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Abstract. This paper extends earlier work on the definition of Wannier functions for Bloch
electrons in a magnetic field. Extensions to irrational as well as rational magnetic fields are defined,
and their properties investigated. The results are used to give a generalization of the Peierls effective
Hamiltonian which is valid when the magnetic flux per unit cell is close to any rational number.

1. Introduction

Wannier functions are localized basis states which span a band of Bloch eigenfunctions [1].
The use of localized basis functions can be convenient both technically and conceptually,
particularly when considering perturbations which are themselves spatially localized. There
are difficulties in defining satisfactory Wannier states when a magnetic field is applied to
the lattice. Firstly, the eigenfunctions are typically not Bloch states: in two dimensions the
eigenfunctions are only Bloch states if the ratio β of the flux quantum to the magnetic flux
per unit cell is a rational number [2, 3] (in these cases I will write β = p/q, where p and
q are integers with no common divisor). Secondly, even when the magnetic field is rational
in this sense, conventional Wannier states only have satisfactory localization properties if a
topological invariant (the Chern index) characterizing a Bloch band is equal to zero [4, 5]. In
a previous paper (reference [6]) it was shown how this latter difficulty could be overcome, for
two-dimensional lattices, in the case where the magnetic flux per unit cell is rational. In [6]
I showed how to obtain a complete set of states which span a Bloch band, and which retain
all of the useful properties of conventional Wannier functions. Two different definitions were
examined, termed type I and type II Wannier functions. The definition of these states contains
the Chern index M of the band, and in both cases they reduce to the conventional Wannier
function when M = 0.

The purpose of the present paper is twofold. The first objective is to show how the
definition of Wannier functions can be usefully extended to irrational fields, despite the fact
that Bloch bands do not exist in this case. Some of the results for type II Wannier functions are
anticipated in earlier papers by the same author [7, 8] (the latter in collaboration with R J Kay).
These earlier papers discussed ‘irrational’ generalized Wannier functions for the special case
of the ‘phase-space lattice Hamiltonian’, a one-dimensional model which represents many of
the features of Bloch electrons in a magnetic field. The form of the Wannier functions of
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the full Hamiltonian for irrational magnetic fields is related to the results for the phase-space
lattice Hamiltonian, but the generalizations are not obvious. The derivation given here is also
more satisfying in that it uses only minimal algebraic properties, and that results are obtained
for both types of Wannier function introduced in [6].

The second objective is to use the generalized Wannier functions to obtain a very general
form of the Peierls effective Hamiltonian [9, 10], in a form suitable for systematic analysis. For
simplicity we consider only a two-dimensional case where the electron is confined to a plane,
and perturbed by a magnetic field in the perpendicular direction (with cartesian coordinate z).
A comprehensive treatment of the three-dimensional case introduces the complication of an
additional commensurability parameter, but is straightforward when the field is aligned with
one of the crystal axes. The Peierls Hamiltonian is a one-dimensional effective Hamiltonian
which describes the effect of a uniform magnetic field perturbing a band of Bloch states. If
the dispersion relation is E(kx, ky), the Peierls effective Hamiltonian takes the form

Ĥ ∼ E(K̂x, K̂y) (1.1)

where K̂x and K̂y are generators of the magnetic translation operators, T̂ (R) (these are defined
in section 3; they were introduced in [11, 12], and are discussed concisely in [6]). These satisfy

[K̂x, K̂y] = i
2πβ−1

|A1 ∧ A2| (1.2)

where Ai are the basis vectors for the lattice. Many derivations of this relationship exist where
the dispersion relation is that of the B = 0 problem. This paper considers the case where the
dispersion relation is that of the system with any rational magnetic field p/q, showing that the
Peierls effective Hamiltonian is applicable in this case. It is shown that the commutator (1.2)
is replaced by one which depends upon the Chern index: the general form of (1.2) is

[K̂x, K̂y] = i
2πγ

|A1 ∧ A2| (1.3)

where γ is another dimensionless parameter characterizing the magnetic field. The value of
γ depends upon the value of the Chern integer M , and upon another integer N which satisfies

qM + pN = 1. (1.4)

The dimensionless effective magnetic field γ is

γ = qβ − p

M + Nβ
. (1.5)

The expression (1.5) can be surmized from results obtained previously for the phase-
space lattice Hamiltonian [7, 8]. The derivation presented here indicates how the effective
Hamiltonian can be obtained for the full Hamiltonian, rather than a one-dimensional model.
This issue has also been considered by Chang and Niu [13], who also discussed a heuristic
approach to determining the first-order correction to the effective Hamiltonian. The method
described here allows a systematic development of the effective Hamiltonian, using similar
techniques to those applied to the phase-space lattice Hamiltonian in reference [14]. It also
has the advantage that some of the complicated intermediate steps in the algebra of references
[7] and [14] are given a more transparent interpretation.

Sections 2 and 3 respectively summarize the essential definitions and principal results
from [6], and a representation of the Hamiltonian as a sum of magnetic translation operators.
The latter will be essential to the derivation of the general effective Hamiltonian.

Section 4 describes the extension of the Wannier functions obtained in [6] to irrational
magnetic fields, and a corresponding extension of the definition of Bloch states. The next four
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sections consider various properties of the generalized Wannier functions and Bloch states.
Section 5 discusses the effect upon the Wannier functions of a transformation of the Bloch
states. A ‘gauge transformation’ of the form

|B(k)〉 → |B ′(k)〉 = exp[iθ(k)]|B(k)〉 (1.6)

is applied to the Bloch states, with θ(k) a periodic function. The Wannier states derived
from the gauge-transformed Bloch states can be obtained from the original Bloch states by
the action of an operator, which is obtained in section 5. Similarly, section 6 determines an
operator acting on the Wannier states which is the image of a translation operator acting on
the Bloch states.

Section 7 computes the Dirac bracket of two generalized Bloch states, 〈B ′(k′)|B(k)〉,
which will be required for determining matrix elements of the Hamiltonian. Section 8
introduces some notational devices which simplify and illuminate the rather complex
expressions obtained earlier, showing how they can written in terms of translation operators
with algebra analogous to that of the magnetic translation group. Finally, in section 9 these
results are used to obtain the general form for the Peierls effective Hamiltonian.

