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Nonadiabatic transitions in multilevel systems
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In a quantum system with a smoothly and slowly varying Hamiltonian, which approaches a constant opera-
tor at timest→6`, the transition probabilities between adiabatic states are exponentially small. They are
characterized by an exponent that depends on a phase integral along a path around a set of branch points
connecting the energy-level surfaces in complex time. Only certain sequences of branch points contribute. We
propose that these sequences are determined by a topological rule involving the Stokes lines attached to the
branch points. Our hypothesis is supported by theoretical arguments and results of numerical experiments.

PACS number~s!: 03.65.Ge, 03.65.Sq
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I. INTRODUCTION

Consider a quantum-mechanical system with a Ham
tonianĤ(X) that depends analytically on a parameterX and
has a discrete spectrum. Suppose the parameter cha
slowly and analytically with timet, in such a way that, as
ymptotically ast→6`, it remains constant. It is convenien
to write X5X(t), wheret5et. The adiabatic parametere
is a small, real number which provides a dimensionless m
sure of how slowly the Hamiltonian changes, due to
change in the parameterX. The quantum adiabatic theore
states that if such a system is prepared in thenth eigenstate
of the instantaneous Hamiltonian at any time, then, in
limit e→0, the system remains in thenth eigenstate of the
instantaneous Hamiltonian at later times@1,2#.

Corrections to the adiabatic theorem can be extrem
small. If X(t) approaches its limiting values sufficiently ra
idly as t→6`, the probability of making a transition to
another eigenstate of the Hamiltonian vanishes exponent
~faster than any power ofe) as e→0. The probability for
making a transition from the stateufn„X(t0)…& to the state
ufm„X(t f)…& is given asymptotically ine by

Pn→m;Cnmexp@22Snm /\#, ~1.1!

whereCnm andSnm are positive constants and the actionSnm
is inversely proportional toe. Results of this type have bee
proven rigorously for most cases of physical interest
which the Hamiltonian is a 232 @3,4# or 333 matrix @5,6#,
and for some special cases of multilevel systems@7–10#.
This paper will discuss how these constantsSnm and Cnm ,
describing nonadiabatic transitions, may be determined w
some generality for a discrete multilevel system. For d
niteness, we will assume that the HamiltonianĤ is a sym-
metricN3N matrix, which is real for realt, and analytic on
a strip containing the realt axis. Then the Schwartz reflec
tion principle guarantees conjugacy of the matrix eleme
about the real-time axis.

The special case of a two-level system was discusse
many authors. Zener@3# calculated an exact expression f
the transition probability for a two-level model of the form
1050-2947/2000/61~6!/062104~15!/$15.00 61 0621
l-

ges

a-
e

e

ly

lly

th
-

ts

by

Ĥ~X!5
1

2 S X D

D 2XD , X5At. ~1.2!

This Landau-Zener system is of particular importance
cause, for a multilevel system, according to degenerate
turbation theory, a near degeneracy or ‘‘avoided crossin
of two levels can be approximated by a two-state Ham
tonian of this form. The exact transition probability for th
system is

PLZ5exp~2pD2/2Ae\!. ~1.3!

Note that the closest approach of the energy levelsE(t) is D,
so that nonadiabatic transitions occur easily if the ene
levels approach each other closely.

Later Dykhne@4# showed that in the limite→0 the tran-
sition probability for a general two-level system is dete
mined entirely by the analytic continuation of the ener
levels as a function of complex time. The eigenvalues of
instantaneous HamiltonianE(t) form two branches of a
single complex function, which are connected at bran
points occurring as complex conjugate pairs. The action
ponentS is determined by integrating the energy along a p
which leaves the real axis and loops around a branch po
so that it returns on the other branch. Dykhne showed tha
the limit e→0, the transition probability becomes

P;expF2
2

\ UImE
g
dt E~ t !UG[exp@22S/\#, ~1.4!

whereg is the path illustrated in Fig. 1. The prefactor in E
~1.1! is seen to beC51. If there is more than one pair o
branch points, the one with the smallest value ofS gives the
dominant contribution to the transition probability. Fo
model~1.2!, S5pD2/4eA, so that the Landau-Zener formul
is a case where this more general asymptotic result is ex

In a multilevel system, it is natural to expect that th
transition probability is, in general, the product of seve
terms of the form of Eq.~1.4!, corresponding to several suc
cessive transitions between pairs of levels. The conclus
of this paper will confirm this expectation. It might also b
expected that the transition probability will be determined
©2000 The American Physical Society04-1
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MICHAEL WILKINSON AND MICHAEL A. MORGAN PHYSICAL REVIEW A 61 062104
the combination of paths around branch points that m
mizes the total value of the sum of integralsS of the form
appearing in Eq.~1.4!. This expectation is only partially cor
rect: not all sequences of branch points are allowed. In
paper we propose a topological constraint, or rule, that
allowed combinations of branch points should satisfy. T
value ofS is determined by the minimal value of the sum
integrals of the form of Eq.~1.4! for paths consistent with the
constraint.

A heuristic reason for the necessity of a rule that elim
nates certain sequences of branch points can be under
from an example given by Hwang and Pechukas@5#. Con-
sider a three-level system, with energy levels as plotted s
matically in Fig. 2~a!. There are two avoided crossings whe
pairs of levels approach each other very closely. In

FIG. 1. The exponent characterizing a nonadiabatic transitio
a two-level system is obtained by integrating the energy alon
path enclosing a branch point in the complext plane where the
levels become degenerate.

FIG. 2. ~a! Energy levels as a function of real time for a thre
level system. The regions where the curves approach each
closely are called ‘‘avoided crossings.’’~b! The avoided crossings
correspond to branch points close to the real axis.
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neighborhood of these avoided crossings the two nearly
generate levels can be represented by a two-state model
lar to Eq.~1.2!, and the transition probabilities between pa
of adjacent levels are determined by the branch points n
the real axis shown in Fig. 2~b!. The transitions from level 1
to level 3 occur through Landau-Zener transitions at the s
cessive avoided crossings, and the transition probability
the product of two terms of the form of Eq.~1.4!. The tran-
sition from level 3 to level 1 cannot make use of the sa
path, however, because the avoided crossing between le
2 and 1 is encountered before the transition from level 3
level 2 has taken place. Instead, the transition occurs thro
a more distant branch point between levels 1 and 3, as sh
in Fig. 2~b!. The probability for the 3→1 transition is there-
fore expected to be much smaller. Therefore, a rule is
quired that eliminates the path from level 3 to level 1 via t
branch points closest to the real axis, but permits this p
for the reversed transition.

In Sec. II a rule is proposed for determining which bran
points contribute to the transition probabilities. Our rule
motivated by a discussion of the Stokes phenomenon g
by Heading@11,12# which assumes that evanescent wav
are meaningful even in the presence of larger contributio
and that the amplitudes of evanescent waves change on
Stokes lines. These assumptions must be justified by a re
ence to an asymptotic series ine for the wave function,
showing that the errors in the dominant terms can be redu
to below the magnitude of the subdominant~evanescent!
terms, except in the vicinity of the Stokes lines. This inte
pretation of the asymptotic series for the wave function
curs in Stokes’ analysis of the Airy function@13#, and many
further examples were discussed in a book by Dingle@14#.
Works by Berry@15–17# developed the theory further, an
discussed physical applications, including quantum adiab
theory for two-level systems.

The standard approaches for this interpretation of Sto
lines are valid only for those Stokes lines associated w
branch points having the smallest actionS, since these give
the most divergent contributions to the asymptotic series.
applications to date have considered systems with only
states~in adiabatic theory! or two channels~in WKB ap-
proaches to scattering problems!, where only this one branch
point is relevant. These methods are bound to fail in mu
level systems where many branch points are of neces
involved in a transition, since the divergence of the serie
dominated by the branch point with the smallest action.
Sec. III we describe a formulation that allows all of th
Stokes lines to be given a similar interpretation. By proje
ing out the subspace corresponding to branch points w
small actions, divergences due to other branches are
vealed. The method is based upon an exact iterative ‘‘ren
malization’’ of the Hamiltonian, adapted from a scheme
troduced by Berry@18#. Section IV discusses the limiting
form of this series of renormalized Hamiltonian operato
and its interpretation in terms of the Stokes phenomen
Section V contains some numerical illustrations of the
sults, and Sec. VI summarizes the contributions and con
ers further development of the theory.
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NONADIABATIC TRANSITIONS IN MULTILEVEL SYSTEMS PHYSICAL REVIEW A 61 062104
II. A TOPOLOGICAL RULE FOR DETERMINING
THE ACTIONS

In this section we propose a topological rule for determ
ing the actions for nonadiabatic transitions motivated b
discussion of the Stokes phenomenon. The first three sub
tions review some ideas well known in the context of WK
theory. We review these ideas here to place them in
slightly different context of adiabatic theory and to establ
our notation.

