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Nonadiabatic transitions in multilevel systems
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In a quantum system with a smoothly and slowly varying Hamiltonian, which approaches a constant opera-
tor at timest— oo, the transition probabilities between adiabatic states are exponentially small. They are
characterized by an exponent that depends on a phase integral along a path around a set of branch points
connecting the energy-level surfaces in complex time. Only certain sequences of branch points contribute. We
propose that these sequences are determined by a topological rule involving the Stokes lines attached to the
branch points. Our hypothesis is supported by theoretical arguments and results of numerical experiments.

PACS numbd(s): 03.65.Ge, 03.65.Sq

I. INTRODUCTION ( X A

. 1
AX)=5| a _X), X=Ar. (1.2

Consider a quantum-mechanical system with a Hamil-
tonianH (X) that depends analytically on a parameXeand
has a discrete spectrum. Suppose the parameter chang€¥s Landau-Zener system is of particular importance be-
slowly and analytically with time, in such a way that, as- cause, for a multilevel system, according to degenerate per-
ymptotically ast— =+, it remains constant. It is convenient turbation theory, a near degeneracy or “avoided crossing”
to write X=X(7), wherer= et. The adiabatic parametee  Of two levels can be approximated by a two-state Hamil-
is a small, real number which provides a dimensionless medonian of this form. The exact transition probability for this
sure of how slowly the Hamiltonian changes, due to theSyStem Is
change in the parametet The quantum adiabatic theorem )
states that if such a system is prepared inntie eigenstate PLz=exp(— mA*/2Aeh). 13
of the instantaneous Hamiltonian at any time, then, in th
limit e—0, the system remains in theh eigenstate of the
instantaneous Hamiltonian at later timds?2).

Corrections to the adiabatic theorem can be extremel
small. If X(7) approaches its limiting values sufficiently rap-
idly as 7— *, the probability of making a transition to
another eigenstate of the Hamiltonian vanishes exponentiall
(faster than any power of) as e—0. The probability for
making a transition from the stafeb,(X(7))) to the state
|pm(X(74))) is given asymptotically ire by

?\Iote that the closest approach of the energy leiZét3 is A,
so that nonadiabatic transitions occur easily if the energy
)Ifzvels approach each other closely.
Later Dykhne[4] showed that in the limie—0 the tran-
sition probability for a general two-level system is deter-
ined entirely by the analytic continuation of the energy
evels as a function of complex time. The eigenvalues of the
instantaneous Hamiltoniai&k(7) form two branches of a
single complex function, which are connected at branch
points occurring as complex conjugate pairs. The action ex-
ponentSis determined by integrating the energy along a path
Prm~ Crm€Xd — 2Sym/# 1, (1.1)  Which leaves the real axis and loops around a branch point,
so that it returns on the other branch. Dykhne showed that, in
the limit e— 0, the transition probability becomes
whereC,,,, andS,, are positive constants and the actiy,
is inversely proportional te. Results of this type have been 2
proven rigorously for most cases of physical interest in P~ex;{ N %‘ Idet E(t)‘ =exd —25#], (14
which the Hamiltonian is a 2 [3,4] or 3X3 matrix[5,6],

and for some special cases of multilevel systdms10.  wherey is the path illustrated in Fig. 1. The prefactor in Eq.
This paper will discuss how these constats, andCnm,  (1.1) is seen to beC=1. If there is more than one pair of
describing nonadiabatic transitions, may be determined witlhranch points, the one with the smallest valueSafives the
some generality for a discrete multilevel system. For defigominant contribution to the transition probability. For
niteness, we will assume that the Hamiltonidnis a sym-  model(1.2), S= wA?/4€A, so that the Landau-Zener formula
metric N’X A" matrix, which is real for reat, and analytic on is a case where this more general asymptotic result is exact.
a strip containing the reat axis. Then the Schwartz reflec- In a multilevel system, it is natural to expect that the
tion principle guarantees conjugacy of the matrix elementsransition probability is, in general, the product of several
about the real-time axis. terms of the form of Eq(1.4), corresponding to several suc-
The special case of a two-level system was discussed hgessive transitions between pairs of levels. The conclusions
many authors. Zend3] calculated an exact expression for of this paper will confirm this expectation. It might also be
the transition probability for a two-level model of the form expected that the transition probability will be determined by
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Im < neighborhood of these avoided crossings the two nearly de-
generate levels can be represented by a two-state model simi-
lar to Eq.(1.2), and the transition probabilities between pairs
of adjacent levels are determined by the branch points near
the real axis shown in Fig.(B). The transitions from level 1

to level 3 occur through Landau-Zener transitions at the suc-
cessive avoided crossings, and the transition probability is
E=E, Rer the product of two terms of the form of E¢L.4). The tran-
sition from level 3 to level 1 cannot make use of the same
path, however, because the avoided crossing between levels
2 and 1 is encountered before the transition from level 3 to
level 2 has taken place. Instead, the transition occurs through

FIG. 1. The exponent characterizing a nonadiabatic transition i% more distant branch point between levels 1 and 3, as shown
a two-level system is obtained by integrating the energy along a ’

path enclosing a branch point in the compleyplane where the In Fig. 2b). The probability for the 3-1 transition is ther_e-
levels become degenerate. fore expected to be much smaller. Therefore, a rule is re-

quired that eliminates the path from level 3 to level 1 via the

h binati ¢ h d b h ooi h . _.branch points closest to the real axis, but permits this path
the combination of paths around branch points that miniy . iha reversed transition.

mizes the total value of the sum of integr&of the form
appearing in Eq(1.4). This expectation is only partially cor-
rect: not all sequences of branch points are allowed. In thi

In Sec. Il a rule is proposed for determining which branch
goints contribute to the transition probabilities. Our rule is

paper we propose a topological constraint, or rule, that th ot||_\|/ated<_j byl? T'SCUE.S'?]” of the Stct)rlfets phenomenton given
allowed combinations of branch points should satisfy. The?Y Heading[11,13 which assumes that evanescent waves

value ofSis determined by the minimal value of the sum of are meaningful even in the presence of larger contributions,
integrals of the form of Eq(1.4) for paths consistent with the @nd that the amplitudes of evanescent waves change on the
constraint. Stokes lines. These assumptions must be justified by a refer-

A heuristic reason for the necessity of a rule that elimi-ence to an asymptotic series infor the wave function,
nates certain sequences of branch points can be understod@owing that the errors in the dominant terms can be reduced
from an example given by Hwang and Pechukdk Con- to below the magnitude of the subdominaevanescent
sider a three-level system, with energy levels as plotted schéerms, except in the vicinity of the Stokes lines. This inter-
matically in Fig. Za). There are two avoided crossings where pretation of the asymptotic series for the wave function oc-
pairs of levels approach each other very closely. In thecurs in Stokes’ analysis of the Airy functigd 3], and many

further examples were discussed in a book by Difd.
E(x) Works by Berry[15—17 developed the theory further, and

E, discussed physical applications, including quantum adiabatic
w theory for two-level systems.
The standard approaches for this interpretation of Stokes
lines are valid only for those Stokes lines associated with
E, branch points having the smallest acti@nsince these give
the most divergent contributions to the asymptotic series. All
_k_ applications to date have considered systems with only two
E states(in adiabatic theory or two channels(in WKB ap-

proaches to scattering problemahere only this one branch
(a) T point is relevant. These methods are bound to fail in multi-
level systems where many branch points are of necessity
involved in a transition, since the divergence of the series is
dominated by the branch point with the smallest action. In
Sec. Ill we describe a formulation that allows all of the
Stokes lines to be given a similar interpretation. By project-
E,=E, ing out the subspace corresponding to branch points with
small actions, divergences due to other branches are re-
vealed. The method is based upon an exact iterative “renor-
malization” of the Hamiltonian, adapted from a scheme in-
b) troduced by Berry{18]. Section IV discusses the limiting
form of this series of renormalized Hamiltonian operators
FIG. 2. (a) Energy levels as a function of real time for a three- @nd its interpretation in terms of the Stokes phenomenon.
level system. The regions where the curves approach each oth&ection V contains some numerical illustrations of the re-
closely are called “avoided crossings(b) The avoided crossings Sults, and Sec. VI summarizes the contributions and consid-
correspond to branch points close to the real axis. ers further development of the theory.

