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Abstract. Calculations of low-frequency absorption of electromagnetic radiation by small
conducting particles must take account of screening of the externally applied field due to polarization
charges. In this paper we introduce a ‘semiclassical’ variant of the random-phase-approximation
(RPA) method for obtaining the self-consistent field. Electric and magnetic dipole absorption are
treated within a unified scheme, and we also demonstrate the equivalence of this approach to a
superficially dissimilar perturbative method. The approach is more tractable than the full RPA
equations, and allows us to discuss the effective potential for both diffusive and ballistic electron
dynamics.

1. Introduction

1.1. Motivation for examining the low-frequency response

The interaction between electromagnetic radiation and small conducting particles has been
intensively investigated. Three recent reviews [1–3] provide a survey of theoretical and
experimental work in this area. Most experimental work has focused on the high-frequency
response of small metal particles in an external electromagnetic field, particularly the collective
excitations (Mie resonances) at frequencies comparable to the bulk plasma frequency, ωp.
Considerable success has been achieved in modelling these plasma resonances using computer
programs which implement the ‘random-phase approximation’ (RPA) for electrons in a
spherical potential (a detailed review of this approach is given in [4], and the basis of the
RPA method is explained in [5]). Our paper is concerned with analysing the low-frequency
regime, ω � ωp. This case is not adequately addressed by the methods used for analysing
Mie resonances, and deserves a thorough treatment in its own right. The low-frequency
absorption is experimentally accessible, and is of primary interest in some applications,
including experiments on mesoscopic systems, and the effect of dispersed particles on planetary
atmospheres. We will also show that this limit is more analytically tractable than absorption
at the plasma frequency.

The low-frequency absorption can be estimated using classical electromagnetic theory.
For particles which are small compared to electromagnetic length scales (wavelength and skin
depth), the absorption is resolved into electric and magnetic dipole components (which are
respectively proportional to a3ω2/σ0 and a5ω2σ0, where a is the size and σ0 the low-frequency
bulk conductivity of the particles [6]). There are two fundamental reasons for which these
classical estimates cannot be used without careful consideration. Firstly, the use of a bulk
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conductivity σ0 implies an assumption that the electron motion is diffusive. In the case of very
small systems the dimensionamay be smaller than the bulk mean free path of the charge carriers
(this is termed the ballistic case). It has usually been assumed that the classical formulae may
still be used for the absorption coefficient, with σ0 replaced by an effective Drude conductivity,
in which the mean free path is replaced by the system size a. No compelling justification of this
ad hoc assumption has been given, and a calculation has been presented which implies that,
in the case of two-dimensional particles, it is false [7]. Our paper discusses a semiclassical
approach to the RPA which can provide a unified analysis of diffusive and ballistic electron
motion.

The other reason for questioning the classical approach is that it takes no account of
quantum mechanical effects. In a seminal paper, which contains many of the themes which
were later developed into the field of ‘mesoscopic physics’, Gorkov and Eliashberg [8] proposed
that the energy levels of electrons in small conducting grains should be described by random-
matrix models (the properties of which are described in [9]). They proposed that there would
be universal structures in the frequency dependence of the absorption coefficient, on the scale
ω0 = �/h̄, where � is the single-particle level spacing. When ω � ω0, the absorption
coefficient is determined by a semiclassical estimate, and is proportional to ω2. Gorkov and
Eliashberg’s calculation overestimates the coefficient of this quadratic dependence, because
it neglects screening of the externally applied field by polarization charges. After nearly
forty years there is still no satisfactory calculation of this coefficient for the case of ballistic
electron motion. Our paper will build the theoretical basis from which such an estimate can
be constructed.

It might be expected that understanding the absorption at low frequencies could be achieved
from the use of the numerical implementations of the RPA method. Apart from the fact that
theoretical insight is lost, this approach has limited usefulness because the implementations of
the full RPA equations are confined to one special case, namely ballistic electron motion in a
spherical geometry. In contrast, our semiclassical version of the RPA is much easier to apply
in different geometries.

1.2. Regimes of frequency and electron dynamics

The problem of low-frequency absorption (meaning ω � ωp) clearly has many different
regimes depending upon the frequency, and upon various length scales. We must clarify
which cases we consider. The following frequency scales are relevant to the interaction of
small metal particles with radiation. The lowest scale is given by the mean level spacing �,
i.e., ω0 = �/h̄. In d dimensions, ω0 ∝ a−d , where a is the characteristic size of the particle.
Another frequency scale is given by the inverse of the typical time taken for an electron to
traverse the particle. In systems with diffusive electron motion it is given by ωc = D/a2,
whereD is the diffusion constant. In particles with ballistic electron motion, ωc is given by the
inverse time of flight, ωc = vF/a, where vF is the Fermi velocity. The highest-frequency scales
are the plasma frequency ωp and the frequency ωF = EF/h̄ derived from the Fermi energy. In
two dimensions, ωp ∝ a−1/2, whereas in three dimensions, ωp and ωF are both independent
of the size of the particle (and are of comparable magnitude in the case of good metals). The
frequency scales are therefore ordered as follows:

ω0 � ωc � ωp, ωF. (1.1)

There are six relevant length scales in the problem, namely the wavelength λ of the external
radiation, the linear dimension a of the particle, the skin depth λs, the Thomas–Fermi screening
length λTF, the Fermi wavelength λF and the mean free path l. In the following it will be
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assumed that

λ, λs � a � λTF ∼ λF. (1.2)

Both diffusive (l � a) and ballistic (l � a) dynamics will be discussed in the present paper.
It is also natural to consider whether the electron dynamics influences the absorption

properties of small conducting particles. One expects, in particular, that the low-frequency
absorption (on frequency scales of the order of the mean time of flight) will depend sensitively
on the nature of the classical dynamics. In recent years it has become possible to fabricate
very clean two-dimensional mesoscopic devices exhibiting ballistic electron motion. The
Fermi energy in semiconductors can be small, which implies that the Fermi wavelength may
be larger than the surface roughness. In this case reflection of an electron colliding with the
edge of the sample is specular. (For a recent review including experimental work, see [10].)
The classical dynamics of the electron may therefore be that of a classical billiard, which may
exhibit integrable, chaotic or mixed dynamics depending upon the shape of the boundary. It is
therefore possible, in principle, to observe differences between ergodic and integrable electron
dynamics in the response of two-dimensional particles.