A. Adiabatic solutions of the Schrödinger equation

It is possible to write down an asymptotic series for t
solution of the Schro¨dinger equation i\ ] tuc(t)&
5Ĥ(t)uc(t)& as an expansion in powers ofe,

ucn~ t !&5exp@2 iun~ t,t0!/\#$ufn~t!&1eufn
(1)~t!&1•••

1ekufn
(k)~t!&1•••%, ~2.1!

whereufn(t)& is an eigenvector of the instantaneous Ham
tonian Ĥ„X(t)…, and un(t,t0) is the phase integral of th
corresponding eigenvalue~the nth energy level! defined by

un~ t,t0!5E
t0

t

dt8 En~ t8!5
1

eEt0

t

dt En~t!, ~2.2!

with t0 the phase reference. The state in Eq.~2.1! is an ap-
proximate solution of the time-dependent Schro¨dinger equa-
tion, assuming the system was prepared in thenth energy
level in the remote past, that does not take nonadiabatic t
sitions into account. Only the leading-order terms in the
asymptotic expansions will be considered explicitly. The
will be termed theadiabatic solutions:

ucn~ t !&5exp@2 iun~ t,t0!/\#ufn~ t !&. ~2.3!

For complex t, the exponential factor need not have u
modulus. As we move along a path in the complext plane,
we can compare the rates at which two solutions increas
decrease exponentially. The solution for which the derivat
of Im un is largest is said to bedominant, and the other
solutionsubdominant.

Because the solutions are to be considered as function
a complex time variable, it is necessary to include a f
comments about how the eigenvalues and eigenvectors
continued into the complex plane. Since for realt the matrix
elements of the Hamiltonian are real, we define the in
product of two eigenvectors without complex conjugatio
We shall assume that the eigenvectors are normalized in
usual way, using this inner product. Ast becomes complex
the eigenvalues and eigenvectors also become complex
the Hamiltonian matrix remains symmetric and its eigenv
tors orthogonal. By choosing the eigenvectors real on
real axis, they then have no gauge freedom. They may
expressed as analytic functions oft at all points in the com-
plex plane, except for a set of singular points.

Singular points of the eigenvalues and eigenvectors
arise either because the matrix elements themselves have
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gularities, or because of singularities in the mapping fro
matrix elements to eigenvalues and eigenvectors. This la
type of singularity is associated with points where eigenv
ues become degenerate in the complext plane. These singu
larities arising from degeneracies will be termedbranch
points, because they connect two branches of the Riem
surface of the eigenvalue functionE(t). The former type of
singularities are of less interest, because they are not un
sal in form, and because they typically lie farther into t
complex plane than the branch points.~The reason for this
will be discussed in Sec. V.! Degenerate perturbation theor
shows that in the neighborhood of two eigenvalues becom
degenerate, the energy difference is the square root of
discriminant of the corresponding quadratic equation. At
singularity, the discriminant vanishes while, generically,
time rate of change is nonzero. Thus, generically, singul
ties due to eigenvalue degeneracies are square-root br
points. In this paper we shall assume all relevant singular
are of this form.

For systems with a single parameterX, assumed here, a
theorem of Von Neumann and Wigner@19# stated that, ge-
nerically, degeneracies do not occur for realt. Therefore, the
eigenvalues and eigenvectors can be labeled with an in
corresponding to the ordering of the~real! eigenvalues on the
real axis. Usually it will be useful to consider the eigenvalu
and eigenvectors to be single-valued functions oft. This re-
quires the introduction of branch cuts that restrict the dom
of definition of the functionE(t) to a single Riemann shee
Typically we will choose the branch cuts to be lines wi
constant Ret that do not cross the real axis, as illustrated
Fig. 2~b!.

It is necessary to establish how the eigenvalues and ei
vectors change upon crossing a branch cut. Conside
branch point due to the degeneracyEn1

5En2
. Since this is a

square-root branch point, the eigenvalues are simply
changed as the branch cut is traversed. The eigenvector
more involved. If, starting from a pointt1 adjacent to the
branch cut, the eigenvectorufn1

(t1)& is followed counter-
clockwise around the branch point, upon reaching the ot
side of the branch point the stateufn1

(t2)& is equal to a

multiple of the stateufn2
(t1)&. This is illustrated in Fig.

3~a!. Upon taking this multiple of the stateufn2
(t1)& coun-

terclockwise tot2 , it is transformed into2ufn1
(t1)&, i.e.,

the eigenvector recurs with its sign changed after two circ
around the degeneracy. This fact is easily verified in
special case of the Landau-Zener model, Eq.~1.2!. Choose a
branch cut crossing the real axis connecting the comp
conjugate branch points, and consider a circuit construc
from the real axis and from a semicircle at infinity, as illu
trated in Fig. 3~b!. Because the circuit can be shrunk to
circle enclosing the branch point, and because the singu
ties of this model are generic, the result is true in the gen
case. Thus if we choose the phase of the stateufn2

& relative

to ufn1
& appropriately, we may write

ufn1
~ t2!&5 i ufn2

~ t1!&,
4-3



ng
se

ar

th
an

a

c
u
e
an

a

l
th
n

nes
ally
h a

r
be
the

der
is

vels
ant

oth

4

me
le,

la-
:

n
t

nt
ge-

i-
m

in

en
th

MICHAEL WILKINSON AND MICHAEL A. MORGAN PHYSICAL REVIEW A 61 062104
ufn2
~ t2!&5 i ufn1

~ t1!& ~2.4!

as a generic description of how the eigenvectors cha
when crossing a branch cut in the counterclockwise sen

B. Solutions in the neighborhood of a branch point

This section considers the solution of the Schro¨dinger
equation in the vicinity of a branch point. The arguments
an adaptation of those given by Heading@11,12# for the case
of WKB approximations. They are included here because
terminology must be redefined for the adiabatic problem,
because there is a minor difference in the logic.

We assume that att* the levelsEn1
and En2

become

degenerate. In the neighborhood oft* the difference between
the two nearly degenerate levels behaves asDE[En2

2En1

'const3(t2t* )1/2, so that the phase integral difference h
a singularity of the form

Du~ t,t* !5E
t*

t

dt8 DE~ t8!'
Kt*
e

~t2t* !3/2, ~2.5!

whereKt* is a complex constant characterizing the bran
point att* . Thus it is also necessary to introduce branch c
in the phase integralsun(t,t* ), which we take to be the sam
as for the energies. On crossing a branch cut we must ch
the labeling of the energy levels and phase integrals,
though their values change smoothly.

Some of the level curves~contours! of the phase integra
that pass through the branch point are very important in
formulation of the theory. These are the Stokes and a
Stokes lines defined by

ReDu50, Stokes lines,

FIG. 3. ~a! The sign of an eigenvector is reversed upon mak
two circuits about a branch point.~b! An illustration of this change
of sign for the Landau-Zener Hamiltonian by considering the eig
vector transported smoothly around a circuit taken to infinity in
upper-half plane.
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On the anti-Stokes lines adiabatic solutions~2.3! connected
by the branch point are codominant, and on the Stokes li
one adiabatic solution can be regarded as being maxim
dominant over the other. The Stokes lines associated wit
typical branch point are sketched in Fig. 4.