Imr~

_————m e g = ———— -
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Il. A TOPOLOGICAL RULE FOR DETERMINING gularities, or because of singularities in the mapping from
THE ACTIONS matrix elements to eigenvalues and eigenvectors. This latter

type of singularity is associated with points where eigenval-

In this section we propose a topological rule for determin—ues become degenerate in the compilplane. These singu-
ing the actions for nonadiabatic transitions motivated by Rarities arising ?rom degeneracies wﬁl be. termb(hnc%

discussion of the Stokes phenomenon. The first three subsec- . .
tions review some ideas well known in the context of WKB points because they connect two branches of the Riemann

theory. We review these ideas here to place them in thaurface of the eigenvalue functidi(t). The former type of

slightly different context of adiabatic theory and to establishsmg.UIarItIes are of less interest, bepause Fhey are not univer-
our notation sal in form, and because they typically lie farther into the

complex plane than the branch poinfEhe reason for this
. ) ) . ) will be discussed in Sec. YDegenerate perturbation theory
A. Adiabatic solutions of the Schralinger equation shows that in the neighborhood of two eigenvalues becoming
It is possible to write down an asymptotic series for thedegenerate, the energy difference is the square root of the
solution of the Schidinger equation i% d;|#(t))  discriminant of the corresponding quadratic equation. At the

=I:|(t)|¢(t)) as an expansion in powers ef s_ingularity, the discri_minant vanishes while, _generic_ally, its_
time rate of change is nonzero. Thus, generically, singulari-

|n())=exd —i On(t,to) i 1{| (7)) + €l (7)) + - - - ties due to eigenvalue degeneracies are square-root branch
Wk points. In this paper we shall assume all relevant singularites
+ el + -1, (2.1 are of this form.

For systems with a single paramed¢rassumed here, a
where|¢,(7)) is an eigenvector of the instantaneous Hamil-theorem of Von Neumann and WignEr9] stated that, ge-
tonian H(X(7)), and 6,(t,t,) is the phase integral of the nerically, degeneracies do not occur for redlherefore, the
corresponding eigenvalughe nth energy level defined by  eigenvalues and eigenvectors can be labeled with an index

corresponding to the ordering of tkeal) eigenvalues on the

t 1~ real axis. Usually it will be useful to consider the eigenvalues

en(t’to):J’t dt’ Eqn(t')= ;j drEn(7), (22 and eigenvectors to be single-valued functions. afhis re-

0 o quires the introduction of branch cuts that restrict the domain
of definition of the functiorE(t) to a single Riemann sheet.
Typically we will choose the branch cuts to be lines with
constant Ré that do not cross the real axis, as illustrated in

with ty the phase reference. The state in Ejl) is an ap-
proximate solution of the time-dependent Sclinger equa-
tion, assuming the system was prepared in ritte energy

level in the remote past, that does not take nonadiabatic trafH9- ,Z(b)' . . .
sitions into account. Only the leading-order terms in these !!IS necessary to establish how the eigenvalues and eigen-

asymptotic expansions will be considered explicitly. These/Ctors change upon crossing a branch cut. Consider a

will be termed theadiabatic solutions branch point due to the degeneraE:yl: En, Since this is a
square-root branch point, the eigenvalues are simply ex-
| hn(t)y=exd —i6,(t,to)/7 ]| Pn(t)). (2.3  changed as the branch cut is traversed. The eigenvectors are

more involved. If, starting from a poirtt, adjacent to the
For complext, the exponential factor need not have unitbranch cut, the eigenvect¢¢nl(t+)) is followed counter-
modulus. As we move along a path in the complgane,  clockwise around the branch point, upon reaching the other
\éve can compare the I:at?l'shat wlhic_h tV]:’O SOA!JtLonhS igcrgasg ide of the branch point the stafey, (t_)) is equal to a
ecrease exponentially. The solution for which the derivativ . e P

of Imé, is Igrgest is ysaid to belominanf and the other emul'uple of th? statgl ¢“2(t_+)>' This is illustrated in Fig.
solution subdominant 3(a). Upon taking this multiple of the state,bnz(u)} coun-

Because the solutions are to be considered as functions t#rclockwise tot_, it is transformed into-|¢, (t)), i.e.,
a complex time variable, it is necessary to include a fewthe eigenvector recurs with its sign changed after two circuits
comments about how the eigenvalues and eigenvectors aggound the degeneracy. This fact is easily verified in the
continued into the complex plane. Since for retle matrix  special case of the Landau-Zener model, @cR). Choose a
elements of the Hamiltonian are real, we define the innepranch cut crossing the real axis connecting the complex
product of two eigenvectors without complex conjugation.conjugate branch points, and consider a circuit constructed
We shall assume that the eigenvectors are normalized in thfeom the real axis and from a semicircle at infinity, as illus-
usual way, using this inner product. Abecomes complex, trated in Fig. 8b). Because the circuit can be shrunk to a
the eigenvalues and eigenvectors also become complex, bgitcle enclosing the branch point, and because the singulari-
the Hamiltonian matrix remains symmetric and its eigenvecties of this model are generic, the result is true in the general
tors orthogonal. By choosing the eigenvectors real on thease. Thus if we choose the phase of the diate) relative
real axis, they then .have no gauge freedom: They may bg, |¢,,.) appropriately, we may write
expressed as analytic functionstadt all points in the com- 1
plex plane, except for a set of singular points.

Singular points of the eigenvalues and eigenvectors can .
arise either because the matrix elements themselves have sin- |¢n1(t—)> =i ¢“z(t+)>’
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FIG. 4. Stokes lines (9, anti-Stokes lines (A), and branch
cut (BC) associated with a single branch point.

ImA6#=0, anti-Stokes lines. (2.6)

(0) 4 On the anti-Stokes lines adiabatic solutig@s3) connected
> (-1)="¢’> Ret by the branch point are codominant, and on the Stokes lines
(b) ()—> “"‘>=(.11) > (01] one adiabatic solution can be regarded as being maximally

dominant over the other. The Stokes lines associated with a
FIG. 3. (a) The sign of an eigenvector is reversed upon makingtypical branch point are sketched in Fig. 4.
two circuits about a branch poirb) An illustration of this change The subdominant solution is meaningful only if it is larger
of sign for the Landau-Zener Hamiltonian by considering the eigenthan the error term of the dominant series, which can itself be
vector transported smoothly around a circuit taken to infinity in theassumed to be comparable to the smallest term of the
upper-half plane. asymptotic expansiof2.1). On considering how the solution
behaves near a branch point, it is convenient to first consider
|¢n2(t_))= i|¢n1(t+)> (2.9 the behavior of the solution on the anti-Stokes lines. This is
because the adiabatic series corresponding to the two levels
as a generic description of how the eigenvectors changwhich become degenerate at the branch point are codominant
when crossing a branch cut in the counterclockwise sense.on the anti-Stokes lines, and are therefore certainly both
meaningful there. If these solutions agg(t)), |#.(t)), the
B. Solutions in the neighborhood of a branch point solution at any point along the anti-Stokes line Al in Fig. 4