2. Summary of earlier results

The purpose of this section is to present, for the convenience of the reader, a summary of some
of the principal definitions and equations from the earlier paper, reference [6]. The lattice vec-
tors are written as R = n1A1 +n2A2, and the reciprocal-lattice vectors are K = n1a1 +n2a2,
with ai · Aj = 2πδij .

The magnetic translation operators T̂ (R) introduced by Brown [11] and Zak [12] are of
fundamental importance. They are a representation of the symmetry of the system: if R is a
lattice vector, T̂ (R) commutes with the Hamiltonian. The magnetic translation operators do
not commute among themselves, and their composition rule can be written in the form

T̂ (R1)T̂ (R2) = exp

[
π i

β

(R1 ∧ R2)

(A1 ∧ A2)

]
T̂ (R1 + R2) (2.1)

whereβ is the flux quantum divided by the magnetic flux per unit cell. The magnetic translation
operators are discussed concisely in [6].

When conventional Wannier functions are defined, it is assumed that the Bloch states are
periodic functions of the Bloch wavevector k, as well as being eigenfunctions of the lattice
translation operators T̂ (Ai ), with eigenvalues exp[ik · Ai]. In the case where a rational mag-
netic field (with q/p flux quanta per unit cell) is applied, in general both of these conditions
need to be modified. The Bloch states are p-fold degenerate, and their phase increases by
2πM on traversing the boundary of the unit cell. Throughout this paper, the following choice
for the eigenvalue and periodicity conditions is preferred:

T̂ (A1)|B(k)〉 = exp[ik · A1]|B(k − qa2/p)〉 (2.2a)

T̂ (A2)|B(k)〉 = exp[ik · A2]|B(k)〉 (2.2b)

|B(k + a1/p)〉 = exp[iMk · A2]|B(k)〉 (2.2c)

|B(k + a2)〉 = |B(k)〉. (2.2d)

Bloch states with their phases chosen to satisfy (2.2a) and (2.2b), and with degenerate states
resolved such that (2.2c) is satisfied will be termed canonical Bloch states. Except whenp = 1
and M = 0, these conditions depend upon the choice of lattice basis vectors Ai .
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The method for constructing the Wannier functions is based upon the following
observation: if the Bloch states are canonical, the state |C(k)〉 = T̂ (−pMk · A2/2π)|B(k)〉
is periodic on the Brillouin zone of the superlattice spanned by pA1, A2, and the Wannier
functions |χ(R)〉 are obtained by integrating the state |C(k)〉 with weight exp[ik · R]. In
the case of standard Wannier functions, all of the Wannier states are obtained by applying
translation operators to a single fundamental Wannier state. In the magnetic case, the full set
of Wannier states is obtained by applying lattice translations to |N | fundamental type I Wannier
states, |χµ〉 = |χ(µA1)〉, µ = 0, . . . , |N | − 1, where N satisfies (1.4). The relation between
the Bloch and type I Wannier states is

|B(k)〉 =
∑

R=n1A1+n2A2

exp[−ik · R]T̂ (n2A2)T̂ (n1A1)T̂

(
pM

2π
(k · A1)A2

)

×
|N |−1∑
µ=0

exp[−ipµ(k · A1)]|χµ〉. (2.3)

A somewhat more natural representation of the Bloch states uses an alternative set of
fundamental Wannier states: the type II Wannier states are defined by

|φµ〉 = 1

N

|N |−1∑
µ′=0

exp[−2π iµµ′/N ]T̂ (−µ′A1/N)|χµ′ 〉. (2.4)

One advantage of using the type II Wannier states is that upon expanding the Bloch states in
terms of the |φµ〉 states, the summation over µ no longer depends upon k: the Bloch states are
given in terms of the type II states by the relation

|B(k)〉 =
∑

R=n1A1/N+n2A2

exp[−ik · R]
|N |−1∑
µ=0

exp[2π in1µ/N ]

× T̂ (n2A2)T̂ (n1A1/N)T̂

(
pM

2π
(k · A1)A2

)
|φµ〉. (2.5)

The other advantage of the type II Wannier states is that their transformations under a change
of lattice basis vectors are simpler [6].

3. The Hamiltonian in terms of translation operators

Here the objective is to represent the Hamiltonian as a sum of magnetic translation operators:
this will facilitate the construction of the effective Hamiltonian. The Hamiltonian is

Ĥ = 1

2m

(
p̂ − eA(r̂)

)2
+ V (r̂)

V (r) = V (r + R) R = n1A1 + n2A2

(3.1)

with the magnetic field generated by a linear vector potential, constructed using a matrix B̃
with elements Bij :

A(r) = B̃r ∇ ∧ A = Be3 B21 − B12 = B. (3.2)

The magnetic translations T̂ (R) have a generator P̂ = P̂1e1 + P̂2e2:

T̂ (R) = exp[−iP̂ · R/h̄] (3.3)

P̂ = p̂ − eB̃Tr̂. (3.4)
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It will also be useful to define a set of conjugate generators P̂ ∗
i :

P̂ ∗ = p̂ − eB̃r̂. (3.5)

The generators P̂i , P̂ ∗
i satisfy the commutation relations, where εij is the antisymmetric symbol,

with elements ε11 = ε22 = 0, ε12 = −ε21 = 1:

[P̂i , P̂j ] = −ieh̄Bεij (3.6)

[P̂ ∗
i , P̂

∗
j ] = ieh̄Bεij (3.7)

[P̂i , P̂
∗
j ] = 0. (3.8)

The coordinate vector r̂ can be expressed in terms of the generators P̂ and P̂ ∗: from (3.4) and
(3.5) it follows that P̂ ∗

i − P̂i = eBεij r̂j (where, from here until the end of section 3, repeated
indices are summed over). This can be inverted to give

r̂i = 1

eB
εij (P̂j − P̂ ∗

j ). (3.9)

The Hamiltonian can now be written as

Ĥ = 1

2m
P̂ ∗
i P̂

∗
i +

∑
k

Vk exp[ik · r̂] (3.10)

where the k = n1a1 + n2a2 are vectors in the reciprocal lattice, with basis vectors satisfying
ai · Aj = 2πδij . Expressing the r̂ using (3.9), and using the fact that P̂i and P̂ ∗

j commute,
equation (3.10) can be written in the form

Ĥ = 1

2m
P̂ ∗
i P̂

∗
i +

∑
k

Vk exp[ikiεij P̂j /eB] exp[−ikiεij P̂
∗
j /eB]