The subdominant solution is meaningful only if it is large
than the error term of the dominant series, which can itself
assumed to be comparable to the smallest term of
asymptotic expansion~2.1!. On considering how the solution
behaves near a branch point, it is convenient to first consi
the behavior of the solution on the anti-Stokes lines. This
because the adiabatic series corresponding to the two le
which become degenerate at the branch point are codomin
on the anti-Stokes lines, and are therefore certainly b
meaningful there. If these solutions areuc1(t)&, uc2(t)&, the
solution at any point along the anti-Stokes line A1 in Fig.
may be written

uc~ t !&5a1uc1~ t !&1a2uc2~ t !&, ~2.7!

with the multipliersa1 and a2 approximately constant. On
the other two anti-Stokes lines the solution takes the sa
form, but it need not have the same coefficients; for examp
on line A2 the coefficients could be (a18 ,a28). Since the
Schrödinger equation is linear, there must be a linear re
tionship between the coefficients on the anti-Stokes lines

S a18

a28D 5M̃ S a1

a2D . ~2.8!

If uc1(t)& is the dominant solution in the sector betwee
lines A1 and A2, then the multiplier of this solution canno
change, i.e.,a185a1. Heading@11,12# gave a very general
argument, showing that the multiplier of the subdomina
solution is altered on crossing the Stokes line. For the
neric case, where the singularity is given by Eq.~2.5! ~trip-
lets of Stokes lines attached to a branch point!, the argument
follows closely that given by Heading for the WKB approx
mation and the result is the same: the transition matrix fro
the anti-Stokes line A1 to A2 is

M̃5S 1 0

2 i 1D . ~2.9!

g

-
e

FIG. 4. Stokes lines (Sn), anti-Stokes lines (An), and branch
cut ~BC! associated with a single branch point.
4-4
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NONADIABATIC TRANSITIONS IN MULTILEVEL SYSTEMS PHYSICAL REVIEW A 61 062104
In other words,2 i times the multiplier of the dominant so
lution is added to that of the subdominant solution whene
a Stokes line is crossed in the counterclockwise sense.
will be referred to asHeading’s rule, because our discussio
follows Heading’s treatment of the connection problem.
assumes a phase reference at the branch point. Similar
tions exist on crossing the other Stokes lines. However
writing down expressions for these relations it should
remembered that, on crossing anti-Stokes lines, it is poss
for the dominance of the solutions to switch. For example
uc2(t)& is dominant on both S2 and S3, then dominan
switches upon crossing A1 and A2 but not A3. The ex
solution of the time-dependent Schro¨dinger equation must be
analytic and single valued at the branch point, so Eq.~2.9! is
obtained by requiring that the multipliersa i return to their
original values when traced in a circuit around the bran
point, crossing three Stokes lines and the branch cut.
branch cut is accounted for by noting that, according to
~2.4!, upon crossing the cut the labels of the states are
changed and the states are multiplied byi ~this circumstance
differs from the case of WKB theory, where the factors oi
have a different origin!. We can introduce the matrix

T̃5S 0 1

1 0D ~2.10!

to account for the switching of dominance on the anti-Sto
lines. The branch cut is accounted for by the matrix iT̃. The
effect of making a circuit around the branch point is th
described by the producti T̃M̃ T̃M̃ T̃M̃ , which is the identity
matrix, verifying that Eq.~2.9! is consistent with a single
valued wave function.

It is desirable to comment on the interpretation of E
~2.9!. The adiabatic wave functions are a poor approximat
to the exact solution at the branch point because they
singular there. They are also a poor approximation far aw
from the branch point because of the presence of o
branch points and singularities. Furthermore, their interp
tation is ambiguous at all points off the anti-Stokes lin
because the subdominant wave function may be smaller
the error of the dominant wave function. As they stand th
the arguments above suffice only to discuss the behavio
the wave function in a~deleted! neighborhood of the branc
point, near the anti-Stokes lines.

C. Transition probabilities deduced from Heading’s rule

The results of Sec. II B are sufficient to enable the tran
tion probability due to a single branch point to be det
mined, provided that they are supplemented by an additio
assumption. The logic of the argument presented there g
the form of the wave function on two of the anti-Stok
lines, provided it is known on the third~and even on the
anti-Stokes lines it is only a good approximation sufficien
far from the branch point!. The additional assumption is tha
the solutions may be extended from the anti-Stokes line
required, and still remain meaningful. This assumption
quires the use of asymptotic series approximations, wh
06210
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reduce the errors of the dominant terms until the subdo
nant terms are meaningful. Such approximations are not
cussed explicitly in Heading’s work, and must be verified f
specific applications.

It will be convenient to introduce the following notatio
for the phase integral factor in the adiabatic solutions:

f n~ t,t0![exp@2 iun~ t,t0!/\#5expF2
i

\Et0

t

dt8 En~ t8!G .
~2.11!

We assume that the system begins in the stateuc1(t)&
5 f 1(t,t0)uf1(t)& as t→2`. The phase referencet0 is an
arbitrary point on the real axis. Ast→`, the system evolves
to the stateuc1(t)&1auc2(t)&, wherea is the transition am-
plitude that we seek. In the domain in Fig. 4 bounded
tween A1 and S1 and the real axis, the system is in
dominant state with respect to the branch point in the upp
half plane. Heading’s rule, given by Eqs.~2.8! and ~2.9!,
gives the evolution of the solution around the branch po
from A1 to A2 as

f 1~ t,t* !uf1~ t !&→ f 1~ t,t* !uf1~ t !&2 i f 2~ t,t* !uf2~ t !&,
~2.12!

or in terms of the adiabatic solutions with phase referenct0
as

f 1~ t0 ,t* !uc1~ t !&→ f 1~ t0 ,t* !uc1~ t !&2 i f 2~ t0 ,t* !uc2~ t !&.
~2.13!

Assuming we may extend this solution down to timet on the
real axis, the probability for the system to be found in st
uc2(t)& is

P1→2;u f 2~ t0 ,t* ! f 1~ t* ,t0!u25exp@22 ImS1,2/\#,
~2.14!

where

S1,2[E
t0

t*
dt8@E2~ t8!2E1~ t8!#52E

g
dt8 E~ t8!

~2.15!

is the action evaluated around a path, analogous to
shown in Fig. 1, encircling the branch point att* . Its value is
independent of the phase referencet0. Thus Dykhne’s for-
mula ~1.4! has been deduced from Heading’s rule.

Note that the branch point below the real axis does
make any contribution to this transition probability, becau
the solutionuc1& is subdominant in the lower half-plane. T
compute the transition probability for transitions in the o
posite direction, the roles of the two conjugate branch po
are reversed.

D. The case of two branch points

In this section we discuss the case in which a transit
occurs in two stages, first from the leveln0 to level n1, and
then from leveln1 to level n2. Consideration of this case
4-5
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MICHAEL WILKINSON AND MICHAEL A. MORGAN PHYSICAL REVIEW A 61 062104
allows us to identify a rule for determining the circumstanc
under which successive transitions may occur.

We examine a case in which adjacent pairs of levels
come degenerate at distinct branch points. If we are c
cerned with transitions from lower to higher energies, bran
points in the upper half-plane are relevant, because for p
below these branch points lower lying levels are domina
The Stokes lines@defined by Eq.~2.6!# of the two branch
points can assume two possible arrangements as illustr
schematically in Figs. 5~a! and 5~b!.

First consider the arrangement in Fig. 5~a!, with the initial
state being such that only the level with indexn0 is occupied
ast→2`. Following the argument used in Sec. II C, we u
Heading’s rule to connect the solutions on the anti-Sto
lines in the vicinity of the branch points, and assume t
these solutions may be extended down to the real time a
Since only the initial stateucn0

(t)& occupies the sector be
tween the lines A1 and S1 attached to the branch p
(n0 ,n1), and sinceucn0

(t)& is the dominant solution on S1
Heading’s rule gives the wave function on A2 as a multip
of ucn0

(t)&2 i ucn1
(t)&. Thus the evolution of the solution

around the (n0 ,n1) branch point from A1 to A2 is given by

f n0
~ t,tn0 ,n1

* !ufn0
~ t !&→ f n0

~ t,tn0 ,n1
* !ufn0

~ t !&

2 i f n1
~ t,tn0 ,n1

* !ufn1
~ t !&.

~2.16!