. . . ) - may be written
This section considers the solution of the Sclinger

equation in the vicinity of a branch point. The arguments are | 4(1)) = aq| 1 (1)) + ap| (1)), 2.7

an adaptation of those given by Head|dd,12 for the case

of WKB approximations. They are included here because thevith the multipliersa; and a, approximately constant. On

terminology must be redefined for the adiabatic problem, andhe other two anti-Stokes lines the solution takes the same

because there is a minor difference in the logic. form, but it need not have the same coefficients; for example,
We assume that af* the levelsE, and E, become on line A2 the coefficients could bea(,a;). Since the

degenerate. In the neighborhood bfthe difference between Schralinger equation is linear, there must be a linear rela-

the two nearly degenerate levels behave&E?Enz— Enl tionship between the coefficients on the anti-Stokes lines:

~consi (t—t*)¥2 so that the phase integral difference has

a singularity of the form
(2.9

Ae(t,t*)=J*dt’ AE(t)~—(7—7)%, (2.5
! € If |41(t)) is the dominant solution in the sector between
whereK is a complex constant characterizing the brancHines Al and A2, then the multiplier of this solution cannot
point att*. Thus it is also necessary to introduce branch cut§hange, i.e.a;=a;. Heading[11,12 gave a very general
in the phase integralé,(t,t*), which we take to be the same argument, showing that the multiplier of the subdominant
as for the energies. On crossing a branch cut we must changélution is altered on crossing the Stokes line. For the ge-
the labeling of the energy levels and phase integrals, alferic case, where the singularity is given by E25) (trip-
though their values change smoothly. lets of Stokes lines attached to a branch poitfite argument
Some of the level curve&ontours of the phase integral follows closely that given by Heading for the WKB approxi-
that pass through the branch point are very important in th@']ation and the result is the same: the transition matrix from
formulation of the theory. These are the Stokes and antithe anti-Stokes line Al to A2 is
Stokes lines defined by 1 0
—i 1) . (2.9

ReA #=0, Stokes lines, M =
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In other words,—i times the multiplier of the dominant so- reduce the errors of the dominant terms until the subdomi-
lution is added to that of the subdominant solution whenevenant terms are meaningful. Such approximations are not dis-
a Stokes line is crossed in the counterclockwise sense. Thiaissed explicitly in Heading’s work, and must be verified for
will be referred to asdeading’s rule because our discussion specific applications.

follows Heading's treatment of the connection problem. It It will be convenient to introduce the following notation
assumes a phase reference at the branch point. Similar reffor the phase integral factor in the adiabatic solutions:

tions exist on crossing the other Stokes lines. However, in _—

writing down expressions for these relations it should be _ . _ : / /
remembered that, on crossing anti-Stokes lines, it is possible Fa(t,to) =exp i an(t,to)/ﬁ]—exr{ a ﬁjtodt Bt

for the dominance of the solutions to switch. For example, if (2.11
|45(t)) is dominant on both S2 and S3, then dominance

switches upon crossing Al and A2 but not A3. The exactWe assume that the system begins in the statgt))
solution of the time-dependent Scdinger equation must be = f4(t,tg)| #1(t)) ast— —. The phase referendg is an
analytic and single valued at the branch point, so ) is  arbitrary point on the real axis. As-, the system evolves
obtained by requiring that the multipliees return to their  to the statd#y(t)) +al»(t)), wherea is the transition am-
original values when traced in a circuit around the branchplitude that we seek. In the domain in Fig. 4 bounded be-
point, crossing three Stokes lines and the branch cut. Theveen Al and S1 and the real axis, the system is in the
branch cut is accounted for by noting that, according to Eqdominant state with respect to the branch point in the upper-
(2.4), upon crossing the cut the labels of the states are exdalf plane. Heading's rule, given by Eg&.8) and (2.9),
changed and the states are multipliedi lithis circumstance gives the evolution of the solution around the branch point
differs from the case of WKB theory, where the factors of from Al to A2 as

have a different origih We can introduce the matrix
f(6,0) ]2 () = Fo(t,1¥) [ h2 (1)) =i o(1,%) [ d2(1)),
[0 1 (2.1
TZ( 1 0) (2.10

to account for the switching of dominance on the anti-Stokes

lines. The branch cut is accounted for by the maffix The
effect of making a circuit around the branch point is then

described by the produeT MTMTM, which is the identity =~ Assuming we may extend this solution down to titren the
matrix, verifying that Eq.(2.9) is consistent with a single- real axis, the probability for the system to be found in state
valued wave function. |a(t)) is

It is desirable to comment on the interpretation of Eq.
(2.9). The adiabatic wave functions are a poor approximation — P;_,~|f,(to,t*)f1(t* to)|>=exgd —2 ImS; ,/#A],
to the exact solution at the branch point because they are (2.149
singular there. They are also a poor approximation far away
from the branch point because of the presence of othethere
branch points and singularities. Furthermore, their interpre-
tation is ambiguous at all points off the anti-Stokes lines, _ [t , N , ,
because the subdominant wave function may be smaller than S1= fo dUTE,(t) —Ea(t)]= = Ldt E(t)
the error of the dominant wave function. As they stand then, (2.15
the arguments above suffice only to discuss the behavior of
the wave function in d&deleted neighborhood of the branch is the action evaluated around a path, analogous to that
point, near the anti-Stokes lines. shown in Fig. 1, encircling the branch pointtét Its value is
independent of the phase refererige Thus Dykhne’s for-
mula (1.4) has been deduced from Heading’s rule.
o _ Note that the branch point below the real axis does not
~ The results of Sec. I B are sufficient to enable the transiymake any contribution to this transition probability, because
tion probability due to a single branch point to be deter-the sojution|,) is subdominant in the lower half-plane. To
mined, provided that they are supplemented by an additionglompuyte the transition probability for transitions in the op-

assumption. The logic of the argument presented there givesysite direction, the roles of the two conjugate branch points
the form of the wave function on two of the anti-Stokes gre reversed.

lines, provided it is known on the thir¢and even on the
anti-Stokes lines it is only a good approximation sufficiently
far from the branch point The additional assumption is that
the solutions may be extended from the anti-Stokes lines as In this section we discuss the case in which a transition
required, and still remain meaningful. This assumption re-occurs in two stages, first from the levgj to leveln,, and
quires the use of asymptotic series approximations, whiclthen from leveln; to level n,. Consideration of this case

2

or in terms of the adiabatic solutions with phase referegce
as

f1(to,t%)| () —F1(to, 1) he (1)) —if o(to,t*)|ha(1)).
(2.13

C. Transition probabilities deduced from Heading’s rule

D. The case of two branch points
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is now occupied by the solutioh//nl(t)). Since this is the

dominant solution on S1 Heading's rule gives the wave
function on A2 as a multiple of| z,bnl(t))—i|z/;n2(t)). The

evolution of the solution around then{,n,) branch point
from A1’ to A2’ is given by
*

)| ¢n1(t)>_’fnl(tatnl,n2)| ¢n1(t)>
—if nz(tvt:l,n2)| d’nz(t»-
(2.17

Combining these two evolutions, and expressing the result in
terms of the adiabatic solutions with a phase referépam
the real axis, one obtains

|¢no(t)>_)| ‘pno(t» - ifnl(tO !t:O,nl)an(

*
ni,ny

fo (1.t

5 o, to) [ n, (1))

Ng.Ny
- fnz(toat;cl,nz)fnl(t:;l,n2 vt:O,nl)
ano(tzo,nl!to)llpnz(t» (2-18)

FIG. 5. Stokes and anti-Stokes lines associated with a pair of
branch points between different pairs of levels. The boundary confor the evolution of the wave function from Al to A2Ex-

dition is that only leveln, is occupied ag— —». Case(a) allows
a transition to leveh, as r—. Case(b) does not allow such a
transition.

allows us to identify a rule for determining the circumstances Pn —.n,~ [T, (to,t

under which successive transitions may occur.