= 1

2m
P̂ ∗
i P̂

∗
i +

∑
k

VkT̂
∗(−h̄k∗/eB)T̂ (h̄k∗/eB) (3.11)

where k∗ = k∗
i ei and T̂ ∗(R) are defined by

k∗
i = εij kj T̂ ∗(R) = exp[−iP̂ ∗ · R/h̄]. (3.12)

The Hamiltonian is therefore expressed in terms of a sum of magnetic translation operators,
with operator-valued coefficients V̂k:

Ĥ =
∑

k=n1a1+n2a2

V̂kT̂ (h̄k∗/eB). (3.13)

The operators V̂k commute with the magnetic translation operators, and are given by

V̂k = 1

2m
δk,0P̂

∗ · P̂ ∗ + VkT̂
∗(−h̄k∗/eB). (3.14)

It is desirable to express the vectors k∗ in terms of the real-space-lattice basis vectors A1,
A2. The vectors corresponding to reciprocal-lattice vectors ai are denoted by k∗

i . Writing
Ai = Aijej and ai = aijej , the matrices Ã = {Aij } and ã = {aij } satisfy ÃãT = 2πĨ . It
follows that

k∗
1 = 2π

det(Ã)
(−A21e1 − A22e2)

k∗
2 = 2π

det(Ã)
(A11e1 + A12e2).

(3.15)
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Noting that the det(Ã) is equal to the area A of the unit cell, the Hamiltonian (3.13) can then
written as

Ĥ =
∞∑

n1=−∞

∞∑
n2=−∞

V̂kT̂

(
h

eBA (n2A1 − n1A2)

)
(3.16)

where k = niai . The elementary transformations associated with this representation of the
Hamiltonian, T̂1 = T̂ (−hA2/eBA) and T̂2 = T̂ (hA1/eBA), therefore span a lattice which is
aligned with the crystal lattice, but scaled by a dimensionless factor

β = h

eBA = flux quantum

flux per unit cell
. (3.17)

4. Extension to irrational magnetic fields

When the number of flux quanta per unit cell is rational, the spectrum consists of Bloch bands
for which Wannier functions have been defined. When the number of flux quanta per unit
cell is irrational, there are no Bloch bands and the spectrum is a Cantor set. It is however still
possible to define useful sets of generalized Bloch states and corresponding Wannier functions.

The expression giving the Bloch states in terms of the type II Wannier states will be
generalized, by writing

|B(k)〉 =
∑

R=n1A1/N+n2A2

exp[−ik · R]
|N |−1∑
µ=0

exp[2π in1µ/N ]

× T̂ (n2A2)T̂ (n1A1/N)T̂ (M(k · A1)A2/κ)|φµ〉. (4.1)

Straightforward application of the composition law (2.1) for magnetic translations to the form
(4.1) shows that the generalized Bloch states satisfy a periodicity condition

|B(k + κa1/2π)〉 = exp[iM(k · A2)]|B(k)〉 (4.2)

provided that exp[2π iMn/βN ] exp[−iκn/N ] = 1 for all integern. The latter condition is used
to determine allowed values for the constant κ: this quantity must satisfy κβ = 2π(M +βNJ)
with J an integer. Equation (4.2) is a natural generalization of the periodicity condition (2.2c).
It is desirable to define the generalized Bloch states such that as β → p/q they converge to
the Bloch eigenstates of the rational case with β = p/q. Setting J = 1 (and using (1.4)), κ
approaches 2π/p as β → p/q, which is consistent with (2.2c). The appropriate choice of the
constant κ defining the dimension of the Brillouin zone is therefore

κβ = 2π(M + βN). (4.3)

Systematic application of (2.1) shows that the states (4.1) also satisfy other conditions
analogous to the standard Bloch states: collecting together the periodicity properties and
the equations defining the effect of lattice vector translations, the generalized Bloch states
satisfy the relations

|B(k + κa1/2π)〉 = exp[iM(k · A2)]|B(k)〉 (4.4a)

|B(k + a2)〉 = |B(k)〉 (4.4b)

T̂ (A1)|B(k)〉 = exp[i(k · A1)]|B(k − a2/β)〉 (4.4c)

T̂ (A2)|B(k)〉 = exp[i(k · A2)]|B(k)〉. (4.4d)

Equation (4.1) defined the generalized Bloch states in terms of type II Wannier states.
Using the relation between the type I and type II Wannier functions given by (2.4), the
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corresponding relation giving the generalized Bloch states in terms of type I Wannier
functions is

|B(k)〉 =
∑

R=n1A1+n2A2

exp[−ik · R]T̂ (n2A2)T̂ (n1A1)

× T̂ (M(k · A1)A2/κ)

|N |−1∑
µ=0

exp[−2π iµ(k · A1)/κ]|χµ〉 (4.5)

On systematic application of (2.1) and (4.3), it is found that the states (4.5) satisfy the canonical
Bloch state relations in the form (4.4a)–(4.4d), for any states |χµ〉. The relation between the
type I and type II Wannier functions therefore remains valid in the irrational case.

The generalized Bloch states lie in a Brillouin zone spanned by the reciprocal-lattice
vectors κa1/2π and a2, with area Ak = κ|a1∧a2|/2π . Applying Born–von Karman boundary
conditions, the density of states per unit area associated with the set of generalized Bloch states
is Ak/4π2. The area of the real-space unit cell, A = |A1 ∧ A2|, is equal to 4π2/|a1 ∧ a2|.
The density of generalized Bloch states per unit area is therefore

N = κ

2πA . (4.6)

It will now be shown that this density of states is precisely what is required for them to form a
complete set of states for a region of the spectrum bounded by two gaps. Středa [15] showed
that the density of bulk states per unit area for region of the spectrum bounded by two gaps
satisfies is related to the Hall coefficient σxy :

σxy = e
∂N
∂B

. (4.7)

The Hall coefficient is quantized in units of e2/h, and the Chern integer M is the quantum
number [5]:

σxy = M
e2

h
. (4.8)

The density of states is clearly correct in the rational case. Using (4.3) with the relation
β = h/eBA to differentiate (4.6) with respect to B, equation (4.7) reproduces (4.8). This
shows that the variation of the density of generalized Bloch states with respect to magnetic
field is precisely the same as that of the eigenstates. The generalized Bloch states are therefore
a complete set provided that they are not linearly related.