Next, since no Stokes lines are intervening, we may ext
this solution upward to the anti-Stokes line A18 connected to
the (n1 ,n2) branch point. The sector between A18 and S18

FIG. 5. Stokes and anti-Stokes lines associated with a pa
branch points between different pairs of levels. The boundary c
dition is that only leveln0 is occupied ast→2`. Case~a! allows
a transition to leveln2 as t→`. Case~b! does not allow such a
transition.
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is now occupied by the solutionucn1
(t)&. Since this is the

dominant solution on S18, Heading’s rule gives the wave
function on A28 as a multiple ofucn1

(t)&2 i ucn2
(t)&. The

evolution of the solution around the (n1 ,n2) branch point
from A18 to A28 is given by

f n1
~ t,tn1 ,n2

* !ufn1
~ t !&→ f n1

~ t,tn1 ,n2
* !ufn1

~ t !&

2 i f n2
~ t,tn1 ,n2

* !ufn2
~ t !&.

~2.17!

Combining these two evolutions, and expressing the resu
terms of the adiabatic solutions with a phase referencet0 on
the real axis, one obtains

ucn0
~ t !&→ucn0

~ t !&2 i f n1
~ t0 ,tn0 ,n1

* ! f n0
~ tn0 ,n1

* ,t0!ucn1
~ t !&

2 f n2
~ t0 ,tn1 ,n2

* ! f n1
~ tn1 ,n2

* ,tn0 ,n1
* !

3 f n0
~ tn0 ,n1

* ,t0!ucn2
~ t !& ~2.18!

for the evolution of the wave function from A1 to A28. Ex-
tending this solution down to timet on the real axis, one
finds the probability for making the transition from leveln0
to level n2 is

Pn0→n2
;u f n2

~ t0 ,tn1 ,n2
* ! f n1

~ tn1 ,n2
* ,tn0 ,n1

* ! f n0
~ tn0 ,n1

* ,t0!u2

5u f n2
~ t0 ,tn1 ,n2

* ! f n1
~ tn1 ,n2

* ,t0!

3 f n1
~ t0 ,tn0 ,n1

* ! f n0
~ tn0 ,n1

* ,t0!u2

5exp@22 Im ~Sn0 ,n1
1Sn1 ,n2

!/\#, ~2.19!

where Sn0 ,n1
and Sn1 ,n2

are actions for paths evaluate

around the branch points located at timestn0 ,n1
* and tn1 ,n2

* ,

respectively. The transition probability is therefore the pro
uct of two factors of the Dykhne formula form, correspon
ing to two successive transitions.

Now consider the arrangement in Fig. 5~b! with the same
initial state ucn0

(t)& occupied ast→2`. At the (n1 ,n2)

branch point,ucn1
(t)& is dominant anducn2

(t)& is subdomi-

nant. According to Heading’s rule, a transition into then2
level requires that the subdominant solution be switched
in proportion to the dominant solution’s multiplier. Howeve
the solutionucn1

(t)& has a multiplier zero in the entire regio
containing the relevant anti-Stokes lines attached to
(n1 ,n2) branch point. It follows that no transition fromn0 to
n2 is possible using these two branch points.

There usually will be other branch points farther out in t
complex plane connecting levelsn0 andn2 directly. In both
of the cases discussed above, this branch point would ma
contribution to the transition probability of the form
Pn0→n2

5Pn2→n0
5exp@22 ImSn0 ,n2

/\#. In the case of Fig.
5~b!, this would be the only contribution. In the case of Fi
5~a!, it is the dominant contribution if ImSn0 ,n2

,Im Sn0 ,n1

1Im Sn1 ,n2
, and negligible otherwise.

of
n-
4-6
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E. A criterion for selecting possible transition sequences

We now propose a rule for determining the combinatio
of actions that correspond to allowed transitions. The rul
based upon Heading’s local analysis of the form of the so
tion in the vicinity of a branch point, supplemented by t
assumption that solutions may be continued away from
branch points.

In the case of an upward transition from leveln0 to nk , a
transition might be possible using a sequence of bra
points tn0 ,n1

* ,tn1 ,n2
* , . . . ,tnk21 ,nk

* with transition probability

Pn0→nk
5exp@22 Im(Sn0 ,n1

1•••1Snk21 ,nk
)/\#. This tran-

sition sequenceis allowed only if the branch points and the
associated Stokes lines satisfy a topological criterion. T
transition nj→nj 11 is mediated by the branch point a
tnj ,nj 11
* , and can occur only if the levelnj is occupied at this

branch point. This requires that the branch pointtnj ,nj 11
* lies

in the quarter-plane above the real axis, and to the righ
the boundary formed by the Stokes line descending fr
tnj 21 ,nj
* to cross the real axis, and the branch cut from

tnj 21 ,nj
* branch point.

The rule is topological in character. For downward tra
sitions, the relevant branch points are in the lower-ha
plane, but because of reflection symmetry, the rule can
applied in exactly the same way as for upward transitio
The rule might at first sight appear to have a degree of a
trariness, in that it refers to the positions of the branch cut
well as the Stokes lines. It may, however, be verified t
moving the branch cuts does not affect the predictions.
reason is that when a branch cut from thetn0 ,n1

* branch point

is moved past thetn1 ,n2
* branch point, the labeling of the

levels must be changed so that the latter branch point
connects levelsn0 andn2 rather thann1 andn2.

III. ADIABATIC RENORMALIZATION
WITH PROJECTIONS

A. Motivation for renormalizing the Hamiltonian

The objective of this section is to explain how the inte
pretation of the Stokes lines used in Sec. II, which led to
rule for the selection of transition sequences, may be ju
fied. This requires the use of asymptotic series to reduce
error of the dominant solutions as far as possible. It turns
that this error can be reduced below the magnitude of
subdominant solution everywhere, except in the vicinity
the Stokes lines. This idea was introduced by Stokes@13# in
a discussion of the Airy function, and amplified in a book
Dingle @14#. It was applied successfully in a variety of form
and to a variety of physical problems by Berry@15–17#. To
date, all of the applications to differential equations ha
involved problems in which only two equations are coup
together, e.g., two-state problems in adiabatic theory, or o
dimensional semiclassical problems, involving two chann
~left- and right-propagating waves!.

The approach used in these papers must be generaliz
cover the multilevel problem. The reason is that the interp
tation of the Stokes lines depends on studying the diverge
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of an asymptotic series. This divergence is usually de
mined by the branch point ‘‘closest’’ to the real axis, in th
sense of having the smallest value of the imaginary par
the action,uIm Su. A means must be found to eliminate th
divergence associated with branch points close to the
axis in order that the divergence associated with other bra
points may be revealed, allowing their Stokes lines to
interpreted. This is achieved by ‘‘projecting out’’ a subspa
of the Hilbert space spanned by states having branch po
close to the real axis.

Various approaches were tried and found to be unsatis
tory. The method we use is adapted from an approach in
duced by Berry@18#. Instead of constructing an asymptot
series for the wave function, the objective is to construc
sequence of ‘‘renormalized’’ Hamiltonians having the sam
dynamics as the original problem, and for which the ad
batic approximation is successively more accurate. Thekth
Hamiltonian of this sequence has off-diagonal matrix e
ments ofO(ek). If the off-diagonal elements were to ap
proach zero ask→`, the adiabatic approximation would b
exact. In this case there would be no nonadiabatic transiti
This implies that the prefactors of theO(ek) terms must
diverge ask→`. This divergence and its consequences
discussed in Sec. IV. In the remainder of this section
explain how the sequence of renormalized Hamiltonians
constructed. The approach follows that of Berry@18# quite
closely, except that a subspace of the spectrum is ‘‘projec
out’’ of the renormalization procedure, leaving its elemen
O(e0).

B. Renormalization excluding a projected subspace

We consider a case where there is a branch point clos
the real axis in a subset of the spectrum characterized b
set of state indices$P%. The projection operatorP̂(t) for the
corresponding subspace of the Hilbert space is

P̂~ t !5 (
nPP

ufn~ t !&^fn~ t !u. ~3.1!

The complementary set of state indices will be termed$Q%,
and its corresponding projection operator designatedQ̂5 Î

2 P̂. Provided the singularities of the matrix elements of t
Hamiltonian are sufficiently far from the real axis, the sing
larities of the projection operatorP̂ are determined by the
branch points where an eigenvalue from$P% becomes degen
erate with one from$Q%. The projection operatorP̂(t) and
the projected HamiltonianĤP5 P̂Ĥ P̂ are analytic inside a
strip SP symmetric about the real axis, and bounded by th
conjugate branch points. This is true despite the fact that
eigenstates in Eq.~3.1! have singularities closer to the re
axis due to branch points between states in$P%.