We examine a case in which adjacent pairs of levels be-

tending this solution down to timeé on the real axis, one
finds the probability for making the transition from levg
to leveln, is

come degenerate at distinct branch points. If we are con-

cerned with transitions from lower to higher energies, branch

points in the upper half-plane are relevant, because for paths

below these branch points lower lying levels are dominant.

The Stokes linegdefined by Eq.(2.6)] of the two branch

nyon) f (6 ot 0 ) Fag(Bho iy o t0) 2
=[fn,(to,t5, n) fn (15, 0, t0)
Xt (to ’t:oﬂl)f”o(t:oﬂl to)|?
=exf —21Im(Sy, n,+Sn 0,/ A1, (2.19

points can assume two possible arrangements as illustraté¢here S, . and S, , are actions for paths evaluated

schematically in Figs.®) and 5b).

First consider the arrangement in Figap with the initial
state being such that only the level with indexis occupied
ast— —oo. Following the argument used in Sec. Il C, we use

around the branch points located at tintgs, andty , ,
01 ny.Ny

respectively. The transition probability is therefore the prod-
uct of two factors of the Dykhne formula form, correspond-
ing to two successive transitions.

Heading's rule to connect the solutions on the anti-Stokes “\jow consider the arrangement in Figbswith the same

lines in the vicinity of the branch points, and assume that

these solutions may be extended down to the real time axi
Since only the initial stat¢<//n0(t)> occupies the sector be-

tween the lines A1 and S1 attached to the branch poin

(ng,n;), and sincg ¢n0(t)> is the dominant solution on S1,

Heading's rule gives the wave function on A2 as a multiple
of |z,bno(t))—i|z,/;n1(t)). Thus the evolution of the solution

around the y,n4) branch point from Al to A2 is given by
fno(t )|¢n0(t)>_)fno(t:t )|¢n0(t)>
—if o (L5 )| (1),
(2.19

*

t*
Ng.Nq

' no,nl

*
Ng.Nq

Next, since no Stokes lines are intervening, we may exten
this solution upward to the anti-Stokes line Adonnected to
the (ny,n,) branch point. The sector between ‘Adnd S1

nitial state |y, (t)) occupied ast— —o. At the (n1,ny)
ranch point| ¢ (1)) is dominant andz//nz(t)) is subdomi-

pant. According to Heading'’s rule, a transition into thge
level requires that the subdominant solution be switched on
in proportion to the dominant solution’s multiplier. However,
the solution| ¢n1(t)> has a multiplier zero in the entire region

containing the relevant anti-Stokes lines attached to the
(nq,n,) branch point. It follows that no transition from, to
n, is possible using these two branch points.

There usually will be other branch points farther out in the
complex plane connecting levetls andn, directly. In both
of the cases discussed above, this branch point would make a
contribution to the transition probability of the form
Pny—n,= Pnzﬂn():exr[—z Im Sno,nzlh]- In the case of Fig.
&(b), this would be the only contribution. In the case of Fig.
5(a), it is the dominant contribution if 8o, n,<IM Sy n,

+ImS, . and negligible otherwise.
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E. A criterion for selecting possible transition sequences of an asymptotic series. This divergence is usually deter-

We now propose a rule for determining the combinationdMined by the branch point “closest” to the real axis, in the
of actions that correspond to allowed transitions. The rule i$ENS€ Of having the smallest value of the imaginary part of
based upon Heading’s local analysis of the form of the solulh€ action,[im . A means must be found to eliminate the
tion in the vicinity of a branch point, supplemented by thedivergence associated with branch points close to the real

assumption that solutions may be continued away from th@xis in order that the divergence associated with other branch
branch points points may be revealed, allowing their Stokes lines to be

In the case of an upward transition from levglto n,, a interpretg d. This is achieved by “projecting C.)Ut” a subspac_:e
transition might be possible using a sequence of ,brancﬁ)f the Hilbert space spanned by states having branch points

. * " . ith " babili close to the real axis.
pOIntStno'nl ’tnl'nZ’ T ’tnkfl'nk with transition probability Various approaches were tried and found to be unsatisfac-

Pnoﬁnk:exp:—z |m(5n0,n1+ ce +Snk71'nk)/ﬁ]. This tran- tory. The method we use is adapted from an approach intro-
sition sequencés allowed only if the branch points and their duced by Berry[18]. Instead of constructing an asymptotic
associated Stokes lines satisfy a topological criterion. Théeries for the wave function, the objective is to construct a
transition nj_>nj+l is mediated by the branch point at sequence of “renormalized” Hamiltonians haV|ng the same
t* and can occur only if the level; is occupied at this dynamics as the original problem, and for which the adia-
NjNj4a?

. . . . batic approximation is successively more accurate. Hthe
branch point. This requires that the branch pmmtﬂm lies  Hamiltonian of this sequence has off-diagonal matrix ele-

in the quarter-plane above the real axis, and to the right ofnhents ofo(ek). If the off-diagonal elements were to ap-
the boundary formed by the Stokes line descending fronproach zero ak— =, the adiabatic approximation would be
th,_,n, to cross the real axis, and the branch cut from theexact. In this case there would be no nonadiabatic transitions.
t:j,l,nj branch point. T_his implies that the prefactors of tf@(ek) terms must
The rule is topological in character. For downward tran_d!verge ask_—>00. This divergence af‘d Its consequences are
sitions, the relevant branch points are in the lower-half.discussed in Sec. IV. In the remainder of this section we

plane, but because of reflection symmetry, the rule can b@xplain how the sequence of renormalized Hamiltonians is

applied in exactly the same way as for upward transitionsconstructed. The approach follows that of Beffys] quite

The rule might at first sight appear to have a degree of arbiglo?,ely’ except that a supspace of the spectlrum. is “projected
trariness, in that it refers to the positions of the branch cuts agut OOf the renormalization procedure, leaving its elements
well as the Stokes lines. It may, however, be verified thaf2(€)-

moving the branch cuts does not affect the predictions. The o . .

reason is that when a branch cut from tfie,, branch point B. Renormalization excluding a projected subspace

is moved past the¢} . branch point, the labeling of the We consider a case where there is a branch point close to
172

levels must be changed so that the latter branch point noW'® €@l axis in a subset of the spectrum characterized by a
connects levels, andn, rather tham, andn,. set of state indicefP}. The projection operatdp(t) for the
corresponding subspace of the Hilbert space is
11l. ADIABATIC RENORMALIZATION
WITH PROJECTIONS P(t)= 2 |dn(t)) dn(t)]. (3.
neP