1.3. Contributions of this paper and relation to earlier work

This paper is a development from earlier work which has applied semiclassical techniques
to estimate the absorption of radiation. References [11] and [7] investigated the absorption
by particles with ballistic electron motion, in spherical and disc-shaped particles respectively.
These works used a Thomas–Fermi theory for the effective potential. This approach led to a
number of new predictions concerning the low-frequency absorption in the ballistic case:

(a) In the two-dimensional case (conducting discs), it was found that the absorption coefficient
increases linearly with frequency, as opposed to a quadratic increase as predicted by the
conventional modified Mie theory (in which the system size is used as the scattering length
in the Drude conductivity).

(b) A series of resonances was predicted, the lowest corresponding to synchrotron acceleration
of the electrons.

(c) In the case of spherical particles, a mechanism was proposed which creates enhanced
absorption when the surface of the particle is rough.

Despite this progress, several important questions remain unanswered to date. Later
studies [12, 13] have shown that in diffusive systems, absorption at frequencies ω in the range
ωc � ω � ωp is caused by a ‘dynamic potential’. (In the diffusive case the absorption
coefficient was shown to be exactly the same as the prediction of the classical theory described
in [6].) This additional dynamic potential was not considered in [11, 7] and it is necessary
to study its effect in systems with ballistic electron dynamics. We will argue that the effect
of including this term leads to a quantitative difference in the results, but not to a qualitative
difference.

Also, the approach used in [7] and [11–13] is based on perturbation theory and a semi-
classical approximation to quantum mechanical matrix elements, and appears to be very
different from the commonly used RPA described in [5]. The features described in [11, 7]
have not been discussed within the quantum mechanical RPA approach in [5] and it is thus of
great interest to determine to what extent the two approaches are related. We will show that
the RPA and perturbative approaches are equivalent.

Within a semiclassical framework, electric and magnetic dipole absorption have been
treated using different approximation schemes. The electric dipole absorption was discussed
for various different situations in [7, 11–13], and the magnetic dipole absorption case was
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discussed in [14]. In this paper we give a unified approach to electric and magnetic dipole
absorption.

The present paper is organized as follows. In section 2 we develop a general scheme giving
a unified approach to electric and magnetic dipole absorption. Most treatments of the electric
dipole absorption coefficient are based upon calculating the imaginary part of the polarizability.
References [7, 11–14] used an alternative approach, namely treating the effective potential as a
time-dependent perturbation. In section 3 we show that these apparently dissimilar approaches
are equivalent. Section 4 describes the form of the non-local polarizability in various cases,
and section 5 discusses the ‘semiclassical’ method for determining the self-consistent field. We
show that the Thomas–Fermi potential used in [11, 7], which treated electric dipole absorption
ballistic systems, is not a good approximation whenω � ωc. Section 6 summarizes the results,
and presents an argument indicating that the results of [11, 7] are nevertheless qualitatively
correct. A thorough analysis of this question is deferred to a later publication [15].

2. Calculation of the absorption coefficient

This section will discuss the general principles underlying the calculation of the electro-
magnetic response.

2.1. Formulation of the problem

An electromagnetic wave induces currents which result in both electric and magnetic
polarization of a conducting particle. In what follows we will only consider linear effects
(where the polarization is proportional to the applied field), and the externally applied field
will be assumed to be uniform over the dimension of the particle. We will only be concerned
with the coefficients relating dipolar moments to the externally applied field: higher moments
will not be considered. The electric dipole d and magnetic dipole m of a single particle are
given by

d = α̃Eext m = β̃Bext + γ̃Eext (2.1)

where Eext and Bext are the externally applied electric and magnetic fields, α̃ and β̃ are the
electric and magnetic susceptibility tensors of the particle. The cross-susceptibility γ̃ is not
usually included. It is absent for spherical particles and some other symmetric geometries, and
when it is non-zero it vanishes in the low-frequency limit. Another cross-susceptibility, relating
the electric dipole moment to the magnetic field, might be included in (2.1). In section 5.1 we
demonstrate that (within our semiclassical approximation scheme) there is no charge density
generated by the action of the magnetic field, and that this additional susceptibility is therefore
absent. We will ultimately give a general treatment, showing that although the coefficient
γ̃ may be non-zero, this cross-susceptibility makes no contribution to the absorption. For
simplicity the cross-term will be dropped in the remainder of this introductory section.

The externally applied fields are assumed to be multiplied by a factor of the form
exp(−iωt), and the polarizability tensors are understood to be functions of ω with complex-
valued components, because there may be a phase shift between the applied field and the
response. For example, the actual value of the dipole moment at time t is taken to be
d(t) = Re[d exp(−iωt)].

The polarizations d and m are detectable at a macroscopic level in various ways: they
alter the dielectric constant and magnetic permeability of the medium in which the particles are
dispersed, and they may also be detected by observing scattering and absorption of radiation.
The polarizability determines two processes which result in the attenuation of radiation, namely
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scattering and absorption of energy. Both of these processes can be characterized conveniently
at the microscopic level by calculating the rate of loss of energy from the incident beam due
to interaction with a single particle: this will be denoted by dE/dt (where X denotes the time
average of X(t)). The two measures most commonly used to quantify these processes are the
cross section per particle S and the attenuation coefficient γ . To relate the energy loss to the
cross section, note that the energy density in an electromagnetic wave is 1

2ε0E
2: the cross

section is therefore

S = 2

ε0cE2

dE

dt
. (2.2)

The attenuation coefficient γ is defined by the expression I = I0 exp(−γ z), where I is the
intensity at distance z along the beam. The attenuation coefficient is given by γ = NS, where
N is the particle density.

At low frequencies the real part of the polarizability approaches a constant (and the
imaginary part approaches zero). It follows that at sufficiently low frequencies the scattering
cross section scales as ω4. It will be shown that the absorption cross section typically scales
as ω2, implying that absorption is expected to be the dominant process at low frequencies.