It will be useful to have available a representation of t
projection into the$P% subspace explicitly constructed from
analytic quantities. To this end a set of statesuxn(t)&, n
P$P% will be constructed having no singularities inside t
strip SP and satisfying
4-7
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^xn~ t !uxn8~ t !&5dnn8 , P̂~ t !uxn~ t !&5uxn~ t !&,

lim
t→6`

uxn~ t !&5ufn~6`!&. ~3.2!

This set of states could be constructed explicitly in one
several ways. As an example, consider the smooth interp
tion

1
2 @ ufn~1`!&1ufn~2`!&]

1 1
2 @ ufn~1`!&2ufn~2`!&]tanh~et !. ~3.3!

These state vectors could then be projected into the subs
by multiplication byP̂ and then orthogonalized by a Gram
Schmidt procedure.

Consider the unitary operator

Û0~ t !5 (
nPP

uxn~ t !&^xn~2`!u1 (
nPQ

ufn~ t !&^fn~2`!u,

~3.4!

which generates the states att from the states att52`. In
order to simplify notation, the statesuf̃n(t)& will be used to
denote the statesuxn(t)& for nP$P% and ufn(t)& for n
P$Q%, so that Eq.~3.4! is

Û0~ t !5(
n

uf̃n~ t !&^f̃n~2`!u. ~3.5!

Following Berry@18#, we introduce a representationuc1(t)&
of the solution of the time-dependent Schro¨dinger equation
defined by

uc~ t !&5Û0~ t !uc1~ t !&. ~3.6!

This renormalized wave function satisfies the Schro¨dinger
equation

i\] tuc1&5Ĥ1uc1& ~3.7!

with the renormalized Hamiltonian given by

Ĥ1~ t !5Û0
†~ t !Ĥ~ t !Û0~ t !2 i\Û0

†~ t !] tÛ0~ t !. ~3.8!

The matrix elements ofĤ1 are conveniently evaluated in th
basis formed by the eigenvectors att→2`:

Hnm
(1)[^fn~2`!uĤ1ufm~2`!&

5^f̃n~ t !uĤuf̃m~ t !&2 i\^f̃n~ t !u] tf̃m~ t !&. ~3.9!

Three different cases arise. In the case wheren and m are
both in $Q%,

Hnm
(1)5dnmEn~ t !2 i\

^fn~ t !u] tĤ~ t !ufm~ t !&
Em~ t !2En~ t !

~12dnm!,

~n,mP$Q%!, ~3.10!

and forn andm both in $P%,
06210
f
la-

ce

Hnm
(1)5^xn~ t !uĤ~ t !uxm~ t !&2 i\^xn~ t !u] txm~ t !&

~n,mP$P%!. ~3.11!

The casenP$P%, mP$Q% requires some discussion. Th
stateu] tfm(t)& may be written

u] tfm~ t !&5 (
nP$P%

anuxn~ t !1 (
nP$Q%

anufn~ t !. ~3.12!

Differentiating the Schro¨dinger equation (Ĥ2Em)ufm&50
with respect to time, then multiplying bŷx l u, gives the fol-
lowing linear equations for thean with nP$P%:

(
nP$P%

Dlnan5bl , ~3.13!

where

Dln[Emd ln2^x l uP̂Ĥ P̂uxn&, bl[^x l u] tĤufm&.
~3.14!

It is useful to define a matrixG̃ that is the inverse ofD̃
5$Dln%, and a corresponding operatorĜ:

Ĝ~ t ![ (
l ,nP$P%

ux l~ t !&Gln~ t !^xn~ t !u5~Em2 P̂Ĥ P̂!21.

~3.15!

Using the fact thatG̃5$Gln% is the inverse ofD̃, one finds
the solution of Eq.~3.13! is

al5^x l u] tfm&5 (
nP$P%

Gln^xnu] tĤufm&

5 (
nP$P}

^x l u~Em2 P̂Ĥ P̂!21uxn&^xnu] tĤufm&.

~3.16!

It follows that

Hnm
(1)52 i\^xn~ t !u~Em2 P̂Ĥ P̂!21P̂] tĤufm~ t !&

~nP$P%, mP$Q%!. ~3.17!

In summary, the matrix elements of the renormalized Ham
tonian are given by the expressions in Eqs.~3.10!, ~3.11!,
and ~3.17!. Notice that all of the off-diagonal elements a
O(e), except those in then,mP$P% block, which areO(1),
and thatHnm

(1)(t) is diagonal ast→6`, because the origina
Hamiltonian is constant in both limits.

C. Iteration of the transformation

The renormalization transformation defined in Sec. III
can be iterated by writing successive wave functions a
Hamiltonian operators as
4-8
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uck~ t !&5Ûk~ t !uck11~ t !&, Ĥk115Ûk
†ĤkÛk2 i\Ûk

†] tÛk .
~3.18!

Note that the transformation of the Hamiltonian is valid f
any choice of the unitary operatorÛk . The operatorsÛk(t)
will be defined by

Ûk~ t !5(
n

uf̃n
(k)~ t !&^f̃n~2`!u, ~3.19!

where

~Ĥk2En
(k)!ufn

(k)&50 ~nP$Q%!,

P̂kuxn
(k)&5uxn

(k)&, ^xn
(k)~ t !uxn8

(k)
~ t !&5dnn8 ~n,n8P$P%!.

~3.20!

Here the new projection operatorP̂k is defined in analogy to
Eq. ~3.1! using the new instantaneous eigenstatesufn

(k)& for

nP$P%. The notationuf̃n
(k)(t)& is used to denote the state

uxn
(k)(t)& for nP$P% and ufn

(k)(t)& for nP$Q%. Since both

Hnm
(1)(6`) are diagonal, we haveuf̃n

(1)(6`)&5ufn(2`)&.
uxn

(k)(t)& are chosen so that they are analytic in the stripSPk

and close to theufn(2`)& as t→6`. As in Sec. III B for
the k50 case, these states can be generated by actin
linear combinations of theufn(6`)& with the projection
operatorP̂k(t), then using a Gram-Schmidt procedure to c
ate orthonormalized states. It is still most convenient
evaluate matrix elements of the HamiltonianĤk with respect
to the states ufn(2`)&. Generalizing the equation
in Sec. III B, the matrix elements Hnm

(k11)

[^fn(2`)uĤk11(t)ufm(2`)& are given by

Hnm
(k11)5dnmEn

(k)~ t !2 i\
^fn

(k)~ t !u] tĤk~ t !ufm
(k)~ t !&

Em
(k)~ t !2En

(k)~ t !

3~12dnm! ~n,mP$Q%! ~3.21a!

5^xn
(k)~ t !uĤk~ t !uxm

(k)~ t !&2 i\^xn
(k)~ t !u] txm

(k)~ t !&

~n,mP$P%! ~3.21b!

52 i\^xn
(k)~ t !u~Em

(k)2 P̂kĤkP̂k!
21P̂k] tĤkufm

(k)~ t !&

~nP$P%,mP$Q%!. ~3.21c!

After k stages of iteration all matrix elements areO(ek),
except the diagonal elements and all of the elements of
PP block, which remainO(1). Each Hamiltonian is an exac
representation of the dynamics of the original problem, a
the transition amplitudes could, in principle, be obtained
integrating the Schro¨dinger equation with any Hamiltonia
in the sequence. At each stage theHnm

(k)(6`) are diagonal,

and henceuf̃n
(k)(6`)&5ufn(2`)&. The amplitude for tran-

sition from state n to state m is therefore given by
^fm(`)ucn(`)&5^fm(2`)uck,n(`)&, where ucn(t)& and
uck,n(t)& are the wave functions obtained by propagating
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initial stateufn(2`)& with HamiltoniansĤ andĤk , respec-
tively. If the O(ek) matrix elements vanished ask→` there
would be no nonadiabatic transitions. Therefore, the
quence of renormalized Hamiltonians is expected to hav
typical behavior for terms of an asymptotic series, in th
although the matrix elements decrease for smallk, at suffi-
ciently largek they diverge because of a faster than exp
nential growth of the prefactors. The value ofk for which the
largest of the small matrix elements has smallest magnit
will be denoted byk* (e). This divergence will be examined
in greater detail in Sec. IV.

