum~obtaining g.2.0). The results are
shown in Fig. 1 and are in good agreement with the theo
ical predictions, Eqs.~9!, ~10!, and~25!. They are precisely
equivalent to the AA results~7! and ~14! in @6#. We have
thus shown that their results are consistent with the appro
to justifying the random matrix theory discussed in@4#.

Classically chaotic systems. Consider expression~22! for
the fluctuationdak of the Fourier coefficients. If the system
has a smooth classical Hamiltonian, this expression
clearly be negligible unlesst corresponds approximately wit
the period of a periodic orbit. Moreover, it was shown

FIG. 1. The form factorK(t) for a quasi-one-dimensional dif
fusive system. Numerical simulations for banded random matr
(•), are compared with theoretical results~——! according to Eqs.
~9!, ~10!, and~25!. The GUE result is also shown~- - -!.
tt.
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Ref. @4# that when the motion is chaotic, thedak have sta-
tistics corresponding to random matrix theory for larget. A
simple model capturing the essential features of this cas
to replace the lower limit of the integral in Eq.~20! with the
period t0 of the shortest periodic orbit. This gives

sb
2~n!.

2D2

bp2 FCiS 2pnt0
tH

D2 logS t0

tH
D2g1CbG . ~26!

This model has the feature thatsb
2(n) is finite in the limit

n→`, corresponding to the behavior of Dyson’sD3 statistic
for systems with a smooth classical limit@3#. We note that
this implies@using Eqs.~2! and ~3!# that the oscillatory part
of the correlation function does not decay to zero. The fo
factor is seen to have ad-function at the Heisenberg timetH ,
with a magnitude proportional to (t0 /tH)4/b. This feature has
not been remarked upon in earlier papers that have discu
the form factor for chaotic systems@7–9#, although it is im-
plicit in the model discussed in Ref.@17#.

A more precise estimate ofsb
2(n) for specific systems can

be obtained using the periodic orbit theory, following th
approach used in Ref.@3#. The conclusions are unchange
sb

2(n) remains finite asn→`, and there must exist oscilla
tions in the correlation function that do not decay. In gene
however, thepb(n,e) are not precisely Gaussian. Moreove
small deviations from a Gaussian distribution can have
large effect on the Fourier transform, which determines
magnitude of the oscillations in Eq.~10!. We infer that the
AA relations must be treated with caution when applied
the spectra of systems with a smooth classical limit.

In conclusion, we have shown that the AA relations ha
a simple interpretation, independent of quantum mechan
Also, we have shown that despite an apparent contradict
they are consistent with the Brownian motion model f
spectral statistics described in Ref.@4#.
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