The absorption of radiation can be related to the imaginary parts of the polarizability
tensors: we will give a careful explanation of this. Electron spin is not significant in this
context, and the full Hamiltonian for the electrons is taken to be

H =
N∑
i=1

1

2m

[
pi + eAext(ri , t)

]2
+ V (ri ) + φext(ri , t) + 1

2

N∑
i=1

N∑
j=1
j �=i

e2

4πε0|ri − rj | . (2.3)

(Throughout e represents the magnitude of the electron charge, and φ is the potential energy of
an electron.) The externally applied electric and magnetic fields are considered to be spatially
uniform, since the particle is small compared to the wavelength of the radiation. We therefore
ignore the spatial dependence of the electric and magnetic fields, and write

φext(r, t) = er · Eext ∇ ∧Aext(r, t) = Bext(t). (2.4)

In the case where the circularly symmetric gauge

Aext = Arot(r, t) = 1
2Bext(t) ∧ r (2.5)

is used, the full Hamiltonian contains terms coupling the system to the electric and magnetic
fields, of the following form:

Ĥ (t) = Ĥ0 + eX̂ · Eext(t) +
e

2m
L̂ · Bext(t) + O(B2

ext)

X̂ =
N∑
i=1

r̂i L̂ =
N∑
i=1

ri ∧ pi (2.6)

where X̂ and L̂ are the total dipole operator and total angular momentum operators, and Ĥ0

is independent of time.
To facilitate the calculations we will consider ensemble averages of quantities: if the

electron motion is ergodic, this is the microcanonical average, and in general the ensemble is
defined by the region of phase space explored by the dynamics. Angle brackets will be used
for the appropriate ensemble average. For a general choice of gauge the instananeous rate of
absorption is then〈

dE

dt

〉
=

〈
∂H

∂t

〉
= −e

〈 N∑
i=1

vi (t) · [
Eext(t) + Eind(t)

]〉 = ∫
dr j(r, t) · [

Eext(t) + Eind(r, t)
]

(2.7)
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where vi is the velocity of the ith electron, Eind = iωAext is the electric field induced by the
varying magnetic field and

j(r, t) = −e
〈 N∑
i=1

vi (t)δ[r − ri (t)]

〉
(2.8)

is the current density within the particle. In the special case where the circularly symmetric
gauge is used this reduces to〈

dE

dt

〉
=

〈
∂H

∂t

〉
= e〈X̂〉 · Ėext(t) +

e

2m
〈L̂〉 · Ḃext(t) (2.9)

where 〈X̂〉 and 〈L̂〉 are suitable averages of the centre-of-mass and angular momentum
operators. It is impractical to calculate these averages from the full Hamiltonian (2.3), and in
the next subsection it will be shown how they may be estimated using an effective Hamiltonian,
containing effective fields Aeff and φeff . At this stage we will only assume that these averages
are proportional to the applied fields. These quantities 〈X̂〉 and 〈L̂〉 are related to the electric
and magnetic dipole moments d and m:

d = −e〈X̂〉 m = − e

m
〈L̂〉. (2.10)

The rate of absorption is obtained by substituting for the time dependence of a monochromatic
field using (2.1), and ignoring the cross-term:〈

dE

dt

〉
= Re[d exp(−iωt)] · Re[iωEext exp(−iωt)]

+ 1
2 Re[m exp(−iωt)] · Re[iωBext exp(−iωt)]. (2.11)

Averaging over time gives the general form for the rate of absorption:〈
dE

dt

〉
= 1

4ωE∗ext(α̃ − α̃∗)Eext + 1
8ωB∗ext(β̃ − β̃∗)Bext. (2.12)

In the case where the polarizability tensor is isotropic, and the radiation field is plane polarized,
this expression becomes〈

dE

dt

〉
= 1

2ω Im
[
αii(ω)

]|Eext|2 + 1
4ω Im

[
βii(ω)

]|Bext|2. (2.13)

We note that under the assumptions listed above, the absorption is expressed as the sum of
two terms, which are naturally referred to as the electric and magnetic dipole absorption. Our
final result will not neglect the magnetic dipole moment which may be induced by the electric
field, but we will show that within the framework of our self-consistent approximation scheme
the cross-term in (2.1) makes no contribution to the absorption. The energy absorbed does
not accumulate in the electronic system: most of it is eventually transformed into heat by
interaction with phonons.

2.2. Self-consistent fields

The Hamiltonian will be approximated by an effective Hamiltonian, in which the electrons
move independently. The direct interaction with the magnetic field via electron spin can also
be neglected, and the effective Hamiltonian is of the form

Ĥeff =
N∑
i=1

1

2m
[ p̂i + eAeff(ri , t)]

2 + Veff(ri ) + φeff(ri , t). (2.14)
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The response of the system is determined by the interaction of the electrons with the electric
field inside the particle, which is described by the effective potentials Aeff and φeff . The
effective potentials are themselves determined by the distribution of charge within the particle.
The external magnetic field is also augmented by an induced magnetic field which is produced
by the action of the currents which flow in order to establish the electric polarization. Provided
the particle is sufficiently small, the induced magnetic field can be neglected, and our self-
consistent theory will yield an equation for the electric field E(r, ω)within the particle, which
is related to the time-dependent electric field as follows:

E(r, ω) =
∫ ∞
−∞

dt E(r, t) exp(−iωt). (2.15)

This field satisfies the Maxwell equations

∇ · E = ρ

ε0
∇ ∧E = −iωBext. (2.16)

The electric field produced by induction when the external electric field is zero will be denoted
Eind. The total effective electric field is

E(r, ω) = Eext(r, ω) + Eind(r, ω) +
1

e
∇φpol(r, ω). (2.17)

The uniform external electric field satisfies ∇ · Eext = 0, and can be derived from an external
potential:

Eext(r, ω) = 1

e
∇φext(r, ω). (2.18)

The potential φpol results from polarization of the particle due to the external electric field, and
is given by

φpol(r, ω) = −e
4πε0

∫
dr′

ρpol(r
′, ω)

|r − r′| (2.19)

where ρpol(r, ω) is the charge density resulting from polarization induced by the external
electric field, but excluding any polarization which may result from the induction field Eind.
It will be convenient to express (2.17) using the notation

|E) = 1

e
∇|φext) + |Eind) +

1

e
∇Û |ρpol) (2.20)

where Û is an operator defined by (2.19), acting on the ‘field vector’ |ρpol). The dependence
upon frequency will usually be shown explicitly for operators, but not for field vectors.