For smalle and for large values ofk which are not too
large, the off-diagonal matrix elements outside thePP block
are very small. Applying first-order perturbation theory, t
statesnP$Q% may be approximated as

ufn
(k)~ t !&;ufn~2`!&1(

m
Cnm

(k) ufm~2`!&, ~3.22!

where, form(Þn)P$Q%,

Cnm
(k)5

Hmn
(k)

En
(k)2Hmm

(k) 1O~e2k!, ~3.23!

and formP$P%,

Cnm
(k)5 (

m8P$P%

Gmm8
(k)

~En
(k)!Hm8n

(k)
1O~e2k!, ~3.24!

whereGmm8
(k) (E) are elements of aNP3NP resolvent matrix,

which is the inverse of a matrix with elementsEdmm8
2Hmm8

(k) . Also, whene!1, the energy levels may be ap
proximated by those of the original Hamiltonian:En

(k)(t)
5En(t)1O(e). For states in$P% we write, in analogy to Eq.
~3.22!,

uxn
(k)~ t !&;ufn~2`!&1(

m
Cnm

(k)ufm~2`!&. ~3.25!

The requirement of orthogonalitŷfm
(k)uxn

(k)&50 implies
that, to leading order,Cnm52Cmn* for nP$P% and m
P$Q%. To leading order, theCnm are not constrained fo
n,mP$P%, and are taken to be zero.

These approximate expressions for the statesuf̃n
(k)& lead

to approximate expressions for the renormalized matrix e
ments, which are valid whene!1. From Eq.~3.18!, these
matrix elements are given by

Hnm
(k11)5^f̃n

(k)uĤkuf̃m
(k)&2 i\^f̃n

(k)u] tf̃m
(k)&. ~3.26!

From approximation~3.25! along with Eqs. ~3.11! and
~3.21b!, it follows that, for smalle,

^xn
(k)~ t !uĤk~ t !uxm

(k)~ t !&;^xn~ t !uĤ~ t !uxm~ t !& ~n,mP$P%!.
~3.27!

Using these approximations, Eqs.~3.21! simplify consider-
ably:
4-9
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MICHAEL WILKINSON AND MICHAEL A. MORGAN PHYSICAL REVIEW A 61 062104
Hnm
(k11);dnmEn~ t !2 i\] tCmn

(k)~ t !~12dnm! ~mP$Q%!
~3.28a!

;Hnm
(k)~ t ! ~n,mP$P%!. ~3.28b!

To summarize, Eqs.~3.21! describe an exact renormalizatio
of the Hamiltonian, which, for sufficiently large~but not too
large! k, has the effect of reducing the magnitude of all of t
off-diagonal elements outside thePP block. Equations
~3.28! are an approximate implementation of this iterati
valid for sufficiently smalle.

IV. INTERPRETATION OF THE ASYMPTOTIC SERIES

All of the renormalized HamiltoniansĤk describe the
same dynamics. In particularu^fm(2`)uck,n(`)&u2, where
uck,n(t)& is the wave function propagated under the Ham
tonian Ĥk from the initial stateufn(2`)&, is the transition
probability from staten to statem, and is independent ofk.
Now the viewpoint of Sec. II, which associates transitio
between pairs of levels with Stokes lines, will be confirm
here by showing that whenk is suitably large, the Hamil-
tonian Ĥk(t) on the real axis is greatest at crossings
Stokes lines@17#. Section IV A examines the case whe
there is no projected subspace: a direct generalization o
result for two level systems. Section IV B considers the
tension to the case where there is a projected subsp
showing that the Stokes lines can still have the same sig
cance for branch points not close to the real axis. Sec
IV C describes how these results can be used to dedu
transition probability involving a sequence of branch poin

A. Form of the Hamiltonian at large order,
with no projected subspace

This section discusses the form of the matrix elements
the renormalized Hamiltonian in the limit wheree!1 and
1!k<k* . Equation~3.28a! determines the evolution of off
diagonal matrix elements outside of thePP block. In the
QQ block, it is an iteration of the form

Hk11~ t !52 i\
]

]t S Hk~ t !

D~ t ! D , ~4.1!

whereH1(t) andD(t) are given functions. Noting observa
tions on asymptotic series discussed by Dingle@14#, we find
that for largek, solutions of Eq.~4.1! may be obtained in the
form

Hk~ t !5~21!kA~ t !G~k1g!@F~ t !#2(k1g), ~4.2!

whereg is a constant, andG(x) is the gamma function sat
isfying G(x11)5xG(x)[x!. Substitution of Eq.~4.2! into
Eq. ~4.1! shows that the dimensionless scalar functionF(t)
is

F~ t,t* !5
i

\Et*

t

dt8 D~ t8!, ~4.3!

and that
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A~ t !5CD~ t !, ~4.4!

whereC is a constant.
The possible values oft* are determined by realizing tha

an acceptable solution of Eq.~4.1! should be regular at any
point for whichD21(t) andH1(t) are regular. Solution~4.2!
is clearly divergent fork1g.0 whent→t* . This observa-
tion implies that t* must correspond to a singular poin
where at least one ofD21(t) and H1(t) has a nonanalytic
behavior. In the context of adiabatic theoryt* corresponds to
a branch point singularity. In general, the solution at timet is
dominated by the approximate solution~4.2! attached to a
singular pointt* for which the modulus ofF(t,t* ) is small-
est. Since Eq.~4.1! is linear, a superposition of codominan
solutions of the form of Eq.~4.2! may be necessary. In th
case where the functionsH1(t) andD21(t) are analytic and
real valued on the real axis, the singular points occur
complex conjugate pairs. In this situation the solution on
real axis is a superposition of solutions with conjugate s
gularities.

In our application whereD5(Em2En), the real part ofF
is constant along the real axis. Thus, on the real axis,
magnitude of solution~4.2! is largest at the point where th
Stokes line, defined by ImF(t,t* )50, crosses. For largek
the magnitude decays rapidly, with an approximately Gau
ian form on either side of this point. When the two conjuga
solutions are combined, the result is a real function w
oscillations within an approximately Gaussian envelope.

The constantsC andg can be determined, although the
are not required for our discussion of the theory. Both co
stants are obtained by considering the behavior of the fu
tions in the neighborhood of the singularity. In the applic
tion of these results to adiabatic theory, Eq.~3.10! requires
that the function H1(t) plays the role of

^fn(t)u] tĤufm(t)&/@Em(t)2En(t)#, which scales as (t
2t* )21 in the vicinity of a branch point singularity att* . In
the vicinity of the branch point, the form of the successi
Hk(t) is dominated by the components ofH1(t) andD21(t)
which are most strongly divergent ast→t* . It is therefore
appropriate to takeH1(t);(t2t* )21 andD(t);(t2t* )1/2.
This leads immediately to the conclusion thatg;0. The
determination of the multiplierC is more involved, and will
not be pursued here.

Applying these results to the renormalization of theQQ
block of the Hamiltonian@Eq. ~3.28a!# shows that for largek
the off-diagonal matrix elements are largest for the elem
Hnm

(k) for which uFu is smallest. On the real axisF5 iSnm /\,
so this corresponds to the matrix element with the le
uIm Snmu. Furthermore, each of these matrix elements is la
est in the vicinity of the point where the Stokes line inte
sects the real axis. The most significant process in the
namics ofĤk is therefore a transition between levelsn andm
localized in time at the point where the Stokes line cros
the real axis. The use of the renormalization scheme th
fore confirms the interpretation that the transition occurs
the Stokes line. The results are consistent with the con
sions of Sec. II, and we will assume that the transition pr
ability is given by Eqs.~2.14! and ~2.15!.
4-10
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B. Form of the Hamiltonian at large order,
with a projected subspace

In the case where there is a subspace projected out in
manner discussed in Sec. III, the equation for the iteration
the off-diagonal matrix elements in theQQ block is exactly
of the form considered in Sec. IV A above. The case of m
trix elements in thePQ andQP blocks requires a differen
treatment. As before, the equation for iteration of the th
elements of the Hamiltonian is of the form of Eq.~3.28a!,
but in this case the coefficientsCmn are given by Eq.~3.24!
in terms of anNP3NP matrix G̃k(Em). We will write the
iteration symbolically in the form

H̃k11~ t !52 i\] t@G̃k~ t !H̃k~ t !# ~4.5!

where H̃k is a column vector of dimensionNP , with ele-
mentsHnm

(k) (mPQ fixed!, n51, . . . ,NP , and G̃k5$Gnn8
(k) %

5$^xn
(k)u(Em

(k)2 P̂kĤkP̂k)
21uxn8

(k)&%. If G̃k is diagonal then
@by analogy to Eq.~4.2!# the solution of Eq.~4.5! is of the
form

H̃k5~21!kG~k1g!D̃@ F̃~ t !#2(k1g)Ã, ~4.6!

where D̃ and F̃(t) are diagonal matrices of dimensionNP

3NP , andÃ is a constant column vector of dimensionNP .
By analogy with Eq.~4.4!, D̃ is the inverse ofG̃(Em), and
the diagonal elements ofF̃ are

Fn~ t !5
i

\Et*

t

dt8@Em~ t8!2En~ t8!#. ~4.7!