5. Images of gauge transformations

The gauge transformations considered are of the form (1.6), in which the Bloch states are
multiplied by a factor exp[iθ(k)]. The cases of rational and irrational fields will be considered
separately.

5.1. Rational case

In the rational case θ satisfies

θ(k + a1/p)− 2πL1 = θ(k) = θ(k + a2/p)− 2πL2 (5.1)

withL1 andL2 integers, so the gauge transformation leaves the Bloch states in canonical form.
Wannier functions may be defined for the gauge-transformed states. These Wannier functions
will be different from the original ones, and it is interesting to determine how the transformed
Wannier functions may be obtained from the original ones directly.
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The calculation will be presented for the special case where

exp[iθ(k)] = exp[ik · R∗] (5.2)

where

R∗ = p(L1A1 + L2A2) (5.3)

is a superlattice vector. More general transformations of the form θ(k) = k · R∗ + εθ̃(k),
with θ̃ (k) periodic in k1 and k2, with period 2π/p, can also be treated for ε � 1 by Fourier
expanding θ̃ (k). The type I Wannier functions of the gauge-transformed Bloch states are

|χ ′(R)〉 = p

4π2

∫
BZ

dk exp[ik · (R + R∗)]T̂
(−pM

2π
(k · A1)A2

)
|B(k)〉

= |χ(R + R∗)〉. (5.4)

The fundamental type I Wannier functions, |χµ〉, are a subset of the full set of Wannier states
|χ(R)〉, defined by |χµ〉 = |χ(pµA1)〉: previously the index µ was restricted to the range
µ ∈ {0, . . . , |N | − 1} but it is convenient to extend the definition by allowing µ to take any
integer value. The states |χ(R)〉 are obtained from the fundamental Wannier functions via the
relation [6]

|χ(p(Nn1 + µ)A1 + n2A2)〉 = T̂ (n2A2)T̂ (n1A1)|χµ〉. (5.5)

It follows that the extended set of fundamental Wannier states satisfies

|χµ+N 〉 = T̂ (A1)|χµ〉. (5.6)

The transformation of the fundamental type I Wannier functions is therefore

|χ ′
µ〉 = T̂ (pL2A2)|χµ+L1〉. (5.7)

The corresponding transformation of the type II Wannier states is obtained using (2.4) and
its inverse relation as follows:

|φ′
µ〉 = 1

N

|N |−1∑
µ′=0

exp[−2π iµµ′/N ]T̂ (−µ′A1/N)|χ ′
µ′ 〉

= 1

N

|N |−1∑
µ′=0

|N |−1∑
λ=0

exp[2π i(λ− µ)µ′/N ] exp[2π iλL1/N ]

× T̂ (−µ′A1/N)T̂ (pL2A2)T̂ ((µ
′ + L1)A1/N)|φλ〉. (5.8)

After combining the translation operators, the summations can be performed: only the term
λ = µ + qL2 contributes, giving the result

|φ′
µ〉 = exp

[
2π i(µ + L2q)L1

N

]
T̂ (pL2A2)T̂ (L1A1/N)|φµ+qL2〉

= exp

[
2π i(µ + 1

2qL2)L1

N

]
T̂

(
L1A1/N + pL2A2

)|φµ+qL2〉. (5.9)

This expression will be recast into a more transparent form in section 8.

5.2. Irrational case

Now consider the case of gauge transformations of the generalized Bloch states defined for
irrational fields. In order to define a transformation of the Wannier functions, the gauge
transformation must leave the Bloch states in canonical form. If β is irrational, equations
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(4.4b) and (4.4c) imply that a suitable gauge transformation cannot depend upon k2. Linear
gauge transformations analogous to (5.2) are therefore restricted to being of the form

|B ′(k)〉 = exp[2π ik1L1/κ]|B(k)〉. (5.10)

Using (4.1), a Bloch state may be written in terms of the Wannier functions |φ′
µ〉 as follows:

|B ′(k)〉 =
∞∑

n1=−∞

∞∑
n2=−∞

|N |−1∑
µ=0

exp[−ik1(n1 − L1)/N ] exp[−ik2n2] exp[2π iµ(n1 − L1)/N ]

× T̂ (n2A2)T̂ ((n1 − L1)A1/N)T̂ (Mk1A2/κ)|φ′
µ〉. (5.11)

If the Wannier functions generating this state are

|φ′
µ〉 = exp[2π iµL1/N ]T̂ (L1A1/N)|φµ〉 (5.12)

then (using (4.3)) it can be seen that |B ′(k)〉 is related to the original Bloch state by (5.10).
This result reduces to a special case of (5.9) in the case where β = p/q.

6. Images of translation operators acting upon Wannier states

This section discusses the states

T̂ (r)|B(k)〉 r = β(ν1A1 + ν2A2) (6.1)

with ν1, ν2 taking integer values. It will be demonstrated that they are generalized Bloch states
of the form (4.1), generated by a set of Wannier functions |φ′

µ〉, µ = 0, . . . , |N | − 1. The
transformation giving these Wannier states in terms the states |φµ〉 which generate the original
Bloch state |B(k)〉 will be determined. This transformation may be regarded as the image of
the operator T̂ (r) acting on the Wannier functions.