The current density j(r, ω) flowing in the sample to build up the charge density ρ(r, ω)
may be assumed to be linearly related to the electric field E(r, ω) in the sample:

j(r, ω) =
∫

dr′ '̃(r, r′;ω)E(r′, ω). (2.21)

In condensed notation, we write

|j) = '̂(ω)|E) (2.22)

where '̂(ω) is the conductivity operator. The non-local conductivity tensor '̃(r, r′, ω) is
related to the non-local polarizability operator ((r, r′, ω), which gives the charge density
induced by a potential φ(r): we write

ρ(r, ω) =
∫

dr′ ((r, r′;ω)φ(r′, ω) (2.23)
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or in condensed notation

|ρ) = (̂(ω)|φ). (2.24)

The polarizability operator (̂(ω) can be related to a non-local conductivity tensor '̂(ω)
by a continuity relation. Using (2.23) and applying the continuity equation, we find (with
summation over repeated indices implied)

0 =
∫

dr′
[
ieω((r, r′;ω)φ(r′) + ∇i'ij (r, r

′;ω)∇′jφ(r′)
]

(2.25)

assuming that the normal component of '̂(ω) vanishes on the surface. Upon integration
by parts, after noting that the resulting equation is valid for any field φ(r, ω), we find
ieω((r, r′;ω) − ∂ri ∂r ′j 'ij (r, r

′;ω) = 0. This may be expressed in compact notation in
the form

ieω(̂(ω) = +
−→∇'̂(ω)

←−∇ . (2.26)

The quantities (̂(ω) and '̂(ω) enable (2.20) to be expressed in terms of the electric field alone,
yielding a self-consistent equation. In pursuit of this, we write

|E) = 1

e
∇|φeff) + |Eind) (2.27)

where φeff(r, ω) is an effective potential. We consider the solutions for the field Eind and the
potential φeff separately. The charge induced by the field Eind is

|ρind) = 1

iω
∇'̂(ω)|Eind). (2.28)

Applying the first of the Maxwell equations (2.16) and using (2.28) gives

∇ ·
[
|Eind)− i

ε0ω
'̂(ω)|Eind)

]
= 0 (2.29)

which is the self-consistent equation which must be solved for the field Eind. For the effective
potential, combining (2.20) with (2.24) and (2.27), we find

|φeff) = |φext) + Û(̂(ω)|φeff). (2.30)

This self-consistent equation is sometimes referred to as the ‘random-phase approximation’
[5]. Equations (2.29) and (2.30) must be solved for the self-consistent fields. We will consider
semiclassical methods for solving them in section 5.

2.3. The rate of energy absorption

The rate of energy absorption is given by (2.7). Averaging over time gives〈
dE

dt

〉
= 1

2 Re
∫

dr j∗(r, ω) · [
Eext + Eind(r, ω)

]
. (2.31)

In condensed notation this will be written, by analogy with Dirac notation, as〈
dE

dt

〉
= 1

2 Re( j|Eext) + 1
2 Re( j|Eind). (2.32)

Using (2.20),〈
dE

dt

〉
= 1

2 Re( j|E)− 1

2e
Re( j|∇Û |ρpol) = 1

2 Re( j|E)− 1

2e
Re

[
iω(ρpol|Û |ρpol)

]
(2.33)
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where |ρpol) = (̂|φeff); the final equality follows from an integration by parts, and use of the
continuity equation. Using the fact that Û is self-adjoint, we obtain a very simple expression
for the absorption:〈

dE

dt

〉
= 1

2 Re( j|E). (2.34)

Using the continuity equation and (2.20), (2.26) and (2.27),

( j|E) = iω

e
(φeff |(̂+(ω)|φeff) + (Eind|'̂+(ω)|Eind) +

1

e
( jind|∇φeff) +

1

e
(∇φeff |jind). (2.35)

where |jind) = '̂|Eind), and where the adjoint Â+ of an operator Â satisfies (a|Â+|b) =
(a|Â|b)∗ for any states |a), |b). Using an integration by parts and the continuity equation, the
last two terms may be rearranged as follows:

(∇φeff |jind) = −(φeff |∇ · jind) = iω(φeff |ρind) (2.36)

where |ρind) is the charge density induced by the magnetic field. In section 5.1 it will be shown
that |ρind) vanishes in our semiclassical approximation. This gives our final expression for the
absorption: 〈

dE

dt

〉
= ω

2e
ω Im(φeff |(̂(ω)|φeff) + 1

2 Re(Eind|'̂(ω)|Eind). (2.37)

These are two independent contributions to the rate of absorption, depending on the electric and
magnetic fields respectively. It is not obvious that these are correctly identified as the electric
and magnetic dipole coefficients, because the electric field may induce a charge density with
non-zero angular momentum. We will now show that the first term is due solely to the electric
dipole. Using the continuity equation and an integration by parts, we find

Re( j|Eext) = ω

e
Im(ρ|φext) = ω

e
Im

[
d · Eext

]
. (2.38)

The electrically induced absorption therefore depends only upon the induced dipole moment,
and is independent of the magnetic moment induced by the electric field.

3. Equivalence with perturbation theory

In this section, we concentrate on the electric absorption. We describe an alternative approach
to calculating the absorption coefficient, which was used in [7, 11–13], and show that it is
equivalent to the first term in (2.37) provided the polarization operator (̂(ω) is related in a
simple way to a propagator P̂ (ω). This relation will be established in the appendix.