A similar argument to that given in Sec. IV A forcest* to be
the position of a singularity, where a pair of eigenvalues, o
each from theP and Q subspaces, become degenerate. T
largest elements of the vectorH̃k are determined by the
branch point with the smallest action connecting the le
mP$Q% with any of the levelsnP$P%. We denote this
smallest action byF* (t)5Fn* (t).

Our primary concern is, however, with the case whereG̃k
is not diagonal. In this case Eq.~4.6! is not a solution of Eq.
~4.5!, but it is expected that the largest elements of the so
tion will be determined by the smallest action,F* . We there-
fore write

H̃k5~21!kG~k1g!D* ~ t !@F* ~ t !#2(k1g)M̃ k~ t !Ã,
~4.8!

whereiD* (t)/\5dF* /dt, andM̃ k is a square matrix of di-
mensionNP . The matrix G̃k may be written~using Dirac
notation! in the form

G̃k5
1

D* ~ t !
g̃~ t !5 (

nPP
ujn~ t !&gn~ t !^jn~ t !u, ~4.9!

where ujn& are NP dimensional eigenvectors, withgn* 51.
We assume that the smallest action corresponds with
largest value ofugnu, so thatugnu,1 for nP$P%Þn* . Sub-
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stituting Eq.~4.8! into Eq.~4.5! leads to an equation forM̃ k .
Retaining only the leading-order terms in the limitk→`

leads to the conclusion thatM̃ k11;g̃M̃ k for k@1. Using the
fact thatgn* 51, it is seen that in the limitk→` this relation
has the solution

M̃[ lim
k→`

M̃ k5ujn* &^jn* u. ~4.10!

We conclude that the leading order behavior of Eq.~4.8! is
the same as Eq.~4.6!, in that it is controlled by the smalles
actionF* connecting the statemP$Q% to theP subspace.

The comments in Sec. IV A, indicating how the renorm
ized Hamiltonian is concentrated on Stokes lines, can the
applied equally well to this case: from Eq.~4.8! it can be
seen that the dominant term in the high-order renormali
Hamiltonian comes from the branch point with the small
value of uIm Snmu, where at least one ofn or m is in the Q
subspace.

C. Interpretation of the renormalized Hamiltonian

As an example of how these considerations can be use
demonstrate the validity of the topological rule, consid
their application to the case of two successive transiti
n0→n1 followed by n1→n2. It will be assumed that the
(n0 ,n1) branch point is closest to the real axis, and that
(n1 ,n2) branch point is next closest~in the sense of the
imaginary part of the action being smaller!. The subspaceP
is then chosen to be that spanned by levelsn0 and n1. The
statesuxn0

(t)& and uxn1
(t)& are chosen to correspond to th

eigenstatesufn0
(t)& and ufn1

(t)& at the pointtS , where the

Stokes line from the (n1 ,n2) branch point crosses the re
axis. When the orderk is sufficiently large, the matrix ele
ments that determine transitions from theP subspace are
largest for the transition between levelsn1 and n2, and are
concentrated attS . The general arguments given in Sec.
indicate that this transition probability isPn1→n2

;exp@22 ImSn1 ,n2
/\#.

The probability of making a transition from staten0 to n2
via the intermediate staten1 therefore depends on the dy
namics within thePP subblock at times earlier thantS . The
matrix elements within this sub-block have been left a
proximately unchanged by iteration of the renormalizati
procedure. Any suitable procedure can be used to calcu
the probability for the transitionn0→n1 occurring before the
time tS . In the limit e→0, the most convenient procedure
of course to use adiabatic theory. This predicts the transi
will occur on the Stokes line attached to the (n0 ,n1) branch
point with the probability Pn0→n1

;exp@22 ImSn0 ,n1
/\#.

The overall transition probability for then0→n2 transition
going through the intermediate staten1 is then Pn0→n2

5Pn0→n1
Pn1→n2

, if the branch point (n1 ,n2) lies to the right

of the Stokes line from the (n0 ,n1) branch point. In the other
case, it is determined by other branch points.
4-11
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V. NUMERICAL ILLUSTRATION

The scenario described above was tested numerically
model HamiltonianĤ„X(t)… of the following form:

Ĥ5cos„X~t!…Ĥ11sin~X~t!!Ĥ2 , ~5.1!

X~t!5a tanh~t/a!, ~5.2!

wheret5et, and Ĥ1 and Ĥ2 are two independent random
square matrices of dimensionN, drawn from the Gaussian
orthogonal ensemble~GOE!. The GOE ensemble consists

FIG. 6. Energy levels for an example of the model Hamilton
introduced in Sec. V.

TABLE I. Branch point data for the example shown in Fig. 6.

Branch State
point label indicesi , j Ret

i , j* l i , j

a 5,4 23.051296 2.637619
b 4,3 22.739876 0.181812
c 2,1 21.971837 2.918432
d 3,2 21.791580 0.049935
e 6,5 21.446037 0.101999
f 4,3 21.195295 0.119999
g 5,4 20.729159 0.031601
h 2,1 20.610604 0.024514
i 6,5 20.440841 0.267925
j 4,3 20.223932 0.256871
k 3,2 0.296616 0.071114
l 5,4 0.668725 0.122366
m 5,3 0.678210 0.480203
n 2,1 0.790463 0.373673
o 4,3 0.884734 0.166006
p 3,2 1.242660 0.304654
q 6,5 1.609035 2.043553
r 4,3 1.647808 0.072687
s 5,4 2.528592 0.090388
t 2,1 3.066494 0.452725
06210
a

real, symmetric matrices with independently Gaussi
distributed elements with mean and variance given
@20,21#

^Hi j &50, ^Hi j
2 &5~11d i j !. ~5.3!

The choice of Hamiltonian is arbitrary, as long as its sp
trum is nondegenerate for all realt, and its eigenvalues an
eigenstates become time independent asymptotically at
→6`. The functionX(t) was chosen to fulfill the latter
requirement. Model~5.1! was used because, forN@1, its
spectral properties are representative of those of gen
time-reversal invariant multilevel systems@22#. The distance
of the branch point singularities from the real axis scales
N 21/2, whereas the singularities of the matrix elements
the complext plane have a distribution of positions indepe
dent of the matrix dimensionN. It follows that in typical
physical applications branch points will lie closer to the re
axis than other singularities.

Numerical calculations were performed to determine
‘‘exact’’ or ‘‘empirical’’ transition probabilities Pn→m for
100 Hamiltonians of the form of Eq.~5.1!, all with dimen-
sion N56. In each case allN(N21)530 transition prob-
abilities were computed. The scale factora52 was used in
all calculations. The probabilities were obtained by nume
cal time integration of the Schro¨dinger equation, using a
standard fourth-order Runge-Kutta algorithm with arithme
accurate to 14 decimal places. Rather than comparing
transition probabilities themselves, we compared~the imagi-
nary part of! the actions times the adiabatic parametere in
units of Planck’s constant:

lnm[
uIm Snmu

\
e52

1

2
log~Pn→m!e. ~5.4!