The wavevector k = (k1, k2) of the state (6.1) is shifted to (k1 + 3k1, k2), with 3k1 to be
determined. Commuting the operator T̂ (r) to the right using (2.1) gives

T̂ (r)|B(k)〉 =
∞∑

n1=−∞

∞∑
n2=−∞

|N |−1∑
µ=0

exp[−i(k1 + 3k1)n1/N ] exp[−ik2n2] exp[2π iµn1/N ]

× T̂ (n2A2)T̂ (n1A1/N)T̂ (M(k1 + 3k1)A2/κ)

× exp[i3k1 n1/N ] exp[−2π iν2n1/N ] exp[2π i(k1 + 1
2 3k1 M)ν1/κ]

× T̂ (βν1A1 + (βν2 −M3k1/κ)A2)|φµ〉. (6.2)

This state is a generalized Bloch state if the product of the final two phase factors containing n1

is unity. This occurs if 3k1 = 2πν2. In this case the argument of the last translation operator
simplifies, the multiplier of A2 becoming 2πNν2β/κ . The state (6.1) is then in the form

T̂ (r)|B(k)〉 = exp[iθ(k′)]|B ′(k′)〉 (6.3)

where |B ′(k)〉 is a generalized Bloch state with Wannier functions |φ′
µ〉, k′ = k + ν2a1, and

θ(k) = 2πk1Mν1

κ
. (6.4)

The Wannier functions generating |B ′(k)〉 are

|φ′
µ〉 = exp[−2π2iMν1ν2/κ]T̂ (βν1A1 + 2πNβν2A2/κ)|φµ〉. (6.5)

The phase factor in (6.4) represents a gauge transformation of the type (5.10). Using (5.12),
we may therefore write

T̂ (r)|B(k)〉 = |B ′′(k + ν2a1)〉 (6.6)
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where the Wannier states generating |B(k)〉 are

|φ′′
µ〉 = exp[2π iMµν1/N ]T̂ (Mν1A1/N)|φ′

µ〉. (6.7)

The Wannier functions generating the Bloch states |B ′′(k + ν2a1)〉 = T̂ (r)|B(k)〉 can now be
expressed in terms of the original Wannier states:

|φ′′
µ〉 = exp

[
2π iMµν1

N

]
T̂

(
κβ

2πN
ν1A1 +

2πNβ

κ
ν2A2

)
|φµ〉. (6.8)

7. Dirac brackets of generalized Bloch states

The objective is to evaluate the matrix element

I (k,k′) = 〈B ′(k′)|B(k)〉 (7.1)

where the |B(k)〉 and |B ′(k)〉 are different generalized Bloch states for irrational magnetic
fields. These Bloch states are generated by different type II Wannier states |φµ〉 and |φ′

µ〉
respectively, using the expansion (4.1). The resulting expression will later be used to calculate
matrix elements of the form 〈B(k′)|T̂ (r)|B(k)〉 (where r = ν1a1 + ν2a2), and hence matrix
elements of the Hamiltonian, by writing |B ′(k + ν2a1)〉 = T̂ (r)|B(k)〉.

Using (4.1) and (2.1), and writing ki = k · Ai , the Dirac bracket is

I =
∞∑

n1=−∞

∞∑
n′

1=−∞

∞∑
n2=−∞

∞∑
n′

2=−∞

|N |−1∑
µ=0

|N |−1∑
µ′=0

exp

[
i(k′

2 − k2)

(
n2 + n′

2

2

)]

× exp

[
i

(
(k′

1 − k1) + 2π(µ− µ′)− 2π

β
(n2 − n′

2)

)(
n1 + n′

1

2N

)]

× exp

[(
k1 + k′

1

2κ

)
(n′

1 − n1)

]

× exp

[
2π i

N

(
µ + µ′

2

)
(n1 − n′

1)

]
exp

[
i

(
k′

2 + k2

2

)
(n2 − n′

2)

]

× 〈φ′
µ′ |T̂

(
n1 − n′

1

N
A1 +

(
n2 − n′

2 +
M

κ
(k1 − k′

1)

)
A2

)
|φµ〉. (7.2)

It is convenient to make changes of variable

j = n1 − n′
1 J = n1 + n′

1

2

l = n2 − n′
2 L = n2 + n′

2

2
.

(7.3)

The summations in (7.2) will then run over integer values ofL for even l, and over integer-plus-
one-half values of L for odd l, and similarly for J and j . These sums are most conveniently
evaluated by decomposing them into four summations:

I =
∑
j

∑
l

∑
J

∑
L

F (j, l, J, L)

=
∞∑

n=−∞

∞∑
n′=−∞

∞∑
m=−∞

∞∑
m′=−∞

[
F(2n, 2m, n′,m′) + F(2n + 1,m, n′ + 1

2 ,m
′)

+ F(2n, 2m + 1, n′,m′ + 1
2 ) + F(2n + 1, 2m + 1, n′ + 1

2 ,m
′ + 1

2 )
]
. (7.4)

The function F(j, l, J, L) is of the form

F(j, l, J, L) = exp[iα1(l)J ] exp[iα2L]f (j, l) (7.5)
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where

α1(l) = 1

N

[
k′

1 − k1 + 2π(µ− µ′)− 2π

β
l

]

α2 = k′
2 − k2

(7.6)

and

f (j, l) =
|N |−1∑
µ=0

|N |−1∑
µ′=0

exp

[
−2π i

(
k1 + k′

1

2κ
− µ + µ′

2N

)
j

]
exp

[
i

(
k2 + k′

2

2

)
l

]

× 〈φ′
µ′ |T̂

(
j

N
A1 +

(
l +

M

κ
(k1 − k′

1)

)
A2

)
|φµ〉. (7.7)

Using (7.5), it is seen that the sums over J and L are easily evaluated using the Poisson
summation formula in the form

∞∑
n=−∞

exp(iαn) = 2π
∞∑

m=−∞
δ(α − 2πm). (7.8)

Using this formula,

I (k′,k) = 4π2

N

∞∑
N1=−∞

∞∑
N2=−∞

∞∑
n1=−∞

∞∑
n2=−∞

(−1)(n1N1+n2N2)δ(k2 − k′
2 − 2πN2)

×
|N |−1∑
µ=0

|N |−1∑
µ′=0

δ

(
k1 − k′

1 − 2π(µ− µ′) +
2π

β
n2 − 2πNN1

)

× exp

[
i

(
k2 + k′

2

2

)
n2

]
exp

[
−2π i

(
k1 + k′

1

2κ
− µ + µ′

2

)
n1

]

× 〈φ′
µ′ |T̂

(
n1

N
A1 +

(
n2 +

M

κ
(k1 − k′

1)

)
A2

)
|φµ〉. (7.9)

Writing

3k = 2π

(
q − p

β

)
(7.10)

and recalling (4.3), the values of k1 − k′
1 for which the matrix element is non-zero may be

written in two alternative forms:

k1 − k′
1 = l1 3k + l2κ = 2π

(
L1 +

1

β
L2

)
(7.11)

where l1, l2 and L1, L2 are all integers. The argument of the second delta function in (7.9) can
therefore be written in terms of 3k and κ . Noting that

∂(L1, L2)

∂(l1, l2)
=

∣∣∣∣ q N

−p M

∣∣∣∣ = 1 (7.12)

it is seen that the sums over N1, µ′ and n2 in (7.9) may be replaced by a sum over the indices
l1, l2 in (7.11). In terms of the new indices l1, l2,

µ = µ′ + ql1 − λN λ = int[(µ′ + ql1)/N ]

N1 = l2 + λ

n2 = pl1 −Ml2.