A. Motivation for renormalizing the Hamiltonian

The objective of this section is to explain how the inter-
pretation of the Stokes lines used in Sec. II, which led to theThe complementary set of state indices will be terrheq,
rule for the selection of transition sequences, may be justiand its corresponding projection operator designajesi
fied. This requires the use of asymptotic series to reduce the 5 proyided the singularities of the matrix elements of the
error of the dominant solutions as far as possible. It turns outysmiltonian are sufficiently far from the real axis, the singu-

that this error can be reduced below the magnitude of th?arities of the projection operatdi’ are determined by the

subdominant solution everywhere, except in the vicinity Ofbranch oints where an eigenvalue fréR) becomes degen-
the Stokes lines. This idea was introduced by Stqi&$in P 9 9

a discussion of the Airy function, and amplified in a book by €rate with one fron{Q}. The projection operatoP(t) and
Dingle[14]. It was applied successfully in a variety of forms the projected Hamiltoniatip=PHP are analytic inside a
and to a variety of physical problems by Befty5—-17. To  strip>p symmetric about the real axis, and bounded by these
date, all of the applications to differential equations haveconjugate branch points. This is true despite the fact that the
involved problems in which only two equations are coupledeigenstates in Eq.3.1) have singularities closer to the real
together, e.g., two-state problems in adiabatic theory, or oneaxis due to branch points between state$R.
dimensional semiclassical problems, involving two channels It will be useful to have available a representation of the
(left- and right-propagating waves projection into the{P} subspace explicitly constructed from
The approach used in these papers must be generalizedaoalytic quantities. To this end a set of statgg(t)), n
cover the multilevel problem. The reason is that the interpre<{P} will be constructed having no singularities inside the
tation of the Stokes lines depends on studying the divergencstrip 2 and satisfying
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(XD X0 (1)Y= 8nnr s PO xn(D)=]xn(D)), HE = (DA Xm0 = i ()| dxm(D)

tlirf ‘Ixn(t)>=|¢n(i°°)>- (3.2 (n,me{P}). (3.11)
{The casene{P}, me{Q} requires some discussion. The

This set of states could be constructed explicitly in one o .
g_tate|(9t¢m(t)) may be written

several ways. As an example, consider the smooth interpol

tion
%[|¢n(+m)>+|¢n(_m)>] |at¢m(t)>:n§P} an|Xn(t)+n§Q} an|¢n(t)- (3.12
301 én(+)) ~ [ dn( —2))]tanket). 33 Differentiating the Schrdinger equation Hl —E,))| ¢m)=0

These state vectors could then be projected into the subspa}ﬁ’éth resl_pect to time, thefn mﬁltiply!nhg W(IL; gives the fol-
by multiplication byP and then orthogonalized by a Gram- owing linear equations for tha, with n e {P}:
Schmidt procedure.

Consider the unitary operator E Di,an=by, (3.13
ne{P}

Oo<t>=n§P |xn<t>><xn(—oo>|+n§Q | (D)) Pn(—)], where

(3.9 PR .
) Din=Emdin—(xiIPHP|xn), bi=(xldH|dm).
which generates the statestdtom the states at= —oc. In
order to simplify notation, the statég,(t)) will be used to _ _
denote the state$y,(t)) for ne{P} and |¢,(t)) for n It is useful to define a matrixG that is the inverse oD

e{Q}, so that Eq(3.4) is ={D),}, and a corresponding operatGr

Uo() =2 [n(O))(Bn(—2)]. (3.5 &)= 2{ ()G OV = (En= PAP) L.
n ne{P
Following Berry[18], we introduce a representatioir (t)) (319

of the solution of the time-dependent Sctlirgyer equation Using the fact thafs={G,,} is the inverse oD, one finds

defined by the solution of Eq(3.13 is
|9())=Oo(0)] (1)) (3.6 )
This renormalized wave function satisfies the Sdimger a':<X'|3t¢m>:n§P} Gin{xnl %R b}
equation
ihﬁt|wl>:|:|1|¢1> (3.7) :ngP} <XI|(Em_Isﬂls)ilb(n)()(nwtﬂlgﬁm)'
with the renormalized Hamiltonian given by (3.19

At =0itAM Tt —-ia0kt)a04(t). (3.8  Itfollows that

The matrix elements dfl; are conveniently evaluated in the H o= —iA{xn(D)|(Em—PHP) *PaH| pp(1))
basis formed by the eigenvectorstat —oc:

(ne{P}, me{Q}). (3.1

HE=(bn( = 0) [Aa| (=) . | |
_ . _ _ In summary, the matrix elements of the renormalized Hamil-
=(dn()|H]dm(1)) =i (Pn(t)|d1m(1)). (3.9  tonian are given by the expressions in E6&10), (3.1,
) ] and (3.17). Notice that all of the off-diagonal elements are
Three different cases arise. In the case whewend m are O(e), except those in tha,me {P} block, which areO(1),
both in{Q}, and thatH })(t) is diagonal as— + =, because the original
Hamiltonian is constant in both limits.

(D] FHD)|Dm(D))

Him= SamEn(t) —i% (1= 8nm),
" Em(t) —En(1) C. Ilteration of the transformation
(n,me{Q}), (3.10 The renormalization transformation defined in Sec. IlIB
can be iterated by writing successive wave functions and
and forn andm both in{P}, Hamiltonian operators as

062104-8



NONADIABATIC TRANSITIONS IN MULTILEVEL SYSTEMS PHYSICAL REVIEW A 61 062104

| ()Y =U(O) | s 1(1)), Fyoq= Ulﬂkok_iﬁolatok- initial state| ¢,(—)) with HamiltoniansH andH,, respec-
(3.19 tively. If the O(€X) matrix elements vanished &s- there
would be no nonadiabatic transitions. Therefore, the se-
Note that the transformation of the Hamiltonian is valid for quence of renormalized Hamiltonians is expected to have a
any choice of the unitary operatbr,. The operator&),(t) typical behavior for terms of an asymptotic series, in that,

will be defined by although the matrix elements decrease for srkalit suffi-
ciently largek they diverge because of a faster than expo-

9 _ ~ (k) ~ nential growth of the prefactors. The valuekdbr which the
Uit) ; |60 (OX ol =), 3.19 largest of the small matrix elements has smallest magnitude

will be denoted byk* (€). This divergence will be examined

where in greater detail in Sec. IV.
. K0 £ (0 For smalle and for large values ok which are not too
(H—Ex)[¢p”)=0 (ne{Q}), large, the off-diagonal matrix elements outside EHe block
R are very small. Applying first-order perturbation theory, the
Pulx =[x, (W) [xW(t))=8n (n,n"e{P}). statesn € {Q} may be approximated as
(3.20
Here the new projection operatBy, is defined in analogy to |¢§wk)(t)>~|¢n(_°°)>+§ CON | (=), (3.22

Eqg. (3.1 using the new instantaneous eigenstditﬁéb for
ne{P}. The notation|${(t)) is used to denote the states where, form(#n) e{Q},

Ix(t)) for ne{P} and|4(t)) for ne{Q}. Since both ®

. ~ H
HE‘lE)‘(iw) are diagonal, we havmgl)(ioo»_: |_¢n(—°°)_>- CE%ZE(F)_L;WJ’O(GN)* (3.23
Ixt(t)) are chosen so that they are analytic in the skip n mm

and close to thé¢,(—=)) ast— . As in Sec. IlIB for  and forme {P},
the k=0 case, these states can be generated by acting on
linear combinations of thég,(*=)) with the projection
operatonsk(t), then using a Gram-Schmidt procedure to cre- ngkr%: E Gi:%'(Egk))HET?n“LO(GZk)- (3.24
ate orthonormalized states. It is still most convenient to m’ e{P}

evaluate matrix elements of the Hamiltonilarg with respect WhereGE:an(E) are elements of A/ X NVp resolvent matrix,
to the states|¢,(—=)). Generalizing the equations which is the inverse of a matrix with elemengs,,

inSec. IlIB, the matrix elements Him”  —H® . Also, whene<1, the energy levels may be ap-
=(n(—2)[Hy+1(t)| dm(—2°)) are given by proximated by those of the original Hamiltonia{(t)
- =E,(t) +0O(e). For states i{P} we write, in analogy to Eq.
(k) (k) n
H(k“)=5nmE(k)(t)—iﬁ<¢n (tilﬁtHk(t)k'(ﬁm o (322,
" " ER®-EP()
X (1= 8, (Mme{Q)) (3.213 XEHD)~[8n(=))+ 2 CLRldm( ). (3:29
= (xS OIHD R 0) =i A (O] ax () The requirement of orthogonality¢{¥|x{)=0 implies

that, to leading orderC,,=—Cp,, for ne{P} and m
€{Q}. To leading order, theC,,, are not constrained for
n,me{P}, and are taken to be zero.