We will consider the action of the effective potential φeff(r, t) on the electrons. We
may use either quantum mechanical or classical perturbation theory. We will describe the
quantum mechanical approach, and will use semiclassical approximations: a classical theory
in which quantum mechanics only enters in choosing the Fermi–Dirac distribution for the
initial distribution of electrons gives identical results. Conceptually, the simplest method for
calculating the absorption is to use the Fermi golden rule. This is expressed in terms of
matrix elements φnm of the perturbation in the basis |ψi〉 formed by the eigenstates of the
single-particle effective Hamiltonian, Ĥeff :

Ĥeff |ψi〉 = Ei |ψi〉
φij = 〈ψi |φ̂|ψj 〉 φ̂ = φeff(r̂).

(3.1)
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The Fermi golden rule states that the rate of transition from an initially occupied state to a
quasi-continuum of final states, with density of states n and with energy differing by h̄ω from
the original state, is given by

R = πne2

2h̄
〈|φij |2〉 (3.2)

where the angle brackets denote an average over matrix elements 〈ψi |φ̂eff |ψj 〉. We will consider
the case where both the temperature and the photon energy are small compared to other energy
scales in the problem; generalizations are straightforward. Absorption of energy occurs due
to the excitation of electrons in occupied states below the Fermi level to empty states above
the Fermi level. The number of states which can be excited is∼nh̄ω, and the energy absorbed
in each transition is h̄ω: the total rate of absorption of energy is given by multiplying these
factors by the transition rate R, giving

dE

dt
= 1

2πh̄n
2ω2〈|φij |2〉. (3.3)

Both (2.37) and (3.3) are quadratic functions of φeff , but it is not immediately clear how they
can be related. We will now discuss why they are equivalent.

The mean square matrix element can be estimated from the correlation function Cφφ(t)

of the effective potential [16]:

〈|φnm|2〉 = 1

πh̄n
Re

∫ ∞
0

dt eiωtCφφ(t) (3.4)

Cφφ(t) = 1

V

∫
dr

∫
dr′ P(r, r′; t)φ(r)φ(r′) ≡ (φ|P̂ (t)|φ) (3.5)

where P(r, r′; t) is a propagator which gives the probability of reaching r′ from r in time t :

P(r, r′; t) = θ(t)〈δ(rt (r,p)− r′)〉. (3.6)

(The averaging is defined in the appendix.) The operator P̂ (t) is defined by analogy with
(2.22). Introducing the Fourier transform P̂ (ω) of the propagator, we obtain〈

dE

dt

〉
= 1

2νω
2 Re(φeff |P̂ (ω)|φeff) (3.7)

where ν is the density of states per unit volume, ν = n/V , which is assumed to be independent
of position because the potential Veff appearing in (2.14) is constant within the conducting
particle. In the appendix it will be shown that there is a general relation between the propagator
and the polarizability operator:

(̂(ω) = eν[Î + iωP̂ (ω)]. (3.8)

Substituting this into (2.37) reproduces (3.7), thus establishing its equivalence to (3.3). A
relation of this form has been given by Kirzhnitz et al [17]. We present a detailed derivation
in the appendix, based on Liouville’s equation.

4. Simple forms for the polarizability

In general, the operators P̂ (ω), (̂(ω) and '̂(ω) are non-local operators. In various regimes
simple approximations for these operators can be used.
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4.1. Spatially homogeneous, ballistic system

For a spatially homogeneous system, ((r, r′;ω) is a function of r − r′, and is conveniently
represented by its Fourier transform, ((q, ω): in d dimensions,

(̂(ω) = V

(2π)d

∫
dq |χq)((q, ω)(χq| (r|χq) = 1√

V
eiq·r (4.1)

where V is the volume of the system. In the case where the electron motion is ballistic, the
propagator is, for d = 3,

P(r, r′; t) = 1

4πR2
δ(R − vFt) R = |r − r′|

P(r, r′;ω) = 1

4πvFR2
e−iωR/vF

(4.2)

and the Fourier transform representation of the polarizability is

((q, ω) = νe

(
1− 1

2λ
log

∣∣∣∣ λ + 1

λ− 1

∣∣∣∣ + iθ(λ− 1)
π

2λ

)
λ =

∣∣∣∣qvF

ω

∣∣∣∣ (4.3)

which is equivalent to equations (12.48a), (12.48b) in [5]. In two dimensions, ((q, ω) is
given by

((q, ω) = eν

{
1 + i(λ2 − 1)−1/2 for |λ| > 1
1− (1− λ2)−1/2 for |λ| < 1.

(4.4)

4.2. Low- and high-frequency limits

In the low-frequency limit, it is immediately clear from (3.8) that the induced charge density
is ρ(r) = νeφ(r), so

((r, r′;ω) ∼ νeδ(r − r′) ω � ωc. (4.5)

For sufficiently high frequencies, and sufficiently far from the surface of the particle, the
conductivity is local, with value σ(ω):

'ij (r, r
′;ω) = δij δ(r − r′)σ (ω) (4.6)

and the bulk conductivity σ(ω) may, in the case of diffusive electron motion, be approximated
by the Drude formula

σ(ω) = νe2D

1 + iωτ
τ = m

N

∂N

∂E
D (4.7)

where D is the diffusion constant, m is the electron effective mass and N is the density of
electrons. In the case of ballistic electron motion, the bulk conductivity is determined purely
by the inertia of the electrons, and is non-dissipative:

σ(ω) = Ne2

imω
. (4.8)

When the non-local conductivity can be approximated by (4.6), the non-local polarizability
takes the simple form

((r, r′;ω) = iσ(ω)

eω
∇2δ(r − r′). (4.9)

This approximation is expected to be valid when ω � ωc, and when both r and r′ are much
greater than a distance 8 from the surface: in the ballistic case 8 = vF/ω, and in the diffusive
case 8 = √D/ω. The same conclusion can also be reached by considering the expressions
(4.3), (4.4) in the limit λ → 0: for d = 3 we find that ((q, ω) ∼ 1

3νeλ
2 = νev2

Fq
2/3ω2,

which is equivalent to the Fourier transform of (4.9) when the conductivity is given by (4.8).
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4.3. Polarizability close to a surface

Next we consider the polarization charge close to the surface of the particle. Here we are
concerned with the high-frequency case, ω � ωc. In the low-frequency case (4.4) gives
an adequate approximation, but our discussion of the high-frequency case assumed that the
conductivity could be approximated as that of a homogeneous system. Another reason for
discussing the surface separately is that, in our semiclassical theory, we expect it to be possible
for the polarization charge density to have a singularity there.