(7.13)
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Also, the argument of the translation operator in (7.9) simplifies, since (using (7.10), (4.3) and
(7.11))

n2 +
M

κ
(k1 − k′

1) = (pl1 −Ml2) +
M

κ
(3k l1 + κl2) =

(
M3k

κ
+ p

)
l1 = 2π

κ
l1. (7.14)

After renaming some of the dummy indices, the Dirac bracket may be written in the form

I (k′,k) = 4π2

N

∞∑
N1=−∞

∞∑
N2=−∞

∞∑
n1=−∞

∞∑
n2=−∞

(−1)N2(pn1−MN1)+N1n2δ(k′
2 − k2 − 2πN2)

× δ(k1 − k′
1 −N1κ − n1 3k) exp

[
i

(
k2 + k′

2

2

)
(pn1 −MN1)

]

×
|N |−1∑
µ=0

exp

[
−2π i

(
k1 + k′

1

2κ
− µ + µ′

2

)
n2

]

× 〈φµ|T̂
(
n2

N
A1 +

2π

κ
n1A2

)
|φµ+qn1+λN 〉. (7.15)

Using the fact that the type II Wannier functions satisfy |φµ+N 〉 = |φµ〉, the Dirac bracket (7.1)
may finally be written in terms of a set of coefficients In1n2 in the form

I (k′,k) = 4π2

N

∞∑
N1=−∞

∞∑
N2=−∞

∞∑
n1=−∞

∞∑
n2=−∞

(−1)N1n2+pN2n1+MN1N2δ(k2 − k′
2 − 2πN2)

× δ(k1 − k′
1 −N1κ − n1 3k) exp

[
i

(
k2 + k′

2

2

)
(pn1 −MN1)

]

× exp

[
−2π i

(
k1 + k′

1

2κ

)
n2

]
In1n2 . (7.16)

The coefficients In1n2 are given by

In1n2 =
|N |−1∑
µ=0

exp

[
2π i

N

(
µ + 1

2qn1
)
n2

]
〈φ′

µ|T̂
(
n2

N
A1 +

2π

κ
n1A2

)
|φµ+qn1〉. (7.17)

8. Representations in terms of translation operators

The expression (7.17) for the coefficients defining the Dirac bracket, and the expression (6.8)
for the Wannier function image of a translation operator acting upon a Bloch state, can both
be expressed more elegantly by defining extensions of the magnetic translation group.

First I will define a translation operator which acts upon the labels of the type II Wannier
states. For integer values of λ1 and λ2 they are defined by

t̂ (n1, n2)|φµ〉 = exp

[
2π iM

N

(
µ− 1

2n1
)
n2

]
|φµ−n1〉. (8.1)

These operators were originally introduced in [7]. They have an algebra analogous to that of
the magnetic translations:

t̂ (n1, n1)t̂(n
′
1, n

′
2) = exp

[
−2π iM

N
(n1n

′
2 − n2n

′
1)

]
t̂ (n1 + n′

1, n2 + n′
2). (8.2)

Using the definition (8.1), the coefficients Inm given by (7.17) which define the Dirac bracket
(7.1) become

In1n2 = (−1)pqn1n2

|N |−1∑
µ=0

〈φ′
µ|t̂ (−qn1, qn2)T̂

(
n2

N
A1 +

2πn1

κ
A2

)
|φµ〉. (8.3)
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A further simplification can be introduced by using the notation |9) to represent the set of N
Wannier state vectors {|φµ〉, µ = 0, . . . , |N |− 1}. The object |9) may be thought of as a state
vector in an ‘expanded’ Hilbert space, with inner product

(9′|9) =
|N |−1∑
µ=0

〈φ′
µ|φµ〉. (8.4)

Equation (8.3) can now be reduced to a satisfyingly simple form by introducing a generalized
magnetic translation operator in the expanded Hilbert space:

T̂ (R) = (−1)pqn1n2 t̂ (−qn1, qn2)T̂

(
n2

N
A1 +

2πn1

κ
A2

)
R = n1A1 + n2A2. (8.5)

With this definition

In1n2 = (9′|T̂ (R)|9). (8.6)

Also, comparing with (5.9), it can be that the gauge transformation exp[ik · R∗] results in a
transformation of the vector of type II Wannier states of the form

|9′) = T̂ (R∗)|9). (8.7)

The operators T (R) again have a non-commuting algebra analogous to that of the magnetic
translations:

T̂ (R)T̂ (R′) = exp

[
π iγ

(R ∧ R′)
(A1 ∧ A2)

]
T̂ (R + R′) (8.8)

where

γ = 3k

κ
= qβ − p

M + βN
(8.9)

is the dimensionless magnetic field parameter mentioned in the introduction (equation (1.5)).
From (3.16), it is seen that the evaluation of the matrix elements of the Hamiltonian

involves calculating the matrix elements 〈B(k′)|T̂ (r)|B(k)〉, where r = β(ν1A1 + ν2A2).
The Dirac bracket 〈B ′(k′)|B(k)〉 was obtained in equations (7.16) and (7.17) in terms of a
set of coefficients In1n2 . The calculation of section 6 shows that the operator T̂ (r) acting on
a Bloch state creates a new canonical Bloch state with k shifted to k + ν2a1. It is natural to
expect that the Dirac bracket 〈B ′(k′)|B(k + ν2a1)〉 may be expressed in the form (7.16), with
the coefficients In1n2 replaced by I9′9(n1, n2, ν2) (note that In1n2 = I9′9(n1, n2, 0)). Noting
that pκ + M3k = 2π , and that k1 is replaced by k1 + 2πν2 in (7.16), it is found that