These approximate expressions for the sth#8) lead
to approximate expressions for the renormalized matrix ele-
(ne{Phme{Q}). (3.219 ments, which are valid whee<1. From Eq.(3.18, these
matrix elements are given by

(n,me{P}) (3.21h

= =i (xPO(EL - P AP P H | 6% (1))

After k stages of iteration all matrix elements af ),
except the diagonal elements and all of the elements of the K+1)_ 5001 150Ny 5 (K] 2 (k)
P P block, which remairO(1). Each Hamiltonian is an exact Him 7= (0’ [Hid dm’) = i0( 0% o). (3.26
representation of the dynamics of the original problem, an
the transition amplitudes could, in principle, be obtained b
integrating the Schidinger equation with any Hamiltonian
in the sequence. At each stage tHE)(+ ) are diagonal, YT ® -

~ ) H(t t)~ t)|H(t t n,me{P}).
a.n.d henC¢¢$,k)(i00)>=|¢n(—00)>The amplitude _f0r tran- <Xn ( )| k( )|Xm ( )> <Xn( )| ( )|Xm( )> ( {(3}2)7)
sition from staten to state m is therefore given by

(Dm(®) [ ¥n()) = Pm(— )| n(*)), Where |,(t)) and  Using these approximations, Eq8.21) simplify consider-
|4 n(t)) are the wave functions obtained by propagating theably:

q:rom approximation(3.25 along with Egs.(3.1) and
¥(3.211, it follows that, for smalle,
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HO D~ SamEn(t) =19, CIND (1= 80m) (Me{Q}) A(t)=CA(1), (4.4
(3.283
NHgkn)q(t) (n,me{P}). (3.28H whereC is a constant.

The possible values df are determined by realizing that

To summarize, Eq¢3.21) describe an exact renormalization &N acceptable solution of E¢4.1) should be regular at any
of the Hamiltonian, which, for sufficiently largéut not too ~ Point for whichA™*(t) andH,(t) are regular. Solutiof¢.2)
large k, has the effect of reducing the magnitude of all of theS clearly divergent fok+y>0 whent—t*. This observa-
off-diagonal elements outside thBP block. Equations tion implies thatt* must correspond to a singular point,
(3.28 are an approximate implementation of this iterationWhere at least one ok ~*(t) and Hy(t) has a nonanalytic

valid for sufficiently smalle. behavior. In the context of adiabatic thedfycorresponds to
a branch point singularity. In general, the solution at tinge
IV. INTERPRETATION OF THE ASYMPTOTIC SERIES dominated by the approximate soluti¢f.2) attached to a

singular pointt* for which the modulus of(t,t*) is small-

All of the renormalized Hamiltonian$i, describe the est. Since Eq(4.1) is linear, a superposition of codominant
same dynamics. In particulddm(— )| n())|?, where solutions of the form of Eq(4.2 may be necessary. In the
ln(t)) is the wave function propagated under the Hamil-case where the functiort$, (t) andA ~*(t) are analytic and
tonian H, from the initial state] ,(—)), is the transition real valued on the re_al ams,_thg smgular points occur as
probability from staten to statem, and is independent df comple'x qonjugate pairs. In this S|tu_at|on the SOIu.t'On on t.he
Now the viewpoint of Sec. IlI, which associates transitionsreal axis is a superposition of solutions with conjugate sin-

between pairs of levels with Stokes lines, will be confirmeddularities.

here by showing that whek is suitably large, the Hamil- !N our application wher& =(E; —E,), the real part oF
A . . is constant along the real axis. Thus, on the real axis, the
tonian H,(t) on the real axis is greatest at crossings of

. : i magnitude of solutior{4.2) is largest at the point where the
Stokes lines[17]. Section IV A examines the case where Stokes line, defined by IR(t,t*)=0, crosses. For large

there is no projected subspace: a direct generalization of th[fﬁ ; ; ; :
: : e magnitude decays rapidly, with an approximately Gauss-
result for two level systems. Section IV B considers the ex g ys rapicly bp y

an form on either side of this point. When the two conjugate
: ; ; SPaCEs utions are combined, the result is a real function with
showing that the Stokes lines can still have the same Slgn.'ﬁ(')scillations within an approximately Gaussian envelope.

cance for branch points not close to the real axis. Section The constant€ and y can be determined, although they

{VC ?_escrlbek;s E(IJ\tN _thesle_results can be ufsgd tothd.uiea?e not required for our discussion of the theory. Both con-
ransition probability iInvolving a sequence ot branch pointS.qi, s are obtained by considering the behavior of the func-

tions in the neighborhood of the singularity. In the applica-

A. Form of the Hamiltonian at large order, tion of these results to adiabatic theory, E8.10 requires

with no projected subspace that the function H,(t) plays the role of
This section discusses the form of the matrix elements of ¢,,(t)| %H| pm(t) /[ Em(t) —En(t)], which scales as t(
the renormalized Hamiltonian in the limit wheee<1 and  —t*)~1in the vicinity of a branch point singularity &t . In

1<k=k*. Equation(3.289 determines the evolution of off- the vicinity of the branch point, the form of the successive
diagonal matrix elements outside of tfP block. In the  H,(t) is dominated by the componentsldf(t) andA ~(t)

QQ block, it is an iteration of the form which are most strongly divergent as-t*. It is therefore
appropriate to také(t)~(t—t*) " and A(t)~ (t—t*) 2

i ﬁ Hi(V) This leads immediately to the conclusion thgt-0. The

Hisa()=—if : 4.1 R A ; ;

at\ A(t) determination of the multiplie€ is more involved, and will

) ) ) not be pursued here.
whereH,(t) andA(t) are given functions. Noting observa-  Applying these results to the renormalization of Q€
tions on asymptotic series discussed by Dir[dhé], we find  pjock of the HamiltoniardEq. (3.284] shows that for largé
that for largek, solutions of Eq(4.1) may be obtained in the {he off-diagonal matrix elements are largest for the element
form H® for which |F| is smallest. On the real axB=iS, /%,
_ k —(k+ so this corresponds to the matrix element with the least
H=(=D*AMT (k+ 9)[FO]*, (4.2 [Im Siil. Furth:rmore, each of these matrix elements is larg-

wherey is a constant, anff(x) is the gamma function sat- €St in the vicinity of the point where the Stokes line inter-
isfying I'(x+1)=xI'(x)=x!. Substitution of Eq.(4.2) into  S€cts the Areal axis. The most significant process in the dy-
Eg. (4.1 shows that the dimensionless scalar functie(h) namics ofH, is therefore a transition between levalandm
is localized in time at the point where the Stokes line crosses
the real axis. The use of the renormalization scheme there-
L , fore confirms the interpretation that the transition occurs at
FLe)= %ﬁ*dt A, (43 the Stokes line. The results are consistent with the conclu-
sions of Sec. Il, and we will assume that the transition prob-
and that ability is given by Eqs(2.14) and(2.15.
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B. Form of the Hamiltonian at large order,
with a projected subspace

PHYSICAL REVIEW A 61 062104

stituting Eq.(4.8) into Eq.(4.5) leads to an equation fdvl,, .
Retaining only the leading-order terms in the linkits oo

In the case where there is a subspace projected out in theads to the conclusion thit, ., ;~gM, for k>1. Using the
manner discussed in Sec. llI, the equation for the iteration ofact thatg,» = 1, it is seen that in the limik— c this relation
the off-diagonal matrix elements in tlg¢Q block is exactly  has the solution
of the form considered in Sec. IV A above. The case of ma-
trix elements in the® Q and QP blocks requires a different
treatment. As before, the equation for iteration of the these

elements of the Hamiltonian is of the form of E@.283,
but in this case the coefficien,,, are given by Eq(3.24)

in terms of anNVpX Ap matrix G(E,,). We will write the
iteration symbolically in the form

Hir1() = =i G H(1)] (4.5

where Hy is a column vector of dimensioNp, with ele-
mentsH), (me Q fixed), n=1, ... Np, andG,={G,}

={(XWIEP-PAPY xI)L. If Gy is diagonal then
[by analogy to Eq(4.2)] the solution of Eq(4.5) is of the
form

Hi=(—D T (k+ p)A[F(t)] A, (4.6)

whereA and F(t) are diagonal matrices of dimensio¥i
X Np, andA is a constant column vector of dimensidf .
By analogy with Eq.(4.4), A is the inverse of3(E,,), and
the diagonal elements & are

it
Fuh= 3 | GUIE)-EN)) @7

A similar argument to that given in Sec. IV A forcgs to be

M= lim I'\V/lk:|§n*><§n*|-

k— o0

(4.10

We conclude that the leading order behavior of Ef8) is
the same as Ed4.6), in that it is controlled by the smallest
actionF* connecting the statme {Q} to theP subspace.

The comments in Sec. IV A, indicating how the renormal-
ized Hamiltonian is concentrated on Stokes lines, can then be
applied equally well to this case: from E¢.8) it can be
seen that the dominant term in the high-order renormalized
Hamiltonian comes from the branch point with the smallest
value of|[Im S|, where at least one of or mis in the Q
subspace.

C. Interpretation of the renormalized Hamiltonian

As an example of how these considerations can be used to
demonstrate the validity of the topological rule, consider
their application to the case of two successive transitions
no—n, followed by n;—n,. It will be assumed that the
(ng,n4) branch point is closest to the real axis, and that the
(ny,ny) branch point is next closegin the sense of the
imaginary part of the action being smajleThe subspac®
is then chosen to be that spanned by levglsandn,. The
states| x, (1)) and|x, (t)) are chosen to correspond to the

the position of a singularity, where a pair of eigenvalues, On%igenstateis(ﬁno(t)) and|¢n1(t)) at the pointts, where the

each from theP and Q subspaces, become degenerate. ThPStokes line fr

om then(;,n,) branch point crosses the real

largest elements of the vectét, are determined by the axis. When the ordek is sufficiently large, the matrix ele-
branch point with the smallest action connecting the leveinents that determine transitions from tResubspace are

me{Q} with any of the levelsne{P}. We denote this
smallest action by* (t) =F .« (t).

Our primary concern is, however, with the case wHage
is not diagonal. In this case E@.6) is not a solution of Eq.

(4.5), but it is expected that the largest elements of the solu-

tion will be determined by the smallest actid¥. We there-
fore write

Hi= (=D T (k+ p)A* (O[F* ()] C M (DA,
(4.8

whereiA* (t)/A=dF*/dt, andM, is a square matrix of di-

mensionA\p. The matrixG, may be written(using Dirac
notation in the form

1

Ce=gr = 2 l&(D)anO(E] 4.9

where|&,) are NVp dimensional eigenvectors, witdp,« = 1.

largest for the transition between levelg andn,, and are
concentrated ats. The general arguments given in Sec. Il
indicate that this transition probability isPnl

~exp:—2|m5n1’n2/ﬁ].
The probability of making a transition from statg to n,

via the intermediate state; therefore depends on the dy-
namics within theP P subblock at times earlier thdg. The
matrix elements within this sub-block have been left ap-
proximately unchanged by iteration of the renormalization
procedure. Any suitable procedure can be used to calculate
the probability for the transitiony— n, occurring before the
timetg. In the limit e—0, the most convenient procedure is
of course to use adiabatic theory. This predicts the transition
will occur on the Stokes line attached to th®,(n;) branch
point with the probability Pnoﬂnfexr[—ZImSnO,nl/h].

The overall transition probability for theg—n, transition
going through the intermediate statg is then P

=Py _.n.P

~>n2

no~> n2

ng—ny Py, if the branch pointi,,n,) lies to the right

We assume that the smallest action corresponds with thef the Stokes line from theng,n;) branch point. In the other

largest value ofg,|, so that/g,|<1 for ne {P}#n*. Sub-

case, it is determined by other branch points.
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0
FIG. 6. Energy levels for an example of the model Hamiltonian Ret

introduced in Sec. V. FIG. 7. Branch points and Stokes lines intersecting the real axis

for the example shown in Fig. 6. The pairs of integers indicate

V. NUMERICAL ILLUSTRATION which energy levels become degenerate at each of the branch

The scenario described above was tested numerically onRP™Ms:

model HamiltoniarH (X(7)) of the following form: real, symmetric matrices with independently Gaussian-

distributed elements with mean and variance given by
H=cogX(7))H+sin(X(7))H,, (5.0 [20,21

_ 2\ _
X(7)=atanh(7/a), (5.2 (i) =0, (Hij)=(1+&). ®3
The choice of Hamiltonian is arbitrary, as long as its spec-
where r=et, andH, andH, are two independent random trum is nondegenerate for all real and its eigenvalues and
square matrices of dimensiok, drawn from the Gaussian eigenstates become time independent asymptotically as
orthogonal ensemblgGOE). The GOE ensemble consists of — *%. The functionX(7) was chosen to fulfill the latter
requirement. Model5.1) was used because, fav>1, its
TABLE I. Branch point data for the example shown in Fig. 6. SPectral properties are representative of those of generic
time-reversal invariant multilevel systerf22]. The distance
Branch State of the branch point singularities from the real axis scales as
point label indices, | Re Nij N2 whereas the singularities of the matrix elements in
= the complexr plane have a distribution of positions indepen-

a 54 —3.051296 2637619 dent of the matrix dimensionV. It follows that in typical

b 4,3 —2.739876 0.181812  physical applications branch points will lie closer to the real
c 2,1 —1.971837 2918432 axis than other singularities.

d 3.2 —1.791580 0.049935 Numerical calculations were performed to determine the
e 6.5 —1.446037 0.101999  “exact” or “empirical” transition probabilities P,_,, for

f 43 —1.195295 0.119999 100 Hamiltonians of the form of Eq5.1), all with dimen-

g 54 —0.729159 0.031601  sion N=6. In each case alN({N—1)=30 transition prob-

h 2,1 —0.610604 0.024514  abhilities were computed. The scale factor2 was used in

i 6,5 —0.440841 0.267925  all calculations. The probabilities were obtained by numeri-
j 4,3 —0.223932 0.256871  cal time integration of the Schdinger equation, using a
k 3,2 0.296616 0.071114  standard fourth-order Runge-Kutta algorithm with arithmetic
I 5,4 0.668725 0.122366  accurate to 14 decimal places. Rather than comparing the
m 5,3 0.678210 0.480203 transition probabilities themselves, we compafi imagi-

n 2.1 0.790463 0.373673  hary part of the actions times the adiabatic parameten

0 43 0.884734 0.166006  units of Planck’s constant:

p 3,2 1.242660 0.304654 |ImS | 1

q 6,5 1.609035 2.043553 _ nml

r 4,3 1.647808 0.072687 Mnm= P 2|09(Pnﬁm)e. (5.9

S 54 2.528592 0.090388

t 2.1 3.066494 0.452725 The integration was performed betweep=—25 and 7;

= +25. We checked that the transition probabilities are in-
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TABLE II. Theoretical transition sequences and actions compared with empirical values for the example

of Fig. 6.