We may assume that for ω � ωc the polarizability operator is short ranged. A smooth
surface may therefore be approximated locally by a flat surface, z = 0 in some local Cartesian
coordinates. The polarizability is given by (3.8), and we approximate the propagator from
r′ = (x ′, y ′, z′) to r = (x, y, z) by the sum of a direct contribution and a contribution
originating from an image source at r′im = (x ′, y ′,−z′), so

ρ(r) = νe

[
φ(r) + iω

∫
dr′

[
P(r, r′;ω) + P(r, r′im;ω)

]
φ(r′)

]
. (4.10)

The charge density is concentrated in a narrow layer at the surface, and may typically be
approximated by writing

ρ(r) = ρs(z)K(S) (4.11)

where S labels points on the surface and z is a coordinate normal to the surface. In this case,
the potential in the neighbourhood of the surface is of the form φ(r) = φs(z)K(S), where
φs(z) satisfies

ρs(z) = νe

[
φs(z) +

1

8

∫ ∞
0

dz′
[
G

(
(z− z′)/8)

)
+ G

(
(z + z′)/8

)]
φs(z

′)
]

(4.12)

where 8 = vF/ω, and the function G(x) is easily related to the Fourier transform of ((q, ω).

4.4. Diffusive electron motion

In the diffusive case, it is possible to write a useful eigenfunction expansion for the linear
response functions: for t > 0 the propagator P(r, r′; t) satisfies the diffusion equation
∂tP − D∇2P = δ(r − r ′)δ(t), or [iω − D∇2]P(r, r′;ω) = δ(r − r′), and satisfies the
Neumann boundary condition. It can be expressed in terms of a set of eigenfunctions χn(r)
of the Helmholtz equation (∇2 + k2

n)χn(r) = 0, satisfying the same boundary condition:
n̂ · ∇χn = 0, where n̂ is a normal vector on the surface of the particle. The propagator can
then be written

P̂ (ω) =
∑
n

1

iω −Dk2
n

|χn)(χn|. (4.13)

Expansions for other linear response functions are easily obtained in the same form. For
example, if the density of states per unit volume ν is independent of r, equation (3.8) implies
that the polarizability can be written in this form, with the coefficient of the operator |χn)(χn|
given by νeDk2

n/(Dk
2
n − iω).

5. The self-consistent field

5.1. Approximate equations for the self-consistent fields

Here we discuss how the solution of the self-consistent equations can be greatly simplified by
the use of ‘semiclassical’ approximations. We consider the electric dipole absorption first.
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Calculation of the electric dipole absorption coefficient via either (2.37) or (3.7) requires
the self-consistent field φeff(r, ω), which is given by equation (2.30):

|φext) =
[
Î − Û(̂(ω)

]|φeff). (5.1)

Formally, solution of this equation requires calculation of the inverse of Î−Û(̂(ω): this could
be done explicitly in a numerical calculation by expanding in a suitable basis set. We will aim
instead for an approximate analytic solution. For frequencies small compared to the plasma
frequency ωp, the external electric field is ‘screened’ by polarization charges, so the internal
field is much smaller than the externally applied field. The key physical intuition is that the
external electric field is almost exactly cancelled by the electric field due to the induced charge
density ρ(r). Let ρcl(r) be the charge density induced on the particle by a static external
field, according to classical electrodynamics: this charge density gives an induced electric
field which precisely cancels the externally applied field inside the particle. For frequencies
small compared to the plasma frequency, the induced charge density is well approximated by
ρcl(r): we will assume that

|ρ) = |ρcl) + O(ω/ωp) + O(a0/a) (5.2)

where a is the characteristic dimension of the particle and a0 is the Bohr radius. The
classical charge distribution formally satisfies an equation analogous to (5.1), in which the
term representing the internal field |φeff) is set equal to zero:

|φext) + Û |ρcl) = 0. (5.3)

The general solution of this equation to determine |ρcl) is very difficult, but textbooks such
as [6] or [18] contain solutions for conductors with a variety of simple geometries. We will
assume that the surface charge density |ρcl) is available. We will denote our approximation to
the effective potential |φeff) by |φ): it is the potential which generates the polarization charge
|ρcl), and is given by

|ρcl) = (̂(ω)|φ) (5.4)

or equivalently by |φext) + Û(̂(ω)|φ) = 0. Comparing with (5.1), it is clear that this solution
|φ) is a good approximation to |φeff) provided ||Û(̂(ω)|| � 1, where ||X̂|| is an appropriate
norm of the operator X̂. To estimate this norm, we consider the effect of an arbitrary potential
φ: when ω � ωc, the induced charge density is (̂φ = eνφ, and for a particle of characteristic
dimension a in d dimensions, the induced charge may be approximated by a dipole formed
by charges of magnitude Q ∼ ρad , with separation a: this results in an electrical potential of
magnitude φ′ ∼ eQ/(ε0a). In three-dimensional particles with ballistic electron motion, this
leads to the following estimate for ||Û(̂|| ∼ φ′/φ:

||Û(̂|| ∼ ω2
p

ω2
c

(5.5)

where ωp is the three-dimensional bulk plasma frequency, ωp = [Ne2/(ε0m)]1/2, N being the
electron density. For frequencies ω � ωc, a similar argument gives

||Û(̂(ω � ωc)|| ∼
ω2

p

ωωc
. (5.6)

The ordering frequency scales given in (1.1) imply that (5.5) and (5.6) are indeed large.
We can, in principle, determine improved approximations to the exact solution of (5.1)

from the solution of (5.4):

|φeff) = −
[
Î − Û(̂(ω)

]−1
Û(̂(ω)|φ) = |φ)− [

Î − Û(̂(ω)
]−1|φ). (5.7)
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Equations (5.5) and (5.6) show that the correction term in (5.7) is small. Having shown that
|φeff) ∼ |φ), we discuss how to estimate the solution |φ) of (5.4) in sections 5.2 and 5.3.