〈B ′(k′)|B(k + ν2a1)〉 =
∞∑

N1=−∞

∞∑
N2=−∞

∞∑
n1=−∞

∞∑
n2=−∞

(−1)N1n2+pN2n1+MN1N2

× δ(k2 − k′
2 − 2πN2)δ(k1 − k′

1 −N1κ − n1 3k)

× exp

[
i

(
k2 + k′

2

2

)
(pn1 −MN1)

]
exp

[
−2π i

(
k1 + k′

1

2κ

)
n2

]
I9′9(n1, n2, ν2)

(8.10)

where

I9′9(n1, n2, ν2) = exp[iπ(p + 2π/κ)n2ν2]In1+Mν2,n2 . (8.11)

Now consider the evaluation of the matrix element 〈B ′(k′)|T̂ (r)|B(k)〉. This may be written in
the form (8.10), with the Wannier state |9) replaced by the state |9′′)given by (6.8). Combining
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(6.8) and (8.11), the coefficients may be written in the form (8.10) with coefficients

I9′9′′(n1, n2, ν1, ν2) = exp[iπ(p + 2π/κ)n2ν2]
|N |−1∑
µ=0

exp

[
2π iMµν1

N

]

× 〈φ′
µ|T̂ (R + Mν2A1)T̂

(
κβ

2πN
ν1A1 +

2πNβ

κ
ν2A2

)
|φµ〉. (8.12)

This coefficient may be expressed in the form

I9′9′′(n1, n2, ν1, ν2) = (9′|T̂ (R)τ̂ (r)|9) (8.13)

where

τ̂ (r) = t̂ (−ν2, ν1)T̂

(
κβ

2πN
ν1A1 + βν2A2

)
. (8.14)

The operators τ̂ (r) commute with the T̂ (R) operators:[
τ̂ (r), T̂ (R)

] = 0 (8.15)

for all lattice vectors R and r/β.

9. The generalized Peierls effective Hamiltonian

9.1. A one-dimensional effective Hamiltonian

The motivation is to obtain an effective Hamiltonian, having a spectrum which is the same
as a subset of the spectrum of the original Hamiltonian. The effective Hamiltonian is easier
to analyse because the number of degrees of freedom has been reduced. The approach is
analogous to that used in earlier work on the phase-space lattice Hamiltonian [7, 14]. The
Hamiltonian will be reduced to a block diagonal form, and matrix elements of the Hamiltonian
within one block will be compared with matrix elements of the effective Hamiltonian. If
the basis states are in one-to-one correspondence and the matrix elements are equal, then the
spectrum of the effective Hamiltonian is the same as that of the block of the full Hamiltonian.

In the case under consideration, matrix elements of the Hamiltonian will be evaluated
in the basis formed by a set of generalized Bloch states |B ′(k)〉. They are compared with
matrix elements of an effective Hamiltonian Ĥproj in a suitable basis with elements |ξ̄ (x, k2)〉,
and the coefficients defining Ĥproj are chosen such that the non-zero matrix elements of Ĥproj

correspond with those of Ĥ , in that

〈B(k′)|Ĥ |B(k)〉 = 4π2

Nκ
〈ξ̄ (x ′, k2)|Ĥproj|ξ̄ (x, k2)〉δ(k2 − k′

2) (9.1)

where the states |ξ̄ (x, k2)〉 are labelled by a continuous variable x = k1/κ .
It will be assumed that in the case where the dimensionless magnetic field β takes the

rational value p/q, there is a non-degenerate band. It will also be assumed that the gap
separating this band from the rest of the spectrum does not close when β is perturbed away
from the rational value p/q. The effective Hamiltonian is constructed to reproduce that part of
the full spectrum which evolves out of this band when β is perturbed from the rational value.
The type II Wannier functions |φµ〉 for this band are determined, and used to generate a set
of generalized Bloch states using (4.1). A projection operator P̂ = f (Ĥ ) is applied to these
states, where the function f (E) is unity where E lies inside the band, and zero throughout the
rest of the spectrum. The states resulting from applying this projection

|B ′(k)〉 = P̂ |B(k)〉 (9.2)
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are orthogonal to all eigenstates outside the band, and therefore represent the Hamiltonian in
block diagonal form. The projection operator may be written in the form

P̂ =
∫ ∞

−∞
dt f̃ (t) exp[iĤ t] (9.3)

where f̃ (t) is a Fourier transform of f (E). The stipulation that the spectrum has a gap on
either side of the band ensures that f (E) can have arbitrarily many continuous derivatives,
implying that this integral is nicely behaved.

The projected generalized Bloch states are sufficiently numerous to form a complete but
not overcomplete set for the band, and may be assumed to be complete provided that the
matrix element 〈B ′(k′)|B ′(k)〉 is sufficiently small when k �= k′. This criterion can be tested
and verified using the results of sections 7 and 8. Because the states are not orthonormal, a
normalization operator must also be calculated, such that

〈B ′(k′)|B ′(k)〉 = 4π2

Nκ
〈ξ̄ (x ′, k2)|N̂proj|ξ̄ (x, k2)〉δ(k2 − k′

2). (9.4)

The subset of the spectrum of the full Hamiltonian which lies in the projected band can be
determined exactly by solving the eigenvalue problem

[
Ĥproj−EN̂proj

]|ψ〉 = 0, or alternatively
by calculating the spectrum of the effective Hamiltonian operator

Ĥeff = N̂
−1/2
proj ĤprojN̂

−1/2
proj . (9.5)

Consider the matrix elements of the Hamiltonian, expressed in the form (3.16), in the
basis formed by the generalized Bloch states. The wavevectors k and k′ can both be restricted
to the first Brillouin zone, i.e. k1, k

′
1 ∈ [0, κ) and k2, k

′
2 ∈ [0, 2π), because these states form a

complete set. Alternatively, states in an extended Brillouin zone can be used, since they only
differ by a phase factor from the states within the first Brillouin zone. States with k1 differing
by multiples of κ are identical (apart from a phase factor). Similarly, states with k2 differing by
multiples of 2π are identical. When writing matrix elements of the Hamiltonian in a complete
set of states, the summations over N1 and N2 in (7.16) can therefore be dropped:

〈B(k′)|Ĥ |B(k)〉 = 4π2

N
δ(k2 − k′

2)

∞∑
n1=−∞

δ(k1 − k′
1 − n1 3k)

× exp[ipk2n1]
∞∑

n2=−∞
exp

[
−2π i

(
k1 + k′

1

2κ

)
n2

]
H ′
n1n2

. (9.6)

In the case where β is rational, nκ + m3k = 0 for some choice of n and m. In particular,
γ = 3k/κ is also a rational number, γ = p′/q ′, so this relationship is satisfied when n

is a multiple of q ′. In this case, only q ′ distinct states are coupled, and the Hamiltonian is
represented by a q ′ × q ′ matrix with parameters k2 ∈ [0, 2π) and k1 ∈ [0, κ/q ′). In the case
where β is irrational, there is no finite-dimensional representation.

Now compare the matrix elements (9.6) with matrix elements of an effective Hamiltonian
of the form

Ĥproj = Hproj(K̂) =
∑
R

H ′(R) exp[iK̂ · R] ≡
∑
R

H ′(R)T̂ ′(R) (9.7)

where the sum runs over all of the lattice vectors R = n1A1 + n2A2, and where the following
relations hold:

K̂ = 1

2π
(a1ĝ1 + a2ĝ2) (9.8)

[ĝ1, ĝ2] = 2π iγ (9.9)
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(here the ai are reciprocal-lattice vectors, satisfying ai · Aj = 2πδij ). The operators ĝ1 and
ĝ2 have a commutator which is analogous to the usual position and momentum operators.
Eigenstates of ĝ2 will be introduced, with eigenvalue x: ĝ2|ξ(x)〉 = x|ξ(x)〉. Evaluating
the matrix elements of (9.7) in this basis leads to matrix elements which are very similar in
structure to (9.6), if the coefficients H ′(R) in (9.7) are identified with the coefficients H ′

n1n2
in

(9.6). The correspondence becomes even closer if the states |ξ(x)〉 are ‘gauge transformed’ as
follows:

|ξ̄ (x, k2)〉 = exp

[
i

(
pk2

2πγ

)
x

]
|ξ(x)〉. (9.10)

The matrix elements are then

〈ξ̄ (x ′, k2)|Ĥproj|ξ̄ (x, k2)〉 =
∞∑

n1=−∞

∞∑
n2=−∞

H ′(R) exp[i(x + x ′)n2/2]

× exp[ipn1k2]δ(x − x ′ − 2πγn1). (9.11)

Identifying x = k1/κ and γ = 3k/κ , these matrix elements of Ĥproj are identical to the
elements (9.6) for all values of k2. The spectrum of (9.7) is therefore identical to that of (9.6)
when γ = 3k/κ and H ′(R) = H ′

n1n2
.

9.2. Coefficients of the effective Hamiltonian

It remains to determine the coefficients H ′(R) = H ′
n1n2

in (9.6). These are obtained using
equation (7.16) and the notational devices introduced in section 8. The Hamiltonian is given
by (3.16), and takes the form of a sum of magnetic translations of the form T̂ (r), where r/β

are lattice vectors. The action of the Hamiltonian (3.16) upon a Bloch state |B(k)〉 may be
represented in terms of the action of an image Hamiltonian H upon the Wannier states that
generate the Bloch states. The matrix elements of the Hamiltonian, 〈B(k′)|Ĥ |B(k)〉, are of
the form (8.10), with the coefficients I9′9(n1, n2, ν2) replaced by coefficients H ′

n1n2
= H ′(R)

characterizing the Hamiltonian. These are given by an expression analogous to (8.13):

H ′(R) = (9|T̂ (R)Ĥ|9). (9.12)

The operators V̂k in (3.16) commute with the magnetic translations, and therefore commute
with τ̂ (r) and T̂ (R). Using (8.13) and (3.16), it is seen that the operator Ĥ, which is the image
of the Hamiltonian in the Wannier function Hilbert space, is

Ĥ =
∑

k

V̂kτ̂
(
r(k)

)
(9.13)

where r(k) = β(n2A1 − n1A2) corresponds to the reciprocal-lattice vector k = n1a1 + n2a2.
The image Ĥ of Hamiltonian in the space of the Wannier states commutes with the image of
the lattice translation operators:

[Ĥ, T̂ (R)] = 0. (9.14)

A similar representation exists for the projection operator P̂ = f (Ĥ ): this has an image
in the form of an operator P̂ acting upon the Wannier states. Also, the operator Ĥproj = P̂ĤP̂
which is the image of the projected Hamiltonian Ĥproj acting on the Wannier functions may also
be expressed in a form analogous to (9.13). The effective Hamiltonian can also be represented
by an operator Ĥeff = P̂−1/2ĤP̂−1/2 acting on the Wannier states.

The formulae discussed above can be used to calculate the Fourier coefficients of the
effective Hamiltonian using (9.12). Methods for calculating these coefficients as an expansion
in β −p/q are discussed in [14] for the case of the phase-space lattice Hamiltonian, and these
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techniques may be adapted to the present problem. In order to establish the validity of the
Peierls formula, it is necessary only to establish the coefficients H ′(R) in the limit β → p/q.
These coefficients are identified by noting that, upon setting β = p/q the Bloch states become
eigenstates, so 〈B(k′)|Ĥ |B(k)〉 = E(k)δ(k − k′). The corresponding expression (9.11) for
the matrix elements of the effective Hamiltonian reduces to

〈ξ̄ (x ′, k2)|Ĥeff |ξ̄ (x, k2)〉 =
∞∑

n1=−∞

∞∑
n2=−∞

H ′(R)δ(x − x ′) exp[ixn2] exp[−ipn1k2]. (9.15)

In the limit β → p/q, the coefficients H ′(R) of the effective Hamiltonian are therefore the
Fourier coefficients of the dispersion relation. The effective Hamiltonian (9.7) is therefore of
the ‘Peierls substitution’ form, (1.1).
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[15] Středa P 1982 J. Phys. C: Solid State Phys. 15 L717