The integration was performed betweent i5225 and t f
5125. We checked that the transition probabilities are

FIG. 7. Branch points and Stokes lines intersecting the real
for the example shown in Fig. 6. The pairs of integers indic
which energy levels become degenerate at each of the br
points.
4-12
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TABLE II. Theoretical transition sequences and actions compared with empirical values for the ex
of Fig. 6.

Initial Final Transition lnm lnm Fractional
staten statem sequence adiabatic empirical Difference difference

1 2 h 0.024514 0.024972 20.00406 20.01833
1 3 hk 0.095628 0.097049 20.00142 20.01463
1 4 hkr 0.168315 0.170316 20.00200 20.01174
1 5 hkrs 0.258703 0.261363 20.00266 20.01018
1 6 hkmq 2.619384 2.630638 20.01125 20.00428
2 1 h 0.024514 0.024946 20.00043 20.01732
2 3 d 0.049935 0.050603 20.00067 20.01319
2 4 dr 0.122622 0.123828 20.00121 20.00974
2 5 d f g 0.201535 0.204990 20.00345 20.01685
2 6 d f gi 0.469460 0.473734 20.00427 20.00902
3 1 dh 0.074449 0.075558 20.00111 20.01467
3 2 d 0.049935 0.050611 20.00068 20.01336
3 4 r 0.072687 0.073213 20.00053 20.00719
3 5 f g 0.151600 0.152904 20.00130 20.00853
3 6 f gi 0.419525 0.423847 20.00432 20.01020
4 1 bdh 0.256262 0.257967 20.00171 20.00661
4 2 f k 0.191113 0.193036 20.00192 20.00996
4 3 r 0.072687 0.073212 20.00053 20.00717
4 5 g 0.031601 0.032305 20.00070 20.02181
4 6 gi 0.299526 0.302137 20.00261 20.00864
5 1 g jkn 0.733259 0.736357 20.00310 20.00421
5 2 g jk 0.359586 0.362679 20.00309 20.00853
5 3 gr 0.104288 0.105613 20.00133 20.01255
5 4 g 0.031601 0.032305 20.00070 20.02179
5 6 e 0.101999 0.102708 20.00071 20.00691
6 1 eg jkn 0.835258 0.846646 20.01139 20.01345
6 2 eg jk 0.461585 0.465363 20.00378 20.00812
6 3 egr 0.206286 0.208215 20.00193 20.00926
6 4 eg 0.133599 0.134977 20.00138 20.01021
6 5 e 0.101999 0.102680 20.00068 20.00664
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sensitive to further increasing the range oft. These calcula-
tions were done for a large set of adiabatic parameters
tweene50.001 and 0.5. We observed that in most cases
actions converged to a limit ase→0. In other cases, we
estimated the limit by extrapolation with a polynomial.
many cases numerical roundoff error would make the res
unreliable for smalle. In these cases we assumed the b
value for the action corresponded to the smallest value oe
for which roundoff errors were not significant. Typicall
roundoff errors were significant when the calculated res
obeyedPn→m<10223.

The adiabatic calculations were performed in the follo
ing way. First, the approximate locations of the branch po
t i , j* were determined by a search for near degeneracies
grid in the complext plane. The rectangular region bound
by 26<Ret<6 and 0<Im t<2 was usually found to in-
clude all the relevant branch points. Next, the locations
these branch point candidates were refined by a versio
the Newton-Raphson method adapted to finding square-
branch points of the formEi2Ej}At2t i , j* . The Stokes and
06210
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anti-Stokes lines were plotted for several realizations of
random Hamiltonian, and the allowed transition sequen
were determined. The Stokes and anti-Stokes lines attac
to the branch points were traced by evaluating a sequenc
short stepsdt along their lengths. If the Stokes line emer
ing from a branch point between levelsi and j was found to
pass through the pointtk , the next point was obtained from
tk115tk1dtk , where from Eq. ~2.6! dtk5« i /@Ei(tk)
2Ej (tk)#, and« is a small real number. Increments of th
anti-Stokes lines were determined by an analogous appro
Finally, the ‘‘adiabatic’’ or ‘‘theoretical’’ branch point ac-
tions were computed numerically according to

l i , j5
1

\ UImE
(Ret i , j* ,0)

t i , j*
dt[Ei(t)2Ej~t!]U. ~5.5!

The theoretical actions were in excellent agreement w
those determined empirically from Eq.~5.4!. We found that
in every case the allowed transition sequence could h
4-13
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MICHAEL WILKINSON AND MICHAEL A. MORGAN PHYSICAL REVIEW A 61 062104
been determined by a simple empirical rule, namely, that
real parts of the branch points should be in ascending or
Accordingly, the branch point data were ordered with resp
to Ret i , j* . From this ordered table of branch point locatio
and branch point actions, all possible transition sequen
from the initial staten to the final statem, in which the state
indices increased~or decreased! monotonically, were consid
ered. According to the rule given in Sec. II E, the over
actionlnm was taken to be the least sum of~the imaginary
part of! the branch point actions over these possible tra
tion sequences. These calculations of the overall ‘‘theor
cal’’ actions were automated.

Examples of the calculations are presented in the ta
and figures. Figure 6 is a plot of the energy eigenvalues
real time for one example from the 100 sample Hamil
nians. The branch point data corresponding to this case
listed in Table I. Observe that the avoided crossings in
figure correspond to small values of the branch point acti
in the table. Figure 7 shows the Stokes lines that cross
real axis for all branch points involved in some transiti
sequence. The theoretical transition sequences and ac
derived from these data are shown in Table II. The ‘‘emp
cal’’ results obtained using Eq.~5.4! are shown there for
comparison. Note that the fractional difference between
empirical and theoretical results based on our adiab
theory is typically around 1% or smaller, although occasio
ally as high as 2%. The average fractional difference
tween the empirical and theoretical actions over all 3000 d
points was;1.6%. The data are consistent with the hypo
esis that the transition probabilities are given by Eq.~1.1!
with C51, and the actionSnm given by the topological rule
of Sec. II E.

VI. CONCLUDING REMARKS

This paper makes three contributions to understanding
behavior of the transition probabilities for multilevel sy
tems. First, we have suggested a general rule for determi
the combinations of branch points that give allowed tran
tion sequences, based upon an assumption that the trans
occur when a Stokes line, whose dominant solution is oc
pied, is crossed. Second, we have indicated a genera
proach to interpreting all of the Stokes lines in a multilev
system, by using a projection technique to selectively
move the most divergent contributions from the renorm
ized Hamiltonian. Finally, we have verified the rule b
means of extensive numerical experiments.
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The results of Secs. III and IV support the rule sugges
in Sec. II, but they do not constitute a proof. Further wo
must be done to establish how the high-order renormali
Hamiltonian can be used to calculate transition probabilit
directly in the case of multilevel systems. This might invol
studies of how the transition probabilities could be det
mined by applying time-dependent perturbation theory to
high-order renormalized Hamiltonians ast increases along
the real axis. This was successfully applied by Berry a
Lim @17# for the case of two-level systems. An alternati
approach would be to investigate analytic continuations
the adiabatic solutions of the renormalized Hamiltoni
away from the real axis, as far as the branch points.

There is a theoretical difficulty that must be resolved co
cerning the interpretation of the Stokes lines. According
the interpretation discussed in Sec. IV, a transition from le
n0 to n1 occurs on crossing a Stokes lineS(n0 ,n1), where
the matrix elementsHn0 ,n1

(k) (t) are greatest for realt. A sub-

sequent transition from staten1 to n2 could then occur if the
Stokes lineS(n1 ,n2) were crossed at a later time. Presum
ably the allowed transition sequence would then be de
mined by the order in which the Stokes lines cross the r
axis. However, the path in the complex time plane alo
which the Schro¨dinger equation is integrated can be d
formed away from the realt axis. A problem may arise if the
two Stokes lines cross: a transition allowed along one p
would then be forbidden along an equally valid path. A ru
based on the order in which Stokes lines cross the real
may therefore predict different transition sequences from
rule in Sec. II. We have not yet found a totally satisfacto
resolution of this problem. We can, however, remark that
our investigations we found no examples where the pre
tions of the two possible rules were different. It is not cle
whether it is impossible to find an example in which t
predictions differ, or whether such cases occur with very l
probability within our ensemble.
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