Finally we consider the semiclassical solution for the magnetically induced field, Eind,
which satisfies (2.29):

∇ ·
[
Î − i

ωε0
'̂(ω)

]
|Eind) = 0. (5.8)

At low frequencies we can estimate the conductivity by ' ∼ Ne2/mωs where ωs is the
scattering frequency; at high frequencies ωs is replaced by the frequency ω. In the low-
frequency limit we therefore estimate

1

ε0ω
||'̂(ω)|| ∼ ω2

p

ωωs
. (5.9)

In the frequency ranges that we are concerned with, the term involving the identity operator
in (5.8) is therefore negligible. We can therefore find an approximate solution to (5.8) by
requiring that the induced charge density is zero, i.e.

∇ · '̂(ω)|Eind) = 0. (5.10)

This justifies the neglect of a cross-term in (2.1) with an electric dipole induced by the magnetic
field. A solution to (5.10) may be determined by choosing an initial approximation E′ind
which satisfies ∇ ∧ E′ind = iωBext. A polarization charge ρ ′ind would be generated from
this field. An additional field which is the gradient of a potential χ(r) is added, such that
∇χ = e(E′ind −Eind). The condition upon χ for (5.10) to be satisfied is

|ρ ′ind) = (̂(ω)|χ). (5.11)

This equation is analogous to (5.4).

5.2. The ballistic case

We will discuss approximate solutions of (5.4) valid in the limits ω � ωc and ω � ωc. The
first of these represents the static potential required to hold the classical charge distribution in
place in the zero-frequency limit: it will be written |φstat), and its form is immediately apparent
from (3.8):

|φstat) = 1

eν
|ρcl). (5.12)

This is simply a linearized Thomas–Fermi approximation [19]. The semiclassical approx-
imations underlying this expression assume that the potentials are slowly varying on the scale
of the Fermi wavelength.

In the limitω � ωc, we found (equation (4.9)) that the polarizability may be approximated
by (̂ ∼ (iσ(ω)/eω)∇2

rδ(r − r′), for r and r′ not too close to the surface. For points not too
close to the surface, or to points where the charge density is non-analytic, we can approximate
the solution of (5.4) by a ‘dynamic’ potential, which is of the form |φdyn) = λ|ψ), where
∇2ψ(r) = ρcl(r), and n̂ · ∇ψ(r) = 0. Substituting these forms into (5.4) we find that
λ = iωe/σ(ω):

|φdyn) = − iωe

σ(ω)
|ψ) ∇2|ψ) = |ρcl). (5.13)

An interpretation of the dynamic potential is that it moves the polarization charge into place.
Close to the surface, equation (5.13) is not necessarily a good approximation to the effective

potential. One reason is that the approximations underlying (4.9) fail, and the polarization must
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be described by (4.9) or (4.12). Another reason is that the charge density |ρcl) has a singularity
there. In the notation of (4.11), the projected charge density ρs(z) is concentrated on the
surface in the three-dimensional case [11] so ρs(z) ∼ δ(z), and in the two-dimensional case it
diverges on the surface, such that ρs(z) ∼ z−1/2 for z > 0 [7]. The form of (4.12) indicates that
the potential φs(z) also has the same type of singularity as the charge density at the surface.

To summarize, the following picture emerges. For low frequencies, ω � ωc, the potential
is approximately φstat(r). At high frequencies, ω � ωc, the potential is well approximated
by φdyn(r) within the interior of the particle. In the vicinity of the surface, the potential has a
dominant divergent contribution, which is well approximated by φstat(r).

5.3. The diffusive case

In the diffusive case, equation (5.4) can be solved exactly, using the representation of the
propagator in the form (4.13). Expanding the potential |φ) in terms of the functions |χn) leads
to the expression

|φ) = 1

eν

∑
n

(χn|ρcl)

[
1− iω

Dk2
n

]
|χn) = |φstat) + |φdyn). (5.14)

Note that in the diffusive case the potential is precisely equal to the sum of the static and
dynamic contributions [13].

6. Discussion: calculation of the absorption coefficient

Once an adequate approximation for the effective potential has been obtained, the electric
absorption coefficient is obtained from (3.7): the absorption coefficient is proportional to
ω2(φ|P̂ (ω)|φ). Previous papers [7, 11–14] have discussed methods for the evaluation of the
absorption coefficient using equation (3.7) in some detail, for specific cases. This paper has
presented a general approach to the determining of the effective potential, and some remarks
on applying this to calculating the absorption coefficient are appropriate.

When the electron motion is diffusive, the absorption is very easily evaluated using (5.14)
and (4.13). It is found that the coefficient is proportional to ω2, and that (at least within the
framework of the approximations used in section 5) the frequency scale ωc plays no role.
The absorption coefficient can be shown to be exactly equal to the classical value in this case
[12, 13].

The case of ballistic electron motion is more difficult. It might be expected that
Cφφ(ω) = (φ|P̂ (ω)|φ) approaches a non-zero limit as ω → 0, implying that the absorption
coefficient is proportional toω2 for low frequencies. This expectation is correct for cases where
the electron motion is ergodic (the most important cases being diffusive electron motion, and
the ballistic case with a rough surface). In the case of integrable electron motion, which can
be realized experimentally if the surface appears smooth on the scale of the Fermi wavelength,
Cφφ(ω) typically approaches zero as ω → 0 in a non-analytic fashion. In the important
special case of particles with circular symmetry, Cφφ(ω) is zero for ω < ωc, where ωc is the
frequency of a glancing circular orbit. The electron dynamics therefore plays an important
role in determining the low-frequency absorption.