Initial Final Transition Nom Nnm Fractional
staten statem sequence adiabatic empirical Difference difference
1 2 h 0.024514 0.024972 —0.00406 —0.01833
1 3 hk 0.095628 0.097049 —0.00142 —0.01463
1 4 hkr 0.168315 0.170316 —0.00200 —0.01174
1 5 hkrs 0.258703 0.261363 —0.00266 —0.01018
1 6 hkmq 2.619384 2.630638 —0.01125 —0.00428
2 1 h 0.024514 0.024946 —0.00043 —0.01732
2 3 d 0.049935 0.050603 —0.00067 —0.01319
2 4 dr 0.122622 0.123828 —0.00121 —0.00974
2 5 dfg 0.201535 0.204990 —0.00345 —0.01685
2 6 dfgi 0.469460 0.473734 —0.00427 —0.00902
3 1 dh 0.074449 0.075558 —0.00111 —0.01467
3 2 d 0.049935 0.050611 —0.00068 —0.01336
3 4 r 0.072687 0.073213 —0.00053 —0.00719
3 5 fg 0.151600 0.152904 —0.00130 —0.00853
3 6 foi 0.419525 0.423847 —0.00432 —0.01020
4 1 bdh 0.256262 0.257967 —0.00171 —0.00661
4 2 fk 0.191113 0.193036 —0.00192 —0.00996
4 3 r 0.072687 0.073212 —0.00053 —0.00717
4 5 g 0.031601 0.032305 —0.00070 —0.02181
4 6 gi 0.299526 0.302137 —0.00261 —0.00864
5 1 gjkn 0.733259 0.736357 —0.00310 —0.00421
5 2 gjk 0.359586 0.362679 —0.00309 —0.00853
5 3 gr 0.104288 0.105613 —0.00133 —0.01255
5 4 g 0.031601 0.032305 —0.00070 —0.02179
5 6 e 0.101999 0.102708 —0.00071 —0.00691
6 1 egjkn 0.835258 0.846646 —0.01139 —0.01345
6 2 egjk 0.461585 0.465363 —0.00378 —0.00812
6 3 egr 0.206286 0.208215 —0.00193 —0.00926
6 4 eg 0.133599 0.134977 —0.00138 —0.01021
6 5 e 0.101999 0.102680 —0.00068 —0.00664

sensitive to further increasing the rangerofThese calcula- anti-Stokes lines were plotted for several realizations of the
tions were done for a large set of adiabatic parameters baandom Hamiltonian, and the allowed transition sequences
tweene=0.001 and 0.5. We observed that in most cases thevere determined. The Stokes and anti-Stokes lines attached
actions converged to a limit as—0. In other cases, we to the branch points were traced by evaluating a sequence of
estimated the limit by extrapolation with a polynomial. In short stepsi~ along their lengths. If the Stokes line emerg-
many cases numerical roundoff error would make the resulting from a branch point between levelandj was found to
unreliable for smalle. In these cases we assumed the bespass through the poin, the next point was obtained from
value for the action corresponded to the smallest value of 7, =7+ 7, where from Eq.(2.6) Sn=¢eil[Ei(7y)
for which roundoff errors were not significant. Typically, —E;(7)], ande is a small real number. Increments of the
roundoff errors were significant when the calculated resulanti-Stokes lines were determined by an analogous approach.
obeyedP, .,<10 23 Finally, the “adiabatic” or “theoretical” branch point ac-
The adiabatic calculations were performed in the follow-tions were computed numerically according to
ing way. First, the approximate locations of the branch points
Ti*’]- were determined by a search for near degeneracies on a 1 N
grid in the complexr plane. The rectangular region bounded )‘iyizﬁ‘ |mei.i
by —6<Rer<6 and 0<Im <2 was usually found to in- (
clude all the relevant branch points. Next, the locations of
these branch point candidates were refined by a version of The theoretical actions were in excellent agreement with
the Newton-Raphson method adapted to finding square-roghose determined empirically from E¢p.4). We found that
branch points of the forrk; — Ejo= \7— ri’fj. The Stokes and in every case the allowed transition sequence could have

O)dT[Ei(T)—Ej(T)] . (5.5

*
RETi,j'
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been determined by a simple empirical rule, namely, that the The results of Secs. Ill and IV support the rule suggested
real parts of the branch points should be in ascending ordem Sec. Il, but they do not constitute a proof. Further work
Accordingly, the branch point data were ordered with respeciust be done to establish how the high-order renormalized
to Re7}';. From this ordered table of branch point locationsHamiltonian can be used to calculate transition probabilities
and branch point actions, all possible transition sequencegirectly in the case of multilevel systems. This might involve
from the initial staten to the final statem, in which the state studies of how the transition probabilities could be deter-
indices increasetbr decreasedmonotonically, were consid- mined by applying time-dependent perturbation theory to the
ered. According to the rule given in Sec. Il E, the overall high-order renormalized Hamiltonians &sncreases along
action\,, was taken to be the least sum (tiie imaginary the real axis. This was successfully applied by Berry and
part of) the branch point actions over these possible transitim [17] for the case of two-level systems. An alternative
tion sequences. These calculations of the overall “theoretiapproach would be to investigate analytic continuations of
cal” actions were automated. the adiabatic solutions of the renormalized Hamiltonian
Examples of the calculations are presented in the tablegway from the real axis, as far as the branch points.
and figures. Figure 6 is a plot of the energy eigenvalues for There is a theoretical difficulty that must be resolved con-
real time for one example from the 100 sample Hamilto-cerning the interpretation of the Stokes lines. According to
nians. The branch point data corresponding to this case atbe interpretation discussed in Sec. IV, a transition from level
listed in Table I. Observe that the avoided crossings in thélp to n; occurs on crossing a Stokes ligny,n;), where
figure correspond to small values of the branch point actionthe matrix elementﬁﬁ?,nl(t) are greatest for redl A sub-

in the table. Figure 7 shows the Stokes lines that cross thgequent transition from statg to n, could then occur if the
real axis for all branch points involved in some transition stokes lineS(n, ,n,) were crossed at a later time. Presum-
sequence. The theoretical transitio_n sequences and ac.ti.og§|y the allowed transition sequence would then be deter-
derived from these data are shown in Table II. The “empiri-mined by the order in which the Stokes lines cross the real
cal” results obtained using Eq5.4) are shown there for axjs. However, the path in the complex time plane along
comparison. Note that the fractional difference between theyhich the Schidinger equation is integrated can be de-
empirical and theoretical results based on our adiabatifsrmed away from the redlaxis. A problem may arise if the
theory is typically around 1% or smaller, although occasiontwo Stokes lines cross: a transition allowed along one path
ally as high as 2%. The average fractional difference bewould then be forbidden along an equally valid path. A rule
tween the empirical and theoretical actions over all 3000 datgased on the order in which Stokes lines cross the real axis
points was~1.6%. The data are consistent with the hypoth-may therefore predict different transition sequences from the
esis that the transition probabilities are given by Efl)  ryle in Sec. Il. We have not yet found a totally satisfactory
with C=1, and the actiors,, given by the topological rule resolution of this problem. We can, however, remark that in
of Sec. IlE. our investigations we found no examples where the predic-
tions of the two possible rules were different. It is not clear
VI. CONCLUDING REMARKS whether it is impossible to find an example in which the
redictions differ, or whether such cases occur with very low

This paper makes three contributions to understanding th robability within our ensemble.

behavior of the transition probabilities for multilevel sys-
tems. First, we have suggested a general rule for determining
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