The high-frequency absorption, by contrast, is determined by the nature of the singularities
of the function f (t) = φ(rt ), which can result from singularities in the motion r(t), or in the
potential φ(r). We will discuss the ballistic case. The dominant contribution comes from
the singularities of φ(r) in the neighbourhood of the surface. The absorption coefficient was
calculated in [11] and [7] for the three-dimensional and two-dimensional cases respectively,
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assuming that the effective potential is equal to φstat(r). In three dimensions, this potential is
a delta function singularity concentrated on the surface, and in two dimensions it diverges as
z−1/2, where z is the normal distance from the surface. These forms for the potential imply
that (φ|P̂ (ω)|φ) ∼ ω0 in three dimensions and ∼ω−1 in two dimensions. In [7] and [11] it
was predicted that in the case of particles with circular symmetry, the absorption coefficient
shows a sequence of resonances superposed on a regular contribution increasing as ω2 and ω
for three and two dimensions respectively.

The more sophisticated approach introduced in this paper indicates that the potential |φ)
should satisfy (5.4), whereas the potential used in [11, 7, 20] was simply the static potential,
satisfying |ρcl) = (̂(0)|φstat). It is necessary to consider the extent to which this refinement
will change the results. In section 5.2 we argued that the singularities of the effective potential
at the surface are the same as those of the ‘static’ potential. We can therefore hypothesize
that the more refined theory would make a quantitative rather than qualitative difference to the
results. This issue will be addressed in a subsequent paper, which will consider the inversion
of (4.12) to determine the potential φs(z) from the charge density ρs(z), and its use to estimate
the high-frequency absorption coefficient [15].
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Appendix

We will now relate the polarizability operator ((r, r′;ω) to the probability propagator
P(r, r′; t), which is the probability that an electron, released at r′ with energy equal to the
Fermi energyEF, will be at position r after time t . The discussion will be classical; a quantum
mechanical derivation proceeds along similar lines.

Let the phase-space distribution be f (r,p; t): this will, when convenient, be written
f (α, t) where α = (r,p). The Hamiltonian will be assumed to be of the form

H(α, t) = H0(α) + X(t)H1(α) (A.1)

where we will be interested in the case where H0 = p2/2m + V (r) and H1 = φ(r). The
perturbation parameter X(t) is assumed to be small, so that f (α, t) may be expanded as a
series in X(t): we will be interested in the expansion as far as the first-order term:

f (α, t) = f0(α) +
∫ t

−∞
dt ′ X(t ′)g(α, t, t ′) + O(X2). (A.2)

Substituting into the Liouville equation, ∂tf = {H, f }, it is found that f0 is a function of the
unperturbed Hamiltonian H0(α), and that the kernel g(α, t, t ′) of the first-order term satisfies

X(t)
[
g(α, t, t)− {H1, f0}α

]
+

∫ t

−∞
dt ′ X(t ′)

[
∂tg − {H0, g}

]
α,t,t ′ = 0 (A.3)

which is valid for all X(t). The first term implies that

g(α, t, t) = g(α) = {H1, f0}α = {H1, H0}α ∂f0

∂E
(H0(α)). (A.4)

The second term implies that dg/dt = 0, where d/dt is the total time derivative along a
trajectory, so

g(α, t, t ′) = g(α, t − t ′) = ∂f0

∂E
(H0(α))

dH1

dt
(αt−t ′(α)). (A.5)
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The required approximation is then

f (α, t) = f0(H0(α)) +
∂f0

∂E
(H0(α))

∫ t

−∞
dt ′ X(t ′)

dH1

dt
(αt−t ′). (A.6)

We will use an alternative form, obtained by integration by parts:

f (α, t) = f0(H0(α)) + X(t)
∂f0

∂E
(H0(α))H1(α)− ∂f0

∂E
(H0(α))

∫ t

−∞
dt ′ Ẋ(t ′)H1(αt−t ′(α)).

(A.7)

We will assume that the integral converges. For ergodic systems this requires that the
microcanonical average of H1(α) vanishes. The density of available states in phase space
is (2πh̄)−d , where d is the number of degrees of freedom. For a system of fermions, the
appropriate density function is f0(α,X) = B(H(α,X) − EF)/(2πh̄)d , where B(x) is the
Fermi–Dirac distribution, which can be approximated by a downward step function when the
temperature is small compared to the Fermi temperature. Now the charge density of electrons is

ρ(r, t) = −e
∫

dp f (r,p; t). (A.8)

The number density of electrons N(EF, r) and the density of states per unit volume at the
Fermi surface ν(EF, r) are

N(EF, r) = 1

(2πh̄)d

∫
dp B(H0(r,p)− EF) ν(EF, r) = ∂

∂EF
N(EF, r) (A.9)

respectively. Also, the local average of any quantity A(r,p) for electrons at the Fermi surface
is defined as

〈A〉EF,r =
1

(2πh̄)dν(EF, r)

∫
dp A(r,p)δ(H0(r,p)− EF). (A.10)

From (A.7) and the definition (A.8), we have

ρ(r, t) ∼ −eN(EF, r) + eX(t)ν(EF, r)φ(r)

− eν(EF, r)

∫ t

−∞
dt ′ Ẋ(t ′)

∫
dr′

〈
δ
[
r′ − rt−t ′(r,p)

]〉
EF,r

φ(rt ′) + O(X2).

(A.11)

With the definition of the propagator (3.6) and recalling the definition of the polarization
operator, equation (2.23), we find

((r, r′, t − t ′) = eθ(t − t ′)ν(EF, r)
[
δ(r − r′)δ(t − t ′) + ∂tP (r, r

′; t − t ′)
]

(A.12)

or alternatively, in the frequency domain,

((r, r′, ω) = eν(EF, r)
[
δ(r − r′) + iωP(r, r′;ω)]. (A.13)

We will introduce an operator ν̂, which is diagonal in the position representation, such that
(r|ν̂|φ) = ν(EF, r)φ(r). Equation (A.13) may then be written in the form

(̂(ω) = eν̂
[
Î + iωP̂ (ω)

]
. (A.14)

There is also a relationship between the non-local conductivity '̂(ω) and the propagator P̂ (ω),
which has previously been obtained by Serota and co-workers [21, 22] (with an alternative
derivation given in [14]). Their derivation was specific to the case of diffusive electron motion,
whereas that given above also includes the ballistic case